Beta Dose Point Kernels for Radionuclides
of Potential Use in Radioimmunotherapy

William V. Prestwich, Josane Nunes, and Cheuk S. Kwok

Department of Physics, McMaster University, and Hamilton Regional Cancer Centre, Ontario

Cancer Foundation, Hamilton, Ontario, Canada

Beta dose point kernels for 3P, Cu, %Y, '*'|, '*Re, and '*®Re nuclides appropriate for
radioimmunotherapy are calculated based upon Monte Carlo results. The calculations are
shown to differ significantly from values based upon solutions to the electron transport
equation. Agreement with experiment for 3P is found to be improved for the former as
compared with the latter. Values of the scaled dose point kemnels are tabulated at 4%
intervals of the continuous slowing down approximation range for each of the six
radionuclides. Beta dose distributions are also tabulated at corresponding distances from the
source. This data may be used to calculate the spatial dose distribution expected following
administration of radiolabeled monoclonal antibodies, aiding in optimum selection of the
appropriate radionuclide. Parameters for functions providing analytic representation of the
calculated scaled dose point kemnels of individual beta groups are presented.
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Tlere is currently active investigation of the appli-
cation of labeled monoclonal antibodies to radioim-
munotherapy (/). Administration of labeled antibody
should lead to a concentration of radioactivity at spe-
cific tumor sites as the antibody attaches to the target
antigen. This behavior produces a highly nonuniform
spatial distribution of activity in the subject. In most
situations involving internal dosimetry the assumption
of spatial uniformity is made, thereby justifying the use
of equilibrium doses. The nonuniformity expected in
radioimmunotherapy invalidates such an approach for
this procedure, producing instead a nonuniform spatial
dose distribution arising from emitted beta particles.
This is precisely the objective sought in order to maxi-
mize discrimination between affected and healthy tis-
sue.

Treatment planning requires estimation of the dose
distribution, given that the activity distribution may be
measured using imaging techniques, or otherwise in-
ferred. Calculation of the beta dose distribution from
the activity distribution is only straightforward if the
medium is homogeneous with regard to electron trans-
port properties. While this approximation probably is
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justified for soft tissues, it is not for bone and air
interfaces.

In the homogeneous situation, the principle of line-
arity ensures that once the dose distribution from a unit
point source is established, then the dose may be cal-
culated for any activity distribution. The beta dose
distribution about a unit point source of the radioiso-
tope of interest is referred to as the beta dose point
kernel. It is this quantity which is the subject of consid-
eration in this work.

Extensive tabulations of beta dose point kernels have
been published elsewhere (2), but these do not include
the effects of energy fluctuations. We report here on
calculations of dose point kernels that do include such
effects. The results are compared both with the previ-
ously tabulated values and indirectly with experiment.
The nuclides chosen are those which are potential can-
didates for application to radioimmunotherapy. These
are 3P, ’Cu, %Y, !¥], '®Re, and '*!Re.

Finally, parameters suitable for analytic representa-
tion of the calculated dose point kernels are presented.
The accuracy of the representation is also discussed.

THEORETIC BACKGROUND

Scaled Dose Point Kernel in Continuous
Slowing Down Approximation

As an extremely oversimplified model, consider a mono-
energetic isotropic point source emitting electrons which move
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radially outward and slow down continuously according to a
stopping power function S(E). If the source energy is Eo, the
electron energy at a distance r from the origin, at which the
source is located, is given by

Eo
r= L £. (1
n S(E)
The continuous slowing down approximation (CSDA) range
then satisfies

* dE
S(E)
The absorbed dose per source transformation is then

D(r) = %ﬁ% 3)

The specific absorbed fraction is given by

S(E(r))
4xpr’Ey

@

Io =

&(r, Eo) = @

This quantity satisfies the constraint

1: 4xpr?®(r, Eo)dr = 1. (&)

It is convenient to introduce a dimensionless quantity to
represent distance as the fraction of the CSDA range, desig-
nated

X = 1/I0. 6)

Defining a scaled electron dose point kernel through the
relation

F(x, Eo) = 4mprrod(r, Eo) Q)
introduces a quantity satisfying

I F(x, Eo)dx = 1. (8)

For the simplified model leading to Equation (4), the scaled
point kernel becomes

&E:,ro» = S(E(x, 10))/(S)
)

=0x=1.

F(x, Eo) =

In Equation (9) the track average stopping power

(8) = Eo/ro (10)

has been introduced. It then becomes possible to interpret the
scaled point kernel as the ratio of the stopping power at a
particular point along the electron track to the average stop-
ping power over the entire track.

Of course neither the assumption of straight-line motion
nor that of continuous energy loss is justified for electron
transport. The treatment does, however, illustrate the physical
basis of the scaled dose point kernel as the ratio of an energy
loss function to the track average stopping power.

