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An observer study was performed in order to evaluate several filters used in SPECT imaging.
The filters were applied to the simulated projection data of a uniform activity density cylinder
which contained a cold, spherical lesion, 2 cm in diameter. The data incorporated the effects
of the detectorand scatterresponsefunctions,photonattenuation,and noise.Reconstructed
transaxial images were used in 2AFC and ROC observer studies testing lesion detectability.
In the 2AFC experiment, the Hanning filter scored lowest and did not show a optimum cutoff
frequency. The Butterworth filter performed better and showed a well-defined optimum cutoff
frequency at 0.15 cycles/pixel. The Metz filter performed as well as the optimum Butterworth
but did not show an optimum power factor. In the ROC study, a high power Metz filter
demonstrated an ROC curve of lower A@index and different shape from a lower power Metz
filter and the optimum Butterworth filter.
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he problem of noise in single photon emission
computed tomography (SPECT) is usually handled with
the application of low-pass, digital filters designed to
suppress high spatial frequencies where no signal is
present or where noise dominates the signal. Most
SPECT filter functions allow the user to control the
degree of high frequency suppression by choosing a
cutoff frequency, or similar filter parameter, which
determines where the filter rolls off to zero gain. The
location of this cutoff frequency determines how the
ifiter will affect both image noise and resolution. Low
cutoff frequencies provide good noise suppression, but
they can blur the image. Higher cutoff frequencies can
preserve resolution, but often suppress noise insuffi
ciently. There should exist an optimum cutoff fre
quency for a particular filter function which compro
mises the trade-off between noise suppression and spa
tial resolution degradation. This optimum will depend
on factors such as the detector response function, the
spatial frequencies of the object, and the count density
ofthe image. The purpose ofthis study was to determine
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the optimum filter function and cutoff frequency for
simulated SPECT images of a simple phantom.

The criterion which we have used in judging the
performance of a filter function is in terms of its effect
on lesion detectability. We have performed observer
performance studies using computer simulated images
in order to quantify lesion detectability and to deter
mine the optimum parameters for three filter types.
Subjects are shown images on a video monitor and are
rated on their ability to detect a lesion.

In order to make the simulated images resemble
acquired clinical images as closely as possible, we have
modeled and incorporated into the simulation many of
the physical phenomena ofan actual clinical liver study.
The simulation incorporates the effects ofphoton atten
uation, and the detector and scatter response functions.
Also, noise levels are similar to those found in clinical
liver studies.

The results of this study can have important clinical
applications. SPECT filters can greatly affect the quality
of clinical images by their degree of smoothing. Deter
mining the best filter and the proper degree of smooth
ing can help to ensure the most accurate diagnosis.
These results can also help speed image processing time
since a proper filter function is often chosen clinically

by the tedious and time-consuming process of trial and
error.
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BACKGROUND

Filter Operation
The filtering ofSPECT images has been performed at three

different stages of the reconstruction algorithm. Originally,
the smoothing filter was combined with the ramp filter which
was applied one-dimensionallyin the transversedirection of
the projection data. However, when sagittal, coronal, or
oblique images are reconstructed from multiple slice, trans
axial data which has been smoothed in this way, streaking can
occur in a direction parallel to the transaxial plane. These
streaks are the result ofpreferential smoothing in the transaxial
direction.

In order to overcome this problem, algorithms have been
developed which perform separate smoothing in the axial and
transaxial directions. A one-dimensional smoothing filter is
applied first in the axial direction of the projection data and
then in the transaxial direction along with the ramp filter
during the reconstruction. While this technique of separable
smoothing in the axial and transaxial directions can eliminate
streaking, it has been shown that it does not result in a three
dimensional isotropic point response (1). Therefore, this tech
nique is unsuitable for oblique tomography.

The solution to this problem has come about with the
application ofa two-dimensional, radially symmetric smooth
ing function to the projection data before reconstruction.
When this filter is combined with the ramp in the transaxial
direction, the resultant point response is isotropic (1). There
fore, this algorithm is well-suited for the sagittal, coronal, and
oblique reconstructions. In addition, this algorithm is superior
in noise handling to the algorithms previously discussed (1).

SPECr Filters
There are basically two types of filters that are used in

SPECT imaging; the smoothing and enhancement filters. The
smoothing filters are low-pass filters and allow the user to

z

A

select the cutoff frequency which determines the location of
the filter rolloff. An example ofthis filter type is the Hanning
filter. The Hanning filter is defined in the frequency domain
as,

H (is) = 0.5 + 0.5 cos (i-v/vs) O@ I @â€˜I@ (1)

= 0 otherwise.

The cutoff frequency, v@,determines when the function
reaches zero gain. The frequency response of the Hanning
filter is illustrated in Figure lA.

