
he i.v. oxygen-15- (â€˜SO)labeled water (H2150)
bolus method is a widely used technique for the meas
urement of cerebral blood flow (CBF) with positron
emission tomography (PET) (1-3). In addition to the
quantification of the radioactivity distribution in the
brain, this method requires the measurement of the
arterial @Oinput function that is commonly achieved
by rapid manual or automatic blood sampling from the
radial artery. This peripheral sampling scheme requires
appropriate corrections for: (a) the systematic time dif
ference between the tracer arrival times in the brain
relative to the peripheral sampling site (delay correc
tion) and (b) the difference in the degree of distortion
in the curve shape of the input function resulting from
the dispersion of the tracer bolus in the blood vessels
between the heart and the brain on the one hand and
between the heart and the radial artery on the other
hand (dispersion correction). The critical dependence
of calculated CBF values on these two corrections has
been previously demonstrated (2,4,5-8).
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A commonly used delay correction method (7,9)
determines tracer arrival times by linear backward ex
trapolation of the upslopes of the arterial and whole
brain slice radioactivity curves. The input function is
then shifted along the time axis by the determined
arrival time difference. This empirical method, here
after referred to as the slope method, has never been
validated. Recently, lida et al. (1) have published a
more rigorous method for delay correction, hereafter
called the global fitting approach, that requires further
validation. The same authors (5) have described a
simple single exponential model to account for disper
sion ofthe arterial input function.

Although the two phenomena, tracer arrival time
delay and dispersion, are intimately related, they have
been treated in the past as separate entities and the
respective corrections were always applied in two con
secutive steps. For example, the delay correction may
be performed first, followed by the dispersion correction
(5, 7). Reversing the order of correction yields different
CBFvalueswhen the slopemethod is used. Ideally,the
two corrections should be applied simultaneously.

The present communication describes a method for
simultaneous correction for tracer arrival delay and
dispersion by means of dynamic curve fitting. Prior to
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Thedifferencein tracerarrivaltimesbetweenthe radialarteryandthe brainfollowingi.v.
injection of â€˜5@j@,@jwater plus the difference in dispersion of the tracer bolus between
thesetwo siteshaveto be accountedfor in orderto quantifycerebralbloodflow by the
autoradiographicapproachandpositronemissiontomography(PET).Wedescribea method
that simultaneouslycorrectsfor thesetwo effectsby meansof a four-parameterfit to the
dynamically acquired data. Unlike with other methods, where the two corrections are
performed sequentially, no additional measurement of the dispersion time constant is
required. We have validated and tested the method by means of simulations and application
to datafromsix humanstudies.Themeandispersiontimeconstantof 4.0 Â±1.2 sec.
estimatedby the newmethodfor the six studies,is in fair agreementwith estimatesof 3 to
5 secderivedfromcardiacPET.
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introducing the new method, various assumptions of
the global fitting approach according to Iida et al. (1),
that are fundamental to the new approach presented
here, are assessed, including validation for a two-com
partmental system. Also, the limitations of the slope
method are demonstrated and the relationship between
time delay and dispersion correction examined using
simulation and human PET CBF data.

METhODS

PET Procedures
This study was conducted on six young normal volunteers

using Positome hIp (10), a two-ring bismuth-germanate
(BGO) head machine with transverse and axial spatial reso
lutions of I 1 mm and 16 mm full width at half maximum
(FWHM), respectively.A continuous wobbling motion al
lowed dynamic scanning at a rate of 1 frame per 3 sec and
peak total coincidence count rates of 30,000 cps/slice. The
true count-rate efficiency of the tomograph is 75 (kC/sec)/
(@Ci/cc)for the direct slices and 6 1 (kC/sec)/(@Ci/cc) for the
cross slice. Reconstruction software includes corrections for
detector efficiency variations, random events, and deadtime
as well as a deconvolution procedure to eliminate scattered
events (11). Attenuation correction was performed using a
projection thresholding method similar to that of Bergstrom
et al. (12). The subjects were positioned in the tomograph
with the three image planes centered at 35, 53, and 71 mm
above the inferior orbito-meatal line and their heads immo
bilized by means of a customized selfinflating foam headrest.
A shortindwellingcatheterwas placedinto the radialartery
of one arm for blood samplingand bloodgasdeterminations.
For the measurement of CBF,@ 20 mCi of H2150were
injected as a bolus into the brachial vein of the other arm.
Arterial blood sampling and dynamic imaging were started at
injection time. A series of 30 sequential PET scans of 3 sec
duration each wereobtainedover90 sec.The total number of
coincidence counts per second of the upper detector ring was
recorded at 0.5-sec intervals. Blood samples were collected
manually at 3- to 5-sec intervals during the entire data collec
tion period. The sampling catheter was allowed to flow freely
at 10to 15mI/mm causingnegligibleexternaldispersion(5).
Upon completion ofthe study, the blood samples were assayed
in a calibrated well counter in reverse order oftheir withdrawal
for optimal counting statistics. All data were corrected for
radioactive decay with respect to injection time based on
principles outlined by Raichle et al. (3). The first 13 nonzero
frames were integrated into a single 39-sec image for each
slice. Time delay and dispersion corrections were carried out
using various methods described below, and CBF maps were
calculated according to Herscovitch et al. (2) and Raichle
etal.(3).