Monoenergetic Dose Point Kernels
The departure from straight-line motion was first taken
into account in detail by Spencer (3) who numerically solved

Volume 30 ¢ Number 6 ¢ June 1989

the transport equation in the CSDA taking into account
multiple scattering. The calculations used the method of mo-
ments, and yielded the energy dissipation function for a car-
bon medium,

EoF(x, Eo)
1oS(Eo)

Again, in the extreme straight-ahead approximation used for
Equation (4), the energy dissipation function becomes the
ratio of the stopping power at the distance r = xro to the
stopping power at the origin. The dose point kernels and the
energy dissipation function obtained in this approach both
vanish for x = | corresponding to distances greater than the
CSDA range.

An important advance has been the development of Monte
Carlo methods by Berger (4) specifically designed to simulate
electron transport. By dividing the electron path into small
segments and making use of the angular and energy distribu-
tion data from thin foil experiments, Berger was able to take
into account both multiple scattering and energy loss fluctua-
tions. Departures from continuous slowing down resulting
from delta-ray and bremsstrahlung production were also in-
corporated. These methods have been applied to the calcula-
tion of monoenergetic dose point kernels for 36 energies
ranging from 0.5 keV to 10 MeV (5).

The monoenergetic dose point kernels calculated by Monte
Carlo simulation differ in two respects from those based on
numerical solution of the transport equation. First, because
of energy loss straggling, some energy is transported to dis-
tances greater than the CSDA range. The calculations indicate
a maximum penetration up to x = 1.2. Second, the scaled
dose-point kernels no longer exactly satisfy the unit area
constraint in Equation (8) because of electron-photon conver-
sion in radiative stopping. The area in this case is reduced by
the radiative yield, that amounts to 1.7% at 4 MeV. In the
energy range below 2.5 MeV the area constraint is satisfied to
better than 1% so that Equation (8) may be considered to
hold in practice in this case.

The dose point kernels calculated by the two methods for
1 MeV electrons are compared in Figure 1. The influence of
energy loss fluctuations included in the Monte Carlo simula-
tion results in a more dispersive dose distribution. Since both
areas are essentially unity, the increased dose near the CSDA
range that is produced by these fluctuations is balanced by a
decrease in dose near the origin. Because the scaled point
kernels are decreasing sharply in value near x = 1, the relative
dose increase here is much greater than the relative depression
near x = 0. For example, the ratio of the dose point kernel
with energy loss fluctuations to that without is 5.5 at x = 0.9
and 0.91 at x = 0. Clearly this implies that the neglect of such
fluctuations results in significant underestimates of dose near
the end of the electron range.

At the origin, the scaled dose point kernel obtained from
Spencer’s calculation coincides with the simplified model so
that Equation (9) may be applied to give

F(0, Eo) = 1oS(Eo)/E,. (12)

The ratio of the Monte Carlo results at x = 0 to that given by
Equation (12) are plotted in Figure 2 as a function of the
electron energy. Above 0.5 MeV the dose reduction ranges
from 6% to 12%. Below 50 keV the dose reduction is again

J (x, Eo) = (1)

1037



-

w

4

ie

w

X it

[

Z

o)

a

Q

a

o 0.1

w

-

g

3]

n

0.02 : ; : . .
000 025 050 075 100 125
SCALED DISTANCE

FIGURE 1

Comparison between the 1-MeV dose point kernels cal-
culated from the transport equation (—) and by Monte
Carlo methods (—). The latter is more disperse, extending
to larger distances, while being slightly lower in value in
the near region.

in excess of 6%. The curve peaks near 0.15 MeV, at which
point the reduction factor is only about 2%. The energy
averaged reduction factor calculated over the range 0.01 MeV
to 3 MeV is 9.4%.

Radionuclide Beta Dose Point Kernels
For a beta-emitting radionuclide it is necessary to calculate
the dose point kernel which results from a spectrum of elec-
trons. The spectrum associated with beta-decay may in general
be written
N
n(E) = 21 Biny(E) (13)
representing a decomposition into N groups, each of which
has a branching probability of 8; and end-point energy E.. Also
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FIGURE 2
Variation of the ratio of the Monte Carlo dose point kemnel
to the transport kernel at the origin with electron energy.
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associated with each group is an average energy

E
(E) = J: En(E)E (14)
given that the spectral distribution n(E) is normalized to unit
area.
The specific absorbed fraction associated with the i beta-
group is then given by

E;
(1) = I Lo (B ®(rE)dEo.  (15)

(Ei)
From Equation (7) it follows that
Ei
_ _E
4rpr’®(r) = r (E.) n; (Eo) F ( ) Eo) dEo. (16)

A scaled dose point kernel for a beta group may also be
introduced. To this end a scaled distance is defined as the
fraction of the CSDA range for an electron with energy Ei.
Designating the latter r;, then the scaled dose point kernel for
the i beta group becomes

Fi (x) = 4xpr’ rid(r),

where x = r/r;. Scaling the distance in this manner differs from
that suggested by Berger (6), who uses the 90% point. It has
the advantage, however, of using a quantity that is more
readily available, the CSDA range.

The specific absorbed fraction associated with the complete
beta spectrum of the isotope may then be determined from
the relation

amn

2 g {E2 (E.)