The Butterworth filter is another example of a smoothing
filter and it is defined in the frequency domain as,

(2)

In contrast to the Hanning, the Butterworth filter cutoff
frequency is defined as the point where the gain is down to
0.707. The shape ofthe Butterworth differs from the Hanning
in that this filter maintains a value close to one at low
frequencies and has a steeper rolloff. The parameter n deter
mines the steepness of the rolloff. The frequency response of
the Butterworth is illustrated in Figure lB.

Another class of filters which have been used in SPECT
imaging is the enhancement and restoration ifiters (2â€”4).
These filters attempt to recover the resolution lost in the
detection process by exceeding unity gain over a desired
frequency band. Because of the domination of noise at high
frequencies,enhancement filters at some point must also
rolloffto zero gain. An example ofa enhancement filter is the
Metz filter. This filter is defined in the frequency domain as,

(3)

The Metz filter is a combination of deconvolution and
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FiGURE 1
A:Frequencyresponseof HanningFilter.TheplotsshowtheHanningFilterat threecutofffrequencies(va).Thecutoff
frequency is the point at which the filter reaches zero gain. B: Frequency response of Butterworth Filter. The plots
show the Butterworth Filter at two cutoff frequencies (vs)and two power factors (n). The cutoff frequency is the point
at which the gain is down to 0.707. The power factor controls the steepness of the rolloff.C: Frequency response of
Metz Filter. The plots show the Metz filter at three power factors. The power factor determines when the filter changes
fromtheinverseMTFto a rolloffto zerogain.TheMTFwascalculatedbasedona sourcelocated25cmfromthe
collimator face and at a depth of 12.5 cm into the scattering medium.



smoothing filters. The parameter X determines the extent to
which the filter follows the inverse MiT before rolling-off to
zero gain. The frequency response of the Metz filter is illus
trated in Figure 1C.

. It has been reported previously that visually more pleasing

images have resulted when a generalized exponential of the
form,

H (v) = exp (â€”i/S),

is used in place of the MTF in the Metz filter (2). The
parameters P and S can be adjusted according the count
density and power spectrum of the image. This form of the
Metz filter also produced images with a lower mean-squared
error than the MTF form.

METhODS

Image Simulation
The test images for the observer study were reconstructed

from simulated projection images. The simulation incorpo
rated effects of the detector response as well as image noise
and involved the following process: (1) determine the three
dimensionalactivitydistribution of the object, (2) solveana
lytically for the projection images over all view angles consid
eringphoton attenuation, (3) digitiZethe simulated projection
data, (4) smooth the data with an estimation of the detector
response function including scatter, (5) add count-dependent
Poisson noise to these projections, (6) apply the test filter, (7)
reconstruct the transaxial images.

The simulated object consisted of a cylindrical body, 25
cm in diameter, 40 cm in height, with a uniform distribution
ofradioactivity. Embedded within the cylinder was a spherical
lesion, 2 cm in diameter and void of radioactivity. A cold
tumor of this size was simulated in order to model a clinical
liver study. The location of the tumor was varied randomly.

The attenuatedprojectionsofa cold spherein a hot cylinder
were simulated by subtractingthe attenuated projections of a
hot sphere in a cold cylinder from the attenuated projections
ofa hot cylinder.Both the subtrahendand minuend projection
datasets were calculated for 64 views over 360Â°.digitized into
64 x 64 matrices, and smoothed with an estimation of the
detector response function prior to subtraction. The reason
for smoothing these datasets rather than the difference dataset
will become apparent at the end of the following discussion
on the estimation of the detector response function.

Detector Response Function
The total detector response function consists of the pene

tration, scatter, and geometric components. With low-energy
gamma ray photons, such as @mTc,and a properly designed
coffimator, the penetration component is negligible and was
disregarded in this simulation. The scatter and geometric
components can be considered to act in parallel and are
summed in the following way to yield the total detector
response function in the frequency domain (5),

DRF0 (v + f5DRF5(v)
DRFT(v)= l+f,

where DRF.r(v) is the total detector response function,
DRF0(v) is the geometriccomponent, DRF5(v)is the scatter
component, and f, is the scatter fraction. The scatter fraction

represents the ratio of scattered to unscattered photons de
tected and is a function of the depth of the source in the
scattering medium. Monte Carlo studies (6) have demon
strated that the scatter and the geometric components are
related by a multiplicative function,

DRF, (v) = K (v) * DRF6 (v),

(4) where K(v) is a function of the scattering conditions, i.e.,
energy window settings, detector energy resolution, source
primary energy, and depth ofsource in the scattering medium.

An alternate representationof the detector response is the
use ofthe series-equivalent scatter response function (7) where
the total response function is:

DRFT (v) DRF0 (v) * DRF@' (v).