In the following,the theoriesand methods relevantto the
objectives of this communication are summarized.

Delay Correction: Slope Method Versus
Global Fitting Approach

We first verifiedthe assumption (5) that the total number
of coincidence counts per second recorded by a PET detector
ring was a good estimate of the total slice tissue activity by

comparing the total coincidence counts per second of the
upper detector ring, sampled at 0.5-sec intervals, with the total
slice time-activity curve obtained from the dynamically recon
structed PET data using 3-sec frames. Next, the time delay
corrections, @t,obtained by various implementations of the
slope method and the global fitting approach were examined
for a two-compartmental system by simulations. For that
purpose, a realistic input function (Fig. 1B) was constructed
from a linear combination of gamma functions (13) as: C@.@(t)
= @,._l a@r'e_'@' with a, = (0.055, 10.0, 0.7, 0.2); n, = (6.0, 1.0,

1.0, l.0)and b,= (1.8, 22.0, 180.0, 300.0) for i = 1 to i = 4.
With this formulation, contrary to the often used form with i
= n = 1 (2,4,5), an inflexion point which is invariably ob

served on real input functions is produced on the upslope.
Ten noiseless tissue time-activity curves, @(tm5),representa
tive of a brain tissue element consisting of two compartments
with blood flows CBF1and CBF2and equilibrium tissue-blood
partition coefficients for water ofp1 = 0.82 and p@= 0.98 ml!
g, were then generated for various combinations of CBF and
CBF2accordingto the modelequation:

2@

C@(tm5)= @:w@J C@(t)di
i-I 1@

2@

= @: @1J C@1(t) * pjk1e_â€• di.
1.-I I

(1)

Here, w, and w2are the weighting factors for the two corn
partments (w1 + W2= 1) and the times 1m5represent the
midpoints ofadjacent data accumulation intervals t@to1,,+@
with@ = 3 sec. C@(t)is the instantaneous tissue activity for
compartment i, the asterisk stands for the convolution oper
ation and k1= CBF,/p,. A first-pass extraction fraction for
waterof 100%wasassumed.For a singletissuecompartment
and a single data accumulation interval I, to 12(typically 40
sec), the above equation reduces to the form routinely used
for CBF calculation:

512 C1(t) di = Jâ€•2 C@,(t) a p,kje_k# dt, (2)

where the left hand side represents the total counts accumu
lated from time ii to 12for tissueelement i.

The tracer arrival time difference, @t,between C@,(t)and
C,(tm5) was first determined by the slope method (Fig. 1B)
and compared to the theoretically correct value assumed to
be 1@Jzh= 0 5@ for this simulation. The tracer arrival times at
the brain tissueleveland in the peripheralarterialblood were
determined by linear backward extrapolation of the upslopes
of the arterial blood and the whole brain slice curves. In the
case ofmanual blood sampling, the slope is usually determined
by drawing the tangent to the rising portion of the curve by
visual approximation (Fig. 18) since this discontinuous sam
pling scheme does not allow an accurate determination of the
time at which C,.,(i)becomes larger than zero. For continu
ously sampled curves, linear least-squares fitting between 20%
and 50% of the curve peak height has been suggested (7).

The same simulation data were then used to determine @.t
by the global fitting approach as implemented by lida et al.
(1). With this approach, the whole slice time-activity curve,
X(t) (e.g., represented by the detector ring total coincidence
counts per second), is approximated by a convolution integral
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ofthe form:

X(t) = C1(t + i@t)s Ae_Bt,

where@ istheglobaltimedelaybetweenthe measuredarterial
and the whole brain slice curves, and A and B are arbitrary
parameters. Equation (3) is a single integral adaptation of Eq.
(2) for the case of a one-compartmental system (i = 1). C,(t)
the brain tissue level and in the peripheral arterial blood were
tation of lida et al. (1), A and B were first fitted for various
fixed delays, @t.The parameter triplet for which the error
criterion was minimized was then chosen. The double integral
formulation was not deemed necessary given the usually short
(0.5 to 3 sec) sampling interval for X(t).

In our implementation,the three parameters,A, B, and @t,
were fitted simultaneously. This was achieved by substituting
U for I + @twhich transformed Eq. (3) into:

rI+@@J
X(t) = AemI+h@)J C11(u)e@du

a form that is easily amenable to nonlinearleast squares fitting.
Notice that C1,(z)is the arterial input function measured at
the peripheral sampling site. The fitted value for @twas again
compared to the correct value of @.t,h= 0 sec. The nonlinear
least squares fitting procedure used here was based on the
algorithm of Marquardt as implemented by Bevington (14).