4rpr’dyr) = i < ) 2‘,l Bi (E:). (18)
A scaled dose point kernel for this quantity may also be

defined through the equation
F s(x) = 4xpr® rn $4(r), (19)

where x = r/rn and ry is the CSDA range for the highest
energy beta group in the decay scheme of the radioisotope.
Since the specific absorbed fraction is the ratio of dose to
average beta energy, then Fg(x) can be related to the dose
distribution tabulated by Cross (2) by calculating

N
FD() = k 3 i (E) F (i) / ™,

where k = 45.84 is a conversion factor relating MeV cm? g™!
per transformation to mGy cm®> MBq~'hr™'.

The calculation indicated in Equation (15) requires knowl-
edge of the spectral distribution n;(E). This function is deter-
mined by the end-point energy E;, the atomic number of the
daughter nucleus Z, and the angular momentum transfer in
the decay process. A more explicit description of the function
and approximations used in this work for its evaluation are
given in the appendix.

(20)

COMPUTATIONAL PROCEDURES

Representation of Monoenergetic Dose Point Kernels

The surface generated from the scaled monoenergetic dose
point kernels, derived by Monte Carlo techniques, was repre-
sented using bicubic splines. The algorithm employed, named
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SMOOPY, was developed by Dierckx (7). The routine
achieves smoothness by minimizing the sum of squares of
discontinuities of third-order derivatives at interior knots,
while selecting knots to satisfy a goodness of fit constraint.
The latter is based upon an upper bound on the sum of
squared residuals referred to as the smoothing factor. The
code was modified to include weighting to improve the rep-
resentation in the region in which the data approach zero.
This was accomplished by assigning the equivalent of standard
deviations to the data such that the weight of the zero values
was greater by a factor of nine than that for nonzero values.
The representation produced by the spline coefficients was
found to undergo small negative excursions in the region of
zero values. The representation was modified by a logical
condition to set all negative values to zero.

Typical dose point kernels generated in this manner are
compared with the input data in Figures 3 to 5. The input
data file consisted of 775 values. It is difficult to quantify
simply the goodness of the fit in terms of the relative deviation,
because of the existence of zero values. An average relative
deviation was calculated from the ratio of the average root
mean square deviation to the average value of the data and
found to be 0.25%. As might be expected, the largest relative
deviations occur as the function approaches zero. An alter-
native description of the overall quality of the fit can be made
in terms of the absolute deviation, bearing in mind that the
data values range from 0 to 1.72. The fraction of all data with
s.d.s <0.001, 0.003, and 0.02 is 66%, 91%, and 100%, respec-
tively. The lowest energy included in the surface is 0.5 keV.
The dose-point kernel was assumed to have the same shape
as that at 0.5 keV for all lower energy electrons.

The bicubic spline representation is superior to the analytic
representation of monoenergetic dose point kernels investi-
gated earlier (8). In the latter case there was a tendency to
underestimate the tabulated values for the region x > 0.9 and
E > 0.5 MeV.

Calculation of CSDA Range
As indicated in Equation (16), calculation of the beta dose
point kernel requires the evaluation of the CSDA range. To
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FIGURE 3

Comparison between the spline representation (—) and
Monte Carlo values for the 2-keV tic dose
point kernel. The latter are indicated as circles.
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FIGURE 4
Spline representation for the 0.6-MeV electron dose point
kemnel.

accomplish this task approximating formulae have been de-
veloped. For the region between 10 keV and 2.5 MeV a
modified power law described previously (8) has been used to
represent the data tabulated by Berger and Seltzer (9). This
formula fits the data to better than 1.5%. For the region from
0.5 keV to 10 keV the data of La Verne et al. (/0) were used.
These data had to be fitted in sections. For the region from
1 keV to 10 keV a simple second order polynomial in energy
was used. For the region between 0.05 keV and 0.5 keV a
third order polynomial was used. In the region from 0.5 keV
to 1 keV the range was calculated as the weighted average of
values calculated by extrapolation of the two formulae, insur-
ing a continuous joining of the two regions. The quality of the
fit is illustrated in Figure 6. The largest deviation from the
data occurs at 1 keV and is 5%. Details are given in the
appendix.

Calculation of Beta Spectra
As discussed by Dillman (/1) the expression for an allowed
beta spectrum involves the complex gamma function. We
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Spline representation for the 2-MeV electron dose point
kernel.

1039



100 f
39
x
€
kS
°
w 10¢
u o
V4
<
[1e
1 " L N N )
(0] 2 4 (3] 8 10
ENERGY (keV)
FIGURE 6

Fitted curve (—) for the low-energy CSDA range data. The
curve is derived from equations A15 and A16. Circles are
data from Ref. (70).

have developed a simple modified approximation, described
in the Appendix, thereby avoiding the computation of this
function. Comparison with the exact expression indicates
agreement to within 0.6% for electron energies up to 3 MeV
and for atomic numbers up to 100, encompassing the entire
range of potential radioisotopes. Since the beta transitions
corresponding to the *°Y decay and the 0.81 MeV group in
iodine-131 (**') are first-forbidden unique, estimation of the
corresponding shape factors is required. An approximate de-
scription of this quantity has also been developed and is
described in more detail in the appendix. The approximation
reproduces the tabulated values (/2) to within 0.4% for these
beta transitions. A comparison between the approximate
shape factor and that obtained from the tables is given in
Figure 7 for '*'I.

