(4), permits a direct three-dimensional Compton tomography, without applying reconstruction algorithms. The detector used was a gamma camera, equipped with a medium energy high resolution (MEHR) parallel hole collimator. We have described (5) a method to correct each scattering tomogram for attenuation of both primary incident (~300 keV) and 90° scattered beam (~195 keV). The attenuation coefficients, evaluated by means of 90° Compton tomography, using ¹⁹²Ir sources can permit correction of the SPECT chest sections for attenuation (δ), keeping, however, in mind the need of calibrating the external source energy with that of technetium-99m.

References

- Macey DJ, DeNardo GL, DeNardo SJ. Comparison of three boundary detection methods for SPECT using compton scattered photons. J Nucl Med 1988; 29:203– 207.
- 2. Guzzardi R, Licitra G. A critical review of Compton imaging. Crit Rev Biomed Eng 1988; 15:237-268.
- Pistolesi M, Solfanelli S, Guzzardi R, Mey M, Giuntini C. Chest tomography by gamma camera source: concise communication. J Nucl Med 1978; 19:94-97.
- Guzzardi R, Bottigli U, Mey M. Sources for 90° Compton scattering tomography of the lung. Nukl Med 1980; 17:897.
- 5. Guzzardi R, Licitra G, Voegelin MR. Recent developments in Compton tomographic imaging of the lung and possible application to object recognition. *IEEE Trans Nucl Sci* 1987; NS-34:667-671.
- Guzzardi R, Zito F, Mey M. Compton tomographic imaging: design aspects and performance. In: *Diagnostic imaging in medicine*. The Hague: Martinus Nijhoff Publishers, 1983:176–193.

R. Guzzardi G. Licitra C.N.R. Institute of Clinical Physiology Pisa, Italy

Essentials of Cyclotron Design and Operation: Corrections to Lecture Notes

TO THE EDITOR: In a MiniSymposium/Categorical Course in PET Imaging at the 35th Annual Meeting of the Society in San Francisco, this respondent gave a talk on June 14, 1988, entitled, "Essentials of Cyclotron Design and Operation". It is the intent of this letter to correct an error in the handout notes offered to those who attended that talk, and to clear up some potential misunderstandings.

In the course of an attempt to state that "small" cyclotrons with a proton energy of 11 to 17 MeV could make any amount of carbon-11, nitrogen-13, oxygen-15 or fluorine-18 that a PET imaging facility could ever use, an unfortunate error was made in a statement of maximum available activity. The outline summary notes stated that if activities greater than 0.5 Curie are needed, perhaps a larger machine with a proton energy greater than 18 MeV might be needed. The intention was righteous, but the 0.5 Ci was in error. As a matter of fact, a cyclotron with 11 MeV proton energy provides saturated activities of the radionuclides listed in the 1 to 2 Ci range (except for ¹³N) with reasonable beam currents and irradiation times. This respondent witnessed the production of well over 1 Ci of ¹¹C with a 40-min, $40-\mu$ Ci bombardment of ¹⁴N on an 11-MeV cyclotron shortly after the meeting. Makers of small cyclotrons were understandably concerned over the erroneous statement, and this correction is offered with apologies to those concerned.

It is a fact that even the low-energy, single-particle members of the small cyclotron family are capable of making all commonly used PET radionuclides in excess of the needs of a PET imaging facility.

Issue also was taken with a statement that seemed to imply that automated chemical synthesis units do not reduce personnel needs. What this respondent tried to say, albeit poorly, was that these units do not run themselves (as may easily be inferred from sales talk). Such units require initial loading and postprocessing cleaning as well as procurement of supplies and reagents, and this requires some person who, indeed, may be caring for more than one synthesis module. The intended idea was that one cannot add synthesis units without regard for the personnel necessary to support them.

Additionally, the outline notes may have not sufficiently made the point that properly self-shielded cyclotrons greatly reduce construction costs and complications by eliminating the very thick shielding walls of a vault. The notes do, however, warn correctly that care is necessary to determine if a given cyclotron is, indeed, "properly" self shielding.

The outline notes accompanying the Continuing Education Lecture Series audio-visual resulting from the talk have been corrected for the matters discussed here. It is the purpose of this letter to correct the error for those who took outline notes away from the presentation.

The author regrets the erroneous statement and the other confusions, and is grateful for this opportunity to set the record straight.

> C. Craig Harris Duke University Medical Center Durham, North Carolina

Correction: PET Quantitation: Blessing and Curse

In the Editorial by Di Chiro and Brooks "PET Quantitation: Blessing and Curse," (*J Nucl Med* 1988; 29:1603–1604), an error was made in the first sentence, second paragraph on p. 1604. The correct version is shown below. The printer apologizes for the error.

"We have seen sophisticated statistical methods used by investigators who have barely mastered standard deviations, the material being generated by statisticians who are often blind to the physiological or pathological implications. We believe that a potful of statistics should at least be accompanied by a teaspoon of intuition, if not the other way around."