Delay Versus Dispersion Correction:
Effect on Calculated CBF

The time delay correction is required in order to determine
the common zero time for the arterial and brain tissue curves.
If the measuredinput function is shiftedalong the time axis
by the arrival time difference, @t,then the model Eq. (1) has
a common time scaleand satisfiesthe initial conditionsC,(0)
= 0 and C1(0) = 0.

Dispersion correction of the input function in various
models has been treated by several authors (5,8,15,16). Iida
et al. (5) used a simplemonoexponentialdispersionfunction
ofthe form:

d(t) =@ exp(1),

input function, C@,(i),by deconvolution according to Eq. (6),
assuming an estimated dispersion time constant of r = 5 sec

(3) (5). Using Laplace transforms, it can be shown that C@.,(t)may
be calculated as:

dgCâ‚¬1(t)= g(t)+ r @. (8)

The delay correction was then performed by the slope
method using C,,(t) and CBF calculated according to Eq. (2).
This formulation is mathematically equivalent to Eq. (7)
where C,@,(i)simply had been substituted by g(t) according to
Eq. (6) (5), the only difference being the time delay used here,
which was different from that found in the previous step.
Again, an integration interval oft2 â€”t@= 39 sec was used and
the CBF values calculated in the two steps compared for
selected regions of interest (ROIs).

Simultaneous Correction for Delay and Dispersion
(4) In an effort to achieve simultaneous correction for both

time delay and dispersion, the global fitting approach was
extended to include the dispersion time constant, r, as a fourth
fining parameter. This was achieved by reformulating Eq. (7)
in its single integral form and adapting it to the whole slice
version in the sense of Eq. (3), using the same substitutions as
before:

X(t) = rAg(t + @t)+ ( 1 â€”rB)g(t + @t)* Ae_B1. (9)

Equation (9) was rearranged into a form suitable for nonlin
ear least-squares fitting by substituting u for I + @tand
explicitly expanding the convolution operation:

X(t) = rAg(t + @i)

+ (1 â€”rB)Ae@@Â° J g(u)e@ du. (10)

The value of g(t + @t)was obtained by cubic spline inter
polation ofthe discretely measured peripheral input function.

In order to assess the feasibility ofthe simultaneous correc
tion approach, ten tissue time-activity curves were generated
for a two-compartmental system as described above using Eq.
(1) with mean CBF values ranging from 10 to 75 mi/min/ 100
g. The input function, C@(t),was then shifted along the time
axis by @Jsec and dispersed according to Eq. (6) using a
dispersion time constant ofr 5 sec in order to generate g(t),
the input function observed in a real situation. The four
parameter fit performed according to Eq. (10) on g(t) and the
simulated noiseless tissue curves yielded estimates of i@aand r
that were then used to calculate mean CBF by the polynomial
interpolation approximation according to Raichle et al. (3),
the method currently used for CBF calculation in our human
studies. This first simulation allowed us to assess the accuracy

with which @J,r, and CBF could be recovered in an ideal
situation. Next, ten random noise patterns were superposed
onto each of the ten tissue curves (9,17) and i@.t,r, and CBF
again determined as just described. This second simulation
served to evaluate the accuracy and precision (mean Â±s.d.)
of the fitted estimates for @.tand r in a real situation and to
study the effect of propagation of uncertainties in these two
parameters into the final calculation of CBF. The newly
proposed simultaneous correction method was then applied
to our human data with X(t) represented by the total coinci
dence counts per second of the upper detector ring and the

(5)

where r is the dispersion time constant. The peripherally
measured dispersed input function, g(t), and the true, disper
sion corrected, input function, C@,(t),are related to each other
as follows:

g(i) = C11(t)* d(t) (6)

with the asterisk again standing for the convolution operation.
Using Laplace transforms to deconvolve Eq. (6) (5,7), Eq.

(2) can be expressed in terms of the observed dispersed input
function, g(t), as:

512 C@(i) di = 512 [rpkg(t)

+ (1 â€”rk)g(t) * pke@]dt. (7)

Using our human data, we first calculated CBF according
to equation (7), which implicitly accounts for dispersion, after
having performed the delay correction by the slope method
using g(t). An integration interval oft2 â€”i@= 39 sec was used.

Asa secondstep,wefirstcalculatedthe dispersioncorrected
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results compared with CBF determinations from other meth
ods.