In performing the calculation of Equation (16), an energy

4.800 1
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SHAPE FACTOR
w
N
o]
o

2.400
1.600 . . . y
0.000 0.205 0410 0615 0.820
ENERGY (MeV)
FIGURE 7

Approximation of the shape factor for the first-forbidden
unique transition in '3'l. The calculated values (+) are
based on published tables, while the curve follows from
equations A12-A14.
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group structure was imposed upon the continuous beta spec-
trum, giving the discrete spectrum
M
ni(E) = EI n; (€n)- 6(E-€n). 1)

In the above equation the group energy is

@ = (n - %) E/M, 22)
where E; is the endpoint energy and
M
Y nien) = 1. (23)

n=1

The sensitivity of the calculated dose point kernel to the
choice of M was investigated and found to be highest at the
origin. The effect is illustrated in Figure 8 for three typical
cases. The sensitivity analysis was performed by calculating
the variation with M~'. The asymptotic limit was estimated
by fitting the linear portion of the variation and extrapolating
to M~! = 0. The value obtained for M = 500 is within 1% of
the asymptote and was adopted for the calculations presented
here.

RESULTS

Numeric Dose Point Kernels

Beta dose point kernels were calculated using the
branching ratios (/3) and endpoint energies (/4) sum-
marized in Table 1. Also given in the table are the
CSDA ranges at the endpoint energy and the average
energy for each beta group. The latter are all in agree-
ment with the values quoted in ICRP38 (/3) to within
1.5%.

104
1.02
1.00
098

0.96

FRACTION OF ASYMPTOTE

0.94 L
0.000 0.002

0004 0006 0.008 0.010

1M

FIGURE 8

Sensitivity of the calculation of the beta dose point kemel
to the energy spectrum group structure. M is the number
of energy groups used to approximate the continuous
spectrum. Data are shown for three examples: the 0.1835-
MeV transition in ¥’Cu (circles), the 1.0715-MeV transition
in '®Re (triangles), the 2.12-MeV transition in '®*Re
(squares). Solid lines are least squares fit to the linear
region of the variation.
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TABLE 1
Summary of Nuclide Parameters

Endpoint Average

Energy Branching Range Energy

Isotope  (MeV) Ratio (g/cm®  (MeV)
2p 1.708 1.000 0.831 0.694
¥Cu 0.184 0.0113 0.039 0.051
0.395 0.572 0.125 0.122

0.484 0.216 0.168 0.155

0.577 0.200 0.215 0.190

%oy 2.286 1.000 1.13 0.938
¥ 0.248 0.0213 0.062 0.069
0.304 0.0062 0.085 0.087

0.334 0.0736 0.098 0.097

0.606 0.894 0.230 0.192

0.807 0.0042 0.337 0.284

%Re 0.934 0.21 0.407 0.308
1.072 0.73 0.483 0.362

®Re 1.487 0.016 0.712 0.531
1.965 0.251 0.966 0.735

2.120 0.716 1.046 0.803

The resulting scaled beta dose point kernels are given
in Table 2. These quantities provide information re-
garding the intrinsic shape of the function. Absolute
dose rates are derived from them through multiplication
by the average beta decay energy divided by the CSDA
range for the maximum energy electron as indicated in

Equation (20). The scaled dose point kernels are rela-
tively insensitive to these parameters. The use of these
functions, therefore, allows improved dose estimates to
be made easily by incorporating updated energy and
range parameters when they become available.

The results of the calculation are also presented as
dose distributions, in the same manner as Cross (2), in
Tables 3 and 4. The calculations performed by Cross
are based upon Spencer’s electron transport monoener-
getic dose point kernels. The dose distribution for ytt-
rium-90 (**Y) obtained using the Monte Carlo electron
dose point kernels is compared with the earlier calcu-
lations by Cross (2) in Figure 9. The dose distribution
calculated from the Monte Carlo kernels is 7% lower at
the origin and is significantly higher for distances > 0.5
cm. This is illustrated in more detail in Figure 10, in
which the ratio of the Monte Carlo curve to that ob-
tained by Cross is shown as a function of distance. As
indicated in Figure 10, the dose predicted by the Monte
Carlo dose point kernels exceeds that predicted without
straggling effects by almost a factor of three at 0.8 cm
corresponding to 70% of the end point range. This
behavior is expected on the basis of the comparison of
the monoenergetic dose point kernels discussed previ-
ously.

As noted previously (2) experimentally observed
doses exceed the values predicted by the Spencer dose

TABLE 2
Scaled Beta Dose Point Kemels
Scaled
distance 32p° $Cu %0y ) 18%Re 188Re
0.00 0.2633E+01 0.2756E+02 0.2579E+01 0.3612E+02 0.9653E+01 0.9719E+01
0.04 0.2651E+01 0.1300E+02 0.2451E+01 0.1372E+02 0.6995E+01 0.8541E+01
0.08 0.2628E+01 0.9518E+01 0.2398E+01 0.8499E+01 0.6165E+01 0.8046E+01
0.12 0.2537E+01 0.7424E+01 0.2311E+01 0.5813E+01 0.5421E+01 0.7414E+01
0.16 0.2401E+01 0.5906E+01 0.2201E+01 0.4373E+01 0.4712E+01 0.6693E+01
0.20 0.2229E+01 0.4654E+01 0.2073E+01 0.3489E+01 0.4032E+01 0.5920E+01
0.24 0.2031E+01 0.3606E+01 0.1931E+01 0.2837E+01 0.3391E+01 0.5123E+01
0.28 0.1815E+01 0.2744E+01 0.1774E+01 0.2293E+01 0.2796E+01 0.4334E+01
0.32 0.1589E+01 0.2050E+01 0.1607E+01 0.1827E+01 0.2256E+01 0.3583E+01
0.36 0.1358E+01 0.1504E+01 0.1432E+01 0.1433E+01 0.1776E+01 0.2892E+01
0.40 0.1133E+01 0.1084E+01 0.1249E+01 0.1106E+01 0.1362E+01 0.2278E+01
0.44 0.9189E+00 0.7674E+00 0.1064E+01 0.8396E+00 0.1014E+01 0.1750E+01
0.48 0.7234E+00 0.5321E+00 0.8811E+00 0.6255E+00 0.7318E+00 0.1309E+01
0.52 0.5508E+00 0.3601E+00 0.7078E+00 0.4562E+00 0.5098E+00 0.9521E+00
0.56 0.4041E+00 0.2367E+00 0.5485E+00 0.3238E+00 0.3417E+00 0.6703E+00
0.60 0.2841E+00 0.1504E+00 0.4075E+00 0.2221E+00 0.2194E+00 0.4536E+00
0.64 0.1899E+00 0.9193E-01 0.2883E+00 0.1456E+00 0.1344E+00 0.2923E+00
0.68 0.1198E+00 0.5366E-01 0.1924E+00 0.9022E-01 0.7811E-01 0.1775E+00
0.72 0.7051E-01 0.2959E-01 0.1198E+00 0.5222E-01 0.4272E-01 0.1005E+00
0.76 0.3830E-01 0.1519E-01 0.6892E-01 0.2787E-01 0.2177E-01 0.5243E-01
0.80 0.1890E-01 0.7123E-02 0.3615E—-01 0.1349E-01 0.1018E-01 0.2489E-01
0.84 0.8295E-02 0.2988E-02 0.1695E-01 0.5803E—-02 0.4260E-02 0.1057E-01
0.88 0.3143E-02 0.1094E-02 0.6928E—-02 0.2159E-02 0.1548E-02 0.3937E-02
0.92 0.9890E-03 0.3432E-03 0.2407E-02 0.6745E-03 0.4676E-03 0.1261E-02
0.96 0.2488E-03 0.9112E-04 0.6910E-03 0.1739E-03 0.1106E-03 0.3429E-03
1.00 0.5366E—-04 0.2129E-04 0.1661E—03 0.3781E-04 0.2113E-04 0.8121E-04

* For convenience, the standard E format is used in this and following tables. The form aEn is to be interpreted as a-10".
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TABLE 3

Calculated Beta Dose Distributions
%2p Cu
R rD(r) R ?D(r) R D(r)
(g/cm?) (mGy-cm?/MBg-hr) (g/cm?) (mGy-cm?/MBg-hr) (g/cm?) (mGy-cm?/MBg-hr)
0.0000E+00 0.1008E+03 0.0000E+00 0.2829E+02 0.0000E+00 0.9798E+02
0.3323E-01 0.1015E+03 0.8592E-02 0.1617E+03 0.4520E-01 0.9312E+02
0.6646E-01 0.1006E+03 0.1718E-01 0.1250E+03 0.9041E-01 0.9114E+02
0.9970E-01 0.9715E+02 0.2578E-01 0.9690E+02 0.1356E+00 0.8781E+02
0.1329E+00 0.9192E+02 0.3437E-01 0.7422E+02 0.1808E+00 0.8364E+02
0.1662E+00 0.8534E+02 0.4296E-01 0.5575E+02 0.2260E+00 0.7879E+02
0.1994E+00 0.7777E+02 0.5155E-01 0.4092E+02 0.2712E+00 0.7336E+02
0.2326E+00 0.6951E+02 0.6014E-01 0.2936E+02 0.3164E+00 0.6743E+02
0.2659E+00 0.6083E+02 0.6874E-01 0.2064E+02 0.3616E+00 0.6108E+02
0.2991E+00 0.5201E+02 0.7733E-01 0.1427E+02 0.4068E+00 0.5440E+02
0.3323E+00 0.4337E+02 0.8592E-01 0.9767E+01 0.4520E+00 0.4746E+02
0.3656E+00 0.3519E+02 0.9451E-01 0.6640E+01 0.4972E+00 0.4041E+02
0.3988E+00 0.2770E+02 0.1031E+00 0.4483E+01 0.5424E+00 0.3348E+02
0.4320E+00 0.2109E+02 0.1117E+00 0.2988E+01 0.5877E+00 0.2690E+02
0.4652E+00 0.1547E+02 0.1203E+00 0.1948E+01 0.6329E+00 0.2084E+02
0.4985E+00 0.1088E+02 0.1289E+00 0.1231E+01 0.6781E+00 0.1549E+02
0.5317E+00 0.7272E+01 0.1375E+00 0.7494E+00 0.7233E+00 0.1095E+02
0.5649E+00 0.4585E+01 0.1461E+00 0.4362E+00 0.7685E+00 0.7309E+01
0.5982E+00 0.2700E+01 0.1547E+00 0.2401E+00 0.8137E+00 0.4553E+01
0.6314E+00 0.1467E+01 0.1632E+00 0.1232E+00 0.8589E+00 0.2619E+01
0.6646E+00 0.7237E+00 0.1718E+00 0.5774E-01 0.9041E+00 0.1374E+01
0.6979E+00 0.3176E+00 0.1804E+00 0.2422E-01 0.9493E+00 0.6440E+00
0.7311E+00 0.1203E+00 0.1890E+00 0.8867E-02 0.9945E+00 0.2633E+00
0.7643E+00 0.3787E-01 0.1976E+00 0.2782E-02 0.1040E+01 0.9145E-01
0.7976E+00 0.9528E-02 0.2062E+00 0.7386E-03 0.1085E+01 0.2626E-01
0.8308E+00 0.2054E-02 0.2148E+00 0.1725E-03 0.1130E+01 0.6310E-02