RESULTS

Figure IA shows the tissue curve of the entire upper
slice, reconstructed with a 3-sec frame interval, super
posed onto the curve representing the total number of
coincidence counts per second for the upper detector
ring. The latter curve was sampled at 0.5-sec intervals
and corrected for radioactive decay only. The two
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curves virtually coincide during the first 40 to 60 sec
after tracer injection and may therefore be used inter
changeably for the purpose of time delay corrections.
This was further confirmed by the fact that the time
delay, I@tfiz,determined by the fitting approach for the
six human studies differed by an average of only
0.4secorlessusingthetwotypesofcurves(Table1).

Figure lB illustrates the limitations of the slope
method. A simulated input function, sampled at 5-sec
intervals, is shown together with the corresponding
tissue curve. The manually drawn tangents to the up
slopes of the two curves are indicated with their zero
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FIGURE1
A: Total,decaycorrected,coincidencecount rateof upperdetectorringsampledat 0.5-secintervals(continuousline)
superposed onto upper slice tissue curve (solid black circles) reconstructed with a frame length of 3 sec. B: Illustration
of slope methodfor determinationof tracer arrivaltime differences,&, betweenperipheralarterialblood and br@n.
Shown are a simulated input fUnCtiOn(5-sec blood sampling interval, solid black cirdes) and the corresponding tissue
curve for a brain volume element consisting of two equally weighted compartments with blood flows CBF1 = 20 and
CBF2= 80 mI/mm/iOOgand equilibriumtissue-bloodpartitioncoefficientsfor water of Pi = 0.82 and p@= 0.98 ml/g.
Thetimeinterceptsof the visuallydrawnslopesgivea wrong @.tof t2â€”t1= 3.16secas comparedto the theoretically
correctvalueof @@tth0 sec.C: Tissuetime-activitycurveof upperslice(solidblacksquares)togetherwith threefitted
tissue curves (see Eq. 10 in text). For the two-parameter fit, a fixed time delay determined by the slope method, i@t,
wasused.Forthethree-parameterfit,thetimedelay,z@.t,wasfittedasa thirdparameter.Inthefour-parameterfit,the
dispersioncorrectiontime constant,r, was inciudedas a fourth fitting parameter.The significantlybetter three-and
four-parameter fits are apparent. D: Illustration of slope method (visual approximation) applied to measured (g(fl) and
deconvolved, i.e., dispersion corrected (Ca(t)), input functions using a dispersion correction time constant of r 5 sec.
Thetimeinterceptsof the two slopesdifferby@ 2 sec.
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. The mean blood flow was calculated as @F = w1CBF, +

w2CBF2assumingweightingfactorsof w, = w2= 0.5.
Thebackwardextrapolationwas doneon the upskpe of the

blood and tissue curves between 20% and 50% of the peak
height. A 60-sec fit interval was used for@ and@

t Here, the fit was carried out for three delays, namely â€”5sec,

0 sec,and+ 5 sec,andthe@ delaydeterminedby parabolic
interpolation.

t Time delays,@ between the tracer amval time in peripheral

arterialbloodandthe braindeterminedby the slopemethod(vis:
visualapproximation,back:backwardextrapolation)and the fit
ting approachas implementedby lida et al. (1) (@tj)tor as
proposedinthepresentstudy(atm).A singlebloodcurve(linear
combinationofgammafunctions,seeFig.1b andMethods)was
usedto generateten tissuecurves(seeequation(1)in text) for a
bralntissueelementconsistingof twocompartmentswithblood
flowsCBF, andCBF2andwatertissue-bloodpartitioncoefficients
of Pi = 0.82andP2 0.98 ml/g.The theoreticallycorrectdelay
was1@@t,h0 seC.

parameter. When the dispersion time constant, r, was
included as a fourth fitting parameter, a quasi perfect
fit was obtained (four-parameter fit). The significantly
better three- and four-parameter fits are visually appar
ent and substantiated by the smaller chi-square (good
ness of fit) values of 2.47 and 0.26, respectively, com
pared to 42.8 for the two-parameter fit.

The results of the stimulation study regarding the
simultaneous correction for time shift and dispersion
of the input function (four-parameter fit) are shown in
Table 3,A and B for two theoretical values of i@tand Tth
= 5 sec. The noiseless data indicate that there is some

interaction between the fitted values of @tand r in that
the two parameter estimates deviate by 2% to 10% from
their true values in opposite directions, i.e., when Tfit
was below its true value, then i@t@was always slightly
high, and vice versa. These opposing inaccuracies in @t
and r virtually cancelled each other in the calculation
of CBF as illustrated by the negligible difference be
tween CBF,h and CBF@,1,@for the noiseless data. The
results for the noisy data were very similar with average

TABLE I TABLE2
SimulationStudy with Noiseless Dataj

CBF1 CBF2 @F*L@t@O@$)@t@opQ@ck)@
[ml/min/100g] [sec] [sec]