point kernels at large distances from the source. This
trend is in qualitative agreement with the above result.
Moreover, because of the area constraint given by Equa-
tion (8), such a trend requires that these values must be
somewhat larger than the actual dose near the origin.
Since the relative deviation is much smaller in this
region, the effect could easily be masked by experimen-
tal uncertainties. A quantitative comparison has been
made between data obtained for phosphorus-32 (*2P)
by Clark et al. (15) and the calculated dose point
kernels. Assuming 5% s.d. for the data, the reduced chi-
square is 1.9 and 23.5 for the dose distributions calcu-
lated using the Monte Carlo kernels and the transport
kernels respectively. As indicated in Figure 11, the
comparison extends over almost two orders of magni-
tude in the dose distribution out to ~75% of the end-
point range. Since the probability of observing a re-
duced chi-square greater than or equal to 1.9 for 12
degrees of freedom is only 3%, this result would indicate
that the model used is not exactly appropriate. It would
appear that there is some overestimation of the dose for
the data corresponding to points far from the origin. In
order to make the comparison, however, it was neces-
sary to transform the data from an air to a water
medium. Uncertainties in this transformation, together
with uncertainties in the CSDA range lead to additional
sources of error in the comparison not included in the
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analysis. The average relative deviation between the
data and the calculated curve is 7%. The maximum
deviation is 17%, occurring at 0.61 cm.

Analytic Representation of Dose Point Kernels

Analytic representation of dose point kernels, as first
suggested by Loevinger (16), provides a convenient
means to perform dose estimation, circumventing the
need for the storage of large data arrays, and for inter-
polating procedures. In this work we present functions
which are entirely utilitarian in nature, chosen solely
on the basis of their similarity in behaviour to the scaled
beta dose point kernels. It should be emphasized that
neither the functions nor the associated parameters used
in the representations are connected with any basic
physical mechanisms.

The function chosen to represent the bulk of the dose
distribution was the three-parameter lognormal distri-
bution given by

1
L= om0
- [(log (xo = x) —w)*/26%]. (24)
This function was selected because of its inherent con-
vergence to zero at the controlled cut-off point, xo. The

sharp upturn in the dose point kernels near the origin
has been represented by two exponential functions both
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TABLE 4