101 0103.25â€”6.20â€”1.03â€”0.041020153.12â€”3.54â€”0.90â€”0.021

030203.35â€”2.06â€”0.73â€”0.042030253.39â€”2.1
1â€”0.71â€”0.012040303.39â€”0.31â€”0.600.012050353.440.54â€”0.530.012060403.620.90â€”0.510.012080503.162.14â€”0.460.0320100603.212.29â€”0.420.0430120753.212.46â€”0.380.05

15.36.52.43.725.55.02.82.438.910.06.88.049.410.17.27.7513.313.110.410.361

3.713.41 1.010.8

Difference(s.d.) 0.3 (0.7)sec 0.4(0.7)sec
(N.S.) (N.S.)
pairedStudent'st-test

. Between the arterial input function and the upper slice total

coincidencecounts(u.s.c.c.)ontheonehandandbetweenthe
input functionand the reconstructedtissue curveof the upper
slice(u.s.)on the other handas determinedby a 40-secthree
parameterfit withdispersioncorrectiontimeconstantsofr 0 5
andr = 5 sec,respectively.Dataobtainedon six younghealthy
volunteers.

intercepts i@and t2 from which a time delay (z@t5,0,,,@)of
t2 â€”tI = 3. 16 sec was calculated. In fact, the two
simulated curves had a common theoretical zero time
intercept of t,j@= 0 sec that was accurately recovered
with the fitting approach (@ttfig= 0 sec). The results of a
simulation study with noiseless data, comparing the
time delays obtained by the slope method and the fitting
approach are summarized in Table 2 for ten selected
combinations ofCBF1 and CBF2 ofa two-compartmen
tal system. The second last column (1@t,)shows the
result ofan implementation ofthe global fitting method
according to lida et al. (1) where the fit was carried out
for three selected time delays, namely â€”5s, 0 see, and
+5 sec, and the â€œbestâ€•delay determined by parabolic

interpolation. Although these results are within 1 sec of
the true value, the better accuracy achieved by simul
taneously fitting A, B, and i@tas proposed in this paper
(Eq. 4) is evident from the results in the last column.
Selection of a larger number oftime delays spaced very
closely (e.g., every 0. 1 see), of course, would improve
the results obtained by the interpolation approach, how
ever, on the expense of increased computing time. The
slope method was consistently wrong by@ 3.3 sec with
the visual approximation and by â€”6.2to 2.5 sec with
the backward extrapolation. The superiority of the fit
ting approach over the slope method is further illus
trated in Figure 1C where a measured whole slice time
activity curve is shown together with three curves, all
fitted according to Eq. (10). For the first curve (two
parameter fit for A and B), a fixed @t,determined by
the slope method, was used. For the second curve (three
parameter fit), the time delay, @t,was fitted as a third

Mean(n= 10)
(s.d.)

3.31 â€”0.59 â€”0.63 0.0040
(0.15) (2.85) (0.21)(0.0313)
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CBF@Noiseless

data@t1,rf$@

CBF@z@t@1,rf@@CBF@[mI/mm/I

00 g][sec][sec] [ml/min/100g][sec][nec][ml/min/100g]100.424.79

10.00.29 (0.21)4.43 (0.96)10.1(0.2)150.424.83
14.90.42 (0.25)4.91 (1.58)14.9(0.7)200.414.84
19.90.40 (0.24)4.84 (1.49)19.8(0.9)250.394.74
24.90.42 (0.23)4.86 (1.48)24.8(1.2)300.384.76
29.90.52 (0.48)4.71 (1.23)29.8(1.4)350.404.80
34.80.41 (0.23)4.85 (1.48)34.7(1.8)400.384.75
39.90.35 (0.22)4.43 (1.16)40.2(1.4)500.394.77
49.80.35 (0.22)4.42 (1.15)50.2(1.8)600.394.79
59.80.43 (0.38)4.74 (1.40)59.6(3.2)750.394.80
74.80.29 (0.19)4.82 (1.30)75.3(3.8)mean

(n=10)0.404.790.394.70(s.d.),
(s.e.m.)(0.02)(0.03)(0.07)(0.20)B:Simulation

Study:ConditionsasforA, Exceptfor &fh= 5 SEC.

. Time delays, @t, between the tracer arrival time in penpheral arterial blood and the brain, and dispersion time constants, r,

determinedsimultaneouslyby nonlinearleastsquaresfittingon noiselessdataandondatawith5% randomnoisesuperposed.Tissue
curvesweregeneratedaccordingto Eq.(1)(seetext)for a two-compartmentalmodelwithmeanbloodflowCBFffi.A linearcombination
of gammafunctions(seeFig.1B andMethods)wasusedto simulatethearterialbloodcurve.Watertissue-bloodpartitioncoefficients
of Pi = 0.82andP2 0.98ml/gwereused.Thetheoreticallycorrectvaluesfor r andi@twere:@ 5 Sandit,,, = 0 sec.Calculated
bloodflow CBF@,wasobtainedby the polynomialapproximationmethodof Raichieet al (3).

TABLE3
A Simulation Study with Simultaneous Correction for Time Shift and Dispersion of thelnput Function:

Noisy data (5%)

104.445.1110.14.28(0.67)5.51 (1.42)10.0(0.2)154.445.1515.14.52(0.60)5.32(2.01)15.1
(0.6)204.465.1420.24.66

(0.56)4.95 (1.69)20.2(0.8)254.495.0025.34.48
(0.64)5.29 (1.93)25.2(1.2)304.505.0430.44.52
(0.60)5.32 (1.99)30.1(1.5)354.475.1

135.44.65 (0.55)5.05 (1.70)35.3(1.6)404.505.0240.54.51
(0.58)5.34 (1.95)40.1(2.0)504.495.0650.64.52
(0.57)5.33 (1.94)50.1(2.6)604.505.0760.64.52
(0.57)5.31 (1.91)60.1(3.1)754.495.1075.74.51
(0.56)5.37 (1.92)75.1 (3.9)

mean(n= 10)4.485.084.525.28(s.d.),(s.e.m.)(0.02)(0.05)(0.10)(0.16)

inaccuracies in @tand r of half a second or less. Mean
calculated blood flows,@ were within 1% of their
true values with coefficients of variation (100% x
mean/s.d.) between 2% and 5.5% only. For this simu
lation, the fitting parameters were constrained to non
negative values in order to guarantee meaningful results
and to avoid negative values in the early portion of the
fitted tissue curves (undershoot). This constraint was
not unrealistic since for the common case of arterial
sampling from an arm or leg, E@tand r are very unlikely
to become negative and A and B are positive by defi
nition (see Methods). On a few occasions, extension of
the fit interval from 40 to 60 sec was necessary in order
to reach convergence within 50 iterations. A 5% noise
level wasjudged appropriate to simulate conditions met
in real studies as seen by comparing Figures lA and C
with Figure 2.

The effect on calculated CBF of the sequence in
which the delay and dispersion corrections are applied
was compared to the case where both corrections are
carried out simultaneously as illustrated in Table 4
where mean gray and white matter blood flows are
listed for the six human studies calculated for various
conditions. In each study, four circular ROIs with a
diameter of2 cm were placed over temporal gray matter
and two ROIs with a diameter of 1.2 cm over white
matter of the centrum semiovale. For the CBF values
in the first column, the delay and dispersion corrections
were carried out simultaneously with i@tand r estimated
from the four-parameter fit. The mean of these values
was set to 100% (reference values). The second column
lists CBF values calculated by the conventional method,
i.e., without dispersion correction and with the time
delay determined by the slope method using g(t). These
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TABLE4Effect
on the CalculatedCBFValueof the Sequencein Whichthe TimeDelayandDispersionCorrectionsareApplied

as Comparedto the CaseWhereBothCorrectionsareCarriedoutSimultaneousl?CBF
[mI/mm/i00 g]Delay

corr.Simultaneous
Delaycorr.by Delaycorr.by Disp.corn, byfitdelay

anddisp. slopemethod, slopemethod, followedby method,nocorrections
(fit no dispersion followed by delay corr. bydispersionapproach)

correction disp.corr. slopemethodcorrectionGray:

63Â±13 78Â±16 62Â±14 72Â±1565Â±14(1
00%) (124%) (98%) (114%)(103%)White:

26Â±4 32Â±6 25Â±5 30Â±527Â±4(100%)
(123%)t (96%) (115%)t(104%)Values

are mean Â±s.e.m. (n = 24 ROls for gray and n = 12 ROIs for whitematter).A
dispersiontimeconstantof r 5 5 wasusedfor the resultsin columns3 and4..

Significantly different from control (100%) at p < 0.01 by Newman-Keulstest.ANOVA:

F4@1,= 33.5;p <0.00001.t
Significantly different from control (1 00%) at p < 0.01 by Newman-Keulstest.ANOVA:

F4,@= 24.2;p <0.00001.CBF
calculatedfor a 39 secdataaccumulationinterval.Mean
PaCO2for thesix studies:36.9Â±3.6 mmHg.Results

for grayandwhitematterfromsix younghealthyvolunteers.
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FIGURE 2
Simulated blood (circles) and tissue

- (squares) data with 5% random noise

superposed. The input function was
dispersedwithadispersiontimecon
stant of i@= 5 sec (see Eqs. (5) and
(6) in text) and shifted by & = 5 sec
to the right on the time axis. The
tissue curve was generated accord
ing to Eq. (1) (see text) for a brain
volume element consisting of two
equally weighted compartments with
blood flows CBF1= 20 and CBF2=
80mI/mm/i00gandequilibriumtis
sue-blood partition coefficients for
waterof Pi 0.82andP2 0.98ml!
9. The samplingintervalfor both
curves was 3 sec.

tissuecurve (x3)
(framelength:3s)

I input function g(t)

(samplinginterval:3s)

100
0 . I I I
0 20 40 60 80

Time (s)

values are almost 25% above the reference level. This
is explained by the following two facts.