Calculated Beta Dose Distributions
3 198Rg ®Re
R 2D(r) R r°D(r) R r?D(r)
(g/cm?) (mGy-cm?/MBg-hr) (g/cm?) (mGy-cm?/MBg-hr) (g/cm?) (mGy-cm?/MBg-hr)
0.0000E+00 0.2490E+03 0.0000E+00 0.1523E+03 0.0000E+00 0.1031E+03
0.1348E-01 0.1374E+03 0.1930E-01 0.1126E+03 0.4185E-01 0.9497E+02
0.2696E-01 0.1051E+03 0.3860E-01 0.1003E+03 0.8370E-01 0.9193E+02
0.4044E-01 0.8115E+02 0.5790E—-01 0.8919E+02 0.1255E+00 0.8727E+02
0.5392E-01 0.6211E+02 0.7720E-01 0.7845E+02 0.1674E+00 0.8148E+02
0.6740E—01 0.4648E+02 0.9650E—01 0.6805E+02 0.2092E+00 0.7478E+02
0.8088E-01 0.3364E+02 0.1158E+00 0.5809E+02 0.2511E+00 0.6743E+02
0.9436E-01 0.2331E+02 0.1351E+00 0.4872E+02 0.2929E+00 0.5965E+02
0.1078E+00 0.1532E+02 0.1544E+00 0.4008E+02 0.3348E+00 0.5168E+02
0.1213E+00 0.9446E+01 0.1737E+00 0.3227E+02 0.3766E+00 0.4379E+02
0.1348E+00 0.5401E+01 0.1930E+00 0.2535E+02 0.4185E+00 0.3619E+02
0.1483E+00 0.2818E+01 0.2123E+00 0.1940E+02 0.4603E+00 0.2910E+02
0.1618E+00 0.1318E+01 0.2316E+00 0.1441E+02 0.5022E+00 0.2271E+02
0.1752E+00 0.5450E+00 0.2509E+00 0.1037E+02 0.5440E+00 0.1714E+02
0.1887E+00 0.2009E+00 0.2702E+00 0.7190E+01 0.5859E+00 0.1246E+02
0.2022E+00 0.7169E-01 0.2895E+00 0.4785E+01 0.6277E+00 0.8674E+01
0.2157E+00 0.2970E-01 0.3088E+00 0.3035E+01 0.6696E+00 0.5740E+01
0.2292E+00 0.1537E-01 0.3281E+00 0.1822E+01 0.7114E+00 0.3582E+01
0.2426E+00 0.8548E—02 0.3474E+00 0.1024E+01 0.7533E+00 0.2088E+01
0.2561E+00 0.4517E-02 0.3667E+00 0.5330E+00 0.7951E+00 0.1125E+01
0.2696E+00 0.2186E-02 0.3860E+00 0.2525E+00 0.8370E+00 0.5526E+00
0.2831E+00 0.9401E-03 0.4053E+00 0.1064E+00 0.8788E+00 0.2429E+00
0.2966E+00 0.3497E-03 0.4246E+00 0.3875E-01 0.9207E+00 0.9334E-01
0.3100E+00 0.1093E-03 0.4439E+00 0.1172E-01 0.9625E+00 0.3056E—01
0.3235E+00 0.2817E-04 0.4632E+00 0.2773E-02 0.1004E+01 0.8350E-02
0.3370E+00 0.6126E—05 0.4825E+00 0.5301E-03 0.1046E+01 0.1985E—02

of which become completely negligible in the far region.
In addition, a small step function, terminating at x =
1, was found to improve the fit near this region. The
form of the scaled dose point kernel for an individual
beta group can then be written

Fs (x) = aL (x) + b,exp (—\;x)
+ bz exp (—Ax) + CII (x), (295)

where

Nx)=1,0=sx=<1 (26)
=0,x>1.

The parameters were found by nonlinear least squares
fitting based on the Levenberg-Marquardt algorithm
(17). The parameters found by this method are listed
in Table 5. The quality of the fits are illustrated in
Figures 12 and 13. The average deviation over the range
0 =< x = 1 for all radionuclides treated is 2%.

CONCLUSIONS

Beta dose point kernels have been calculated for six
radionuclides potentially important for radioimmuno-
therapy. The inclusion of straggling effects leads to
improved agreement with experimental results for 2P,
and leads to significantly increased dose estimates at
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distances greater than approximately three-quarters of
the CSDA range. A satisfactory analytic representation
of the scaled dose point kernels for individual beta
groups has been obtained. The model used consists of
a lognormal function together with two short range
exponential functions and a small contribution from a
step function.
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FIGURE 9

Comparison between the beta dose distribution for %Y
calculated using the transport kemels (- -) and the Monte
Carlo kemnels (—).
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Figure 9, illustrating the slight overestimation at the origin
and significant underestimation at large distances by the
former.
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APPENDIX

Calculation of Allowed Beta Spectra
The expression for the beta spectrum of an allowed transi-
tion with end-point energy E; may be written (/7)

n; (E) = CF (Z, W,) ps W, (Ei — E)*. (AD)

In the above expression C is a normalizing constant, F (Z, W,)
is the Fermi function where Z is the atomic number of the

x
§
e
[§)
>
@
E
3
N\.
o . . : .
0.0 0.2 0.4 0.6 0.8
DISTANCE (g/cm?)
FIGURE 11

Comparison between the 3P dose distribution calculated
on the basis of the Monte Carlo dose point kernels (solid
line) and experimental results (open circles).
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daughter nucleus, and ps and W, are the screened momentum
and total energy, respectively. These satisfy the relations

p. = VW - m2c (A2)
and
W,=E + m, c? - V,, (A3)

where V, is a screening potential and m.c? is the electron rest
mass energy. In this work the screening potential has been
calculated as

Vo = 30.77 Z*3 eV. (A4)

The Fermi function has been calculated using the Bethe
Bacher approximation (/8) modified by us for Z > 50. Intro-
ducing the relativistic quantities

w = W/mg? (AS)
and
1 = p/mgc (A6)
the approximation is
F (Z, W) = Fy (Z, W) [@?Z%* + (&® = 1)/4]° (A7)
where a is the fine structure constant, 137", and
S=Vi-aZ2 - 1. (A8)

The first term in Equation (A7) is the nonrelativistic Fermi
function given by
Fn (Z, W) = 2mp/(1 — ™) (A9)
with
v=aZ w/. (A10)

The Bethe Bacher approximation yields values well within
0.5% for Z < 50, but becomes less accurate for large Z. We
have developed a correction factor of the form

C=1+[a(Z-50)+b(Z- 50

(1 —exp (— cv), (All)
with
a=405x 10"
b=223x10"°
c = 1.26.