1. As pointed out by lida et al. (1), and confirmed
by the present study (Table 5), the time delays deter
mined by the slope method are too short. As an exam
pie, a 4-sec underestimation in the time delay may
result in an overestimation of as much as 20% in CBF
calculated for a data accumulation interval of 40 sec

(5,7).
2. Neglecting the dispersion correction leads to an

overestimation ofCBF. For a 40-sec data accumulation

interval and a flow value of 40 ml/min/lOO g, this
overestimation, depending on the shape of the input
function, may amount to as much as 15% (5). The
values in the third column were calculated with the
delay correction being performed first, using the slope
method and g(t), followed by the dispersion correction
with an estimated dispersion time constant of r 5 sec
(5, 7). These values are slightly below the reference level.
Here, it appears that the overestimation of CBF cx
pected from the incorrect delay correction provided by
the slope method was effectively compensated for by
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@t[sec]Slope

method,Fit method,Fit
method

with disp. corr.Fit
method

with disp.corr.Case
ID nodisp.corr.no disp.corr.(r 5 sec)(r fitted)[sec]

. Paired t-test with Bonferroni's correction for multiple comparisons.

t @t,between arterial input function and tissue curve (upper slice coincidence counts) determined by the slope and the fit method

(40 sec fit interval),respectively,with and without dispersioncorrectionon six younghealthyvolunteers.The valuesof the fitted
dispersiontimeconstant,r, arealsoshown.

the dispersion correction performed on the incorrectly
shifted input function. The next column shows values
where the dispersion correction was carried out prior to
the delay correction. The 15% overestimation of CBF
by this method is explained by the fact that the upslope
of the deconvolved, i.e., dispersion corrected, input
function, C@,(t),is shifted by a few seconds to the left
on the time axis relative to the measured input function,
g(t) (seeFig. lD). As a consequence,the time delay
determined by the slope method and Ca(t) is smaller
than that determined with g(t) which, in turn, is already
smaller than the delay found with the global fitting
approach. Therefore, in agreement with predictions
from simulations (2,4â€”7),the calculated CBF for this
condition represents an overestimate. In particular, the
results in columns 3 and 4 are significantly different
from each other. The values in the last column, calcu
lated with the fitted time delay, illustrate the effect of
ignoring dispersion. The relatively small overestimation
of CBF found here may be due to the particular shape
of the input function [a sharply peaked function tends
to reduce the effect ofignoring dispersion (5)]. Further
more, the highly nonlinear nature of the error imposed
on calculated CBF by inaccuracies in both z@t(7) and r
(5) has to be kept in mind when interpreting Table 4.
The results in columns 2 and 4 were significantly dif
ferent from the reference values in column 1 at the p <
0.01 level as indicated by an analysis of variance (AN
OVA) with post-hoc testing according to Newman
Keuls (18).

Table 5 lists time delays, @t,determined in the six

mean
(s.d.)

difference(s.d.)

human studies for various conditions. The first column
gives delays obtained by the slope method and g(t)
without dispersion correction. Next, the values deter
mined with the global fitting approach and without
dispersion correction are listed. The means of the two
columns differ by 3.8 sec, in good agreement with the
finding of lida et al. (1). Using the fit method and a
dispersion correction with r = 5 sec gives delays that
are, on average, only 1.3 sec longer than those obtained
with the slope method and no dispersion correction.
Fitting of the dispersion constant r as a fourth param
eter (column 4) did not result in any significant addi
tional change in @tcompared to column 3. The last
column gives values of the fitted dispersion time con
stant. Its mean of r = 4.0 sec is in fair agreement with
the estimate of3â€”5sec derived from cardiac PET studies

(5).

DISCUSSION

Most current quantitative PET procedures require
sampling of the arterial concentration of the radiolabel
being used (input function). Ideally, in order to satisfy
the model assumptions, the blood sampling should
occur at the same level as the PET tissue activity
measurement. For cerebral PET studies, this require
ment is difficult to meet. The problems arising from
peripheral arterial sampling, therefore, are not unique
to the intravenous H215Obolus autoradiographic CBF
method where the radial artery is commonly used for
that purpose. Truly quantitative CBF estimates com

TABLE5
TimeDelayDeterminedby the Slopeandthe Fit Methodt

11.75.32.43.03.022.65.52.82.65.635.48.96.87.32.844.59.47.27.63.159.913.310.410.45.068.913.711.011.04.7

5.59.36.87.04.0(3.3)L@@@3.8(O.8)(3.6)

I(3.6)(3.6)I(1.2)Ip

< 0.01)1.3(1.0)

(p< 0.01)@@___J(N.S.)
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parable to values obtained with other techniques (19),
however, may be obtained by this method if the transit
time difference between the left ventricle of the heart
and the brain on the one hand and the left ventricle
and the peripheral sampling site on the other hand
(delay correction) as well as the ensuing difference in
the shape of the tracer bolus (dispersion correction) are
properly accounted for. Since the difference in bolus
distortion is a direct consequence of the transit time
difference between the brain and the sampling artery,
we are proposing a correction method that simultane
ously accounts for these two phenomena. Prior to im
plementing this new method, various aspects relating
to the underlying model (1) required further validation
and results obtained with other methods were also
analyzed.

The simultaneous correction method presented in
this paper unites two methods that have been recently
developed to separately correct for time delay (1) and
dispersion (5). By adding the dispersion time constant,
T, as a fourth parameter to the model previously intro

duced by lida et al. (1) for delay correction alone, we
obtained fairly accurate simultaneous estimates of time
delay,@ and dispersion time constant, r, as verified
by simulations. The extended model also gave a better
fit to the dynamic tissue data (Fig. lC). With regard to
its practical application to the calculation of CBF, we
found that errors in the estimates for @tand r by the
new method always had opposite signs and, therefore,
only minimally affected the calculated CBF values. The
simultaneous correction method makes a separate
measurement of the dispersion time constant, e.g., by
cardiac PET imaging (5), unnecessary and avoids the
use of an average value for r. It also eliminates the
ambiguities in calculated CBF caused by the various
possible ways to treat the two corrections sequentially
(Table 4).

Our validation ofthe suggestion by Iida et al. (1) that
the total coincidence count curve of a PET detector
ring could be substituted for the whole slice tissue curve
and used for delay correction (Table 1) is of practical
importance since this curve is easily acquired on line
and requires less computer processing and storage than
the dynamic reconstruction of the whole slice tissue
curve.

We present simulations (Fig. lB, Table 2) that mdi
cate that time delays determined by the slope method,
an empirical procedure that had never been validated,
may be wrong by several seconds resulting in a 10% to
20% error in CBF for a 40-sec data accumulation time
(2,5, 7). This is not surprising since the tissue curve,
after the first few seconds of acquisition, is corrupted
by the washout of tracer from the tissue which is blood
flow dependent. The linear combination of gamma
functions that we used for a more realistic simulation
of the arterial input function (2,5) was crucial to the

assessment of the slope method. Our simulations, on
the other hand, lend support to the global fitting ap
proach of Iida et al. (1) which we have validated for a
two-compartmental system (Table 2). The possible
tracerarrivaltime differencebetweenthe two compart
ments (1), however, was not taken into account in this
simulation. The fitting algorithm described by lida
et al. (1) was improved, both from a theoretical as well
as from a practical point of view, to allow truly simul
taneous fitting of all parameters (Eq. 4). This was
achieved by a translation of the time scale that shifted
the time delay parameter from the argument of the
input function to the integration limits (20,21).

From our six human studies we found that the time
delays determined by the slope method systematically
underestimated the fitted delays by an average of
3.8 sec when dispersion effects were neglected, leading
to an overestimation of CBF by@ 20% for a data
accumulation interval of 40 sec. This is in agreement
with data from lida et al. (1) and not only confirms the
reproducibility of the fit method but also demonstrates
that it may be equally well applied to continuously (1)
as well as manually (this study) sampled blood data.

When a dispersion correction was included in the
fitting approach, the difference between the time delay
by the new method and that from the conventional
slope method, without dispersion correction, was re
duced to 1.5 sec. This small timing difference result
ing from the two methods should not detract from the
fact that the CBF values calculated with the dispersion
corrected input function, in general, are substantially
smaller than those calculated without dispersion correc
tion(5).

The fact that inclusion of the dispersion time con
stant, r, as a fourth fitting parameter did not signifi
cantly change the time delays, @t,calculated by the
fitting approach with a fixed value of r 5 sec is yet
another confirmation of the reliability of the proposed
simultaneous correction method. It indicates that the
interaction between @ttand r is minimal, allowing an
accurate estimation of the two parameters. The fitted
dispersion time constants from our six studies varied
between 2.8 and 5.6 sec with a mean of 4.0 sec, very
close to the fixed value of r 5 sec estimated from
cardiac PET studies (5). This estimate relates to disper
sion between the left ventricle ofthe heart and the radial
artery only and, therefore, is an overestimate. Our fitted
values of r relate to net dispersion, i.e., the dispersion
between the heart and the radial artery minus the
dispersion between the heart and the brain.

As was to be expected, we found that the longer @t,
the larger the fitted dispersion time constant, r (Table
5). This observation again points to the obvious link

between time delay (transit time difference) and disper
sion. The simultaneous correction method described in
this paper, therefore, represents a logical step towards a
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more adequate and realistic treatment of the two phe
nomena.
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