As an example of the quality of the approximation of Equation
(A11), the values yielded for T/ for the momentum range 0 <
n < 4.9 exhibit a maximum discrepancy of 0.45%. Without
the correction factor the maximum discrepancy for this case
is 3.4%.

Calculation of First-Forbidden Shape Factor
For first-forbidden unique transitions the spectrum is fur-
ther modified by an additional shape factor. This quantity

may be written
S = Lo-(w; — w)> + 9L,, (Al12)

where w; is the total relativistic energy at the end point and Lo
and L, are tabulated functions (/2) of the relativistic electron
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Parameters for Analytic Representation of Scaled Dose Point Kemels

TABLE 5

Energy
Nuclide (MeV) A Xo u 4 b, M b2 A2 Constant
2p 1.708 436 13253 0.5066 0.3248 —0.583 8.967 0.038 2784.921 7.21E-05
$Cu 0.184 3290.20 1.2436 2.1525 0.5594 2.377 25.480 1.852 157.690 9.42E-06
0.395 115.15 12356 1.3441 0.4730 1.127 30.716 1.192  280.276 9.38E-06
0.484 55.16 1.2414 1.1564 0.4467 0.836 35.453 0.991 358.132 9.68E-06
0.577 30.68 1.2533 1.0051 0.4210 0.618 44193 0.819 461.127 9.32E-06
soy 2.286 3.12 1.2655 0.4020 0.3577 0.113 1161.102 — —_ 6.69E-05
bl 0.248 1940.70 1.2289 2.0483 0.5564 2.238 25.449 1.864 187.985 8.79E-06
0.304 708.36 1.2252 1.8071 0.5325 1.913 26.092 1.730 214525 8.72E-06
0.334 45422 12239 1.6987 0.5211 1.760 26.495 1.641 227.646 8.78E-06
0.606 40.71 12425 1.0825 0.4373 0.845 35316 1.029 411509 9.15E-06
0.807 6.22 12766 0.6122 0.3625 0.820 24472 0835 434741 1.13E-05
1%Re 0.934 1781 12519 0.8738 0.4076 0.467 58.020 0.657 651.510 5.79E-06
1.072 1263 1.2593 0.7852 0.3924 0.342 75940 0.505 714958 2.33E-06
%%Re 1.487 6.03 1.2960 0.5981 0.3491 -—0.087 0.002 0.374 597.771 8.68E-02
1.965 385 13409 04958 0.3157 -0.031 6.354 0.157 1658.212 5.90E-05
2.120 349 13549 04762 0.3076 —0.028 6.281 0.113 2546.797 5.84E-05
momentum. We have approximated these functions by and
Lo = ao + bon, (A13) L = (c+dn+fe1"+ge™2") %, (A14)
where where
2 = 0.997834 + Z(1.1975.10~ — Z(1.85-10"%)) ¢ = 0.111235 - (2.6377-10%) Z — (8.738.107%) Z2
bo = 4.555.107™ — Z(1.562.10™ + Z(1.0165.10™°)) +(2.204.107%) Z°
d = 2.8789.1075 — (1.146.107%) Z + (4.483.107") Z*
- (6.1.107'%9) 73
1004
f = 9.55727 (1 — exp (— (3.81-107*%) Z?))
. 10k g = 0.56731 (1 — exp (— (4.15-107%) Z?))
=
o A= 20.0641
% 1E A2 = 4.878 — (4.166.107%) Z.
‘? o1 Calculation of CSDA Range
E ) For electron energies between 50 eV and 500 eV, the CSDA
g range in water was calculated as
oo r, =a, + bE + ¢,E? + d,E?, (A15)
0.001 ) ) e where E is the energy in eV with
0000 0226 0452 0678 0904 1.130 a, = 0.945387.10~
DISTANCE (g/cm?)
= 0.005286-107¢
FIGURE 12 b = 0.005286-10
The quality of the analytic representation (—) of the cal- ¢ = —2.1207.107"?
culated Y beta dose distribution. Circles are values from
Table 3. d, =3.0.107"
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Analytic representation of the beta dose distribution for
$7Cu. Also shown are the contributions from the individual
beta groups of which this spectrum is composed. These
occur at energies of 0.1835 MeV (-.-), 0.395 MeV (— —)
0.484 MeV (---), and 0.577 MeV (— - - —). The solid
line represents the sum of the above contributions, while
the circles correspond to the values in Table 3.

For electron energies between 1 and 10 keV the range was
calculated as

r2 = a2 + bE + c2E? (A16)
with

az = —1.33941.10°¢

b2 = 0.006123.10°¢

c2 =2.0414.107"%

In the region from 500 to 1,000 eV, the weighted average

r = (E — 500) r2/500 + (1000 — E) /500 (Al7)
was used.
Finally, for E > 10 keV, the form is
Inr=a+b/MmE+c(nE?+di/nE;} (Al8)

with E in MeV and

a = -0.814245
b = 1.24742

¢ = —0.130086
d = —0.010436.

The range is given in g cm™2 for all the above.
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