Monte Carlo studies(6) and experimental data (8) have shown
that DRFs'@'(v)is essentially independent ofcollimation and
is a function of only the scattering conditions. Eqs. (4)â€”(6)
can be used to solve for DRF7'@'(v) in terms of K(v) and f,:

DR(V)=@@@7 1

We chose to use the series-equivalent formulation to ap
proximate the total detector response function because of its
simplicity and generality. Given the scattering conditions,
DRFi@' (v) allows one to determine the total response func

tion for any collimator ifthe geometric component is known.
Based on Monte Carlo data (6) and Eq. (7), we have estimated
DRF@@@'(v) for our experimental situation assuming 140 keV
primary energy, 125 keV baseline energy, and 11% detector
energy resolution. The function K(v)was determined by fitting
the Monte Carlodata with a two Gaussian approximation,

(5)

(6)

(7)

(8)

(9)

(10)

K (v) = a*exp [â€”v2/2s121

t; = 0.07d,

= 0.02446D + 0.1793,

Ã·(1 â€”a)*exp [â€”v2/2s@2J,

where a, s1, and 52 are functions of the source energy, the
energy window, and the source depth. For our estimation, a
was close to one, and we disregardedthe second Gaussian.
The scatterfraction, f,, was dependent upon the sourcedepth,
d, in the following way,

where d is in units of cm.
The geometric component of the detector response is a

function ofthe collimator and the distance ofthe object from
the collimator face. For this study DRF0(v) was estimated
from line spread function measurements in air at different
distances from a General Electric collimator. We approxi
mated the line spread function with a Gaussian function and
found that over realistic collimator-object distances,@ of the
Gaussian is linearlyrelatedto the distance from the collimator
face, D,

where D is in units of cm. The Fourier transform of this
(4) Gaussian function is an estimation of geometric response

function, DRF@(v),and this was then multiplied by DRF@
(I,) to get the total response function in the frequency domain.

Thus for a given source energy,energywindow, and detec
tor energy resolution, the total detector response function is
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dependent upon (1) the distance of the source from the
detector and (2) the depth of the source in the scattering
medium. The problem with simulating the detector response
in projection images is that the source is distributed over a
rangeof distances from the detector as well as over a rangeof
depths in the scattering medium. No single detector response
function, therefore, precisely describes the blurring in a pro
jection image. To compound the problem, the blurring
changes from projection image to projection image since the
distance of the source to the detector and the depth of the
source in the scattering medium change with angle.

In order to partiallymodel the distance dependence of the
detector response in this simulation, we smoothed with the
detector response function the subtrahend and minuend da
tasets rather than the difference dataset. This allowed us to
simulate the differential blurring of the lesion with projection
angle. In the attenuated projection dataset ofthe hot lesion in
the cold cylinder, we calculated a detector response function
for each angle based on the distance of the lesion to the
detector and the depth ofthe lesion in the scattering medium.
The attenuated projection dataset of the hot cylinder was
smoothed over all angles with an â€œaverageâ€•detector response
in which the distance to the detector equaled the radius of
rotation (25 cm) and the depth of the source in the scattering
medium equaled the cylinder radius (12.5 cm). The data sets
were then subtracted as described earlier, resulting in the
incorporation of attenuation and the detector response in the

FIGURE 2
Simulated projection image of object distribution without
noise. The simulation incorporates the detector response
function induding scatter. The lesion is located near the
center of the image. B: Simulated projection image with
added Poisson ncise. The average count density near the
center of the projection image is 150 counts/pixel. C:
Filteredprojection image. The image in Figure2B has been
filtered with the Butterworth Filter (v@ 0.1 5, n 10). D:
Reconstructed image. The projection dataset from Figure
2C with 64 views has been reconstructed at the level of
the lesion center. The reconstructed images were used in
the observer study.

simulated projections of a cold sphere in a hot cylinder. An
example of such a projection image is shown in Figure 2A.

Image Noise
The next step in the image simulation was to add noise to

the projection data using a Poisson random number generator.
The variance of each pixel in the resulting projection image
was equal to the expected, or noise-free,pixel value. The noise
level was chosen so that the processed, reconstructed image
would score â€˜â€”75%correct in a two-alternative-forced-choice
(2AFC) preliminary observer study. This resulted in projection
images with â€”150counts per pixel. This noise level is typical
of a clinical liver study. An example of a projection image
with added noise is shown in Figure 2B.

Filter Functions
The filter functions evaluated in this study included the

Hanning (cutoff frequencies 0.2, 0.25, 0.3, 0.35, 0.4, 0.45
cycles/pixel), Butterworth (cutofffrequencies 0. 1,0.125, 0.15,
0. 175, 0.2, 0.225 cycles/pixel), and Metz (power factors 2, 4,
6, 8, 10, 12) filters. Within each filter type, the cutoff frequen
cies or power factors were chosen as those which, from a
subjective standpoint, bracketed the optimum. The power
term in the Butterworth filter function was held fixed at 10.
This value was chosen because the resulting Butterworth filter
has a flatter response than the Hanning filter at low frequencies
but does not rolloffso sharply as to produce ringing artifacts.
We were interested in the effects of this flat, low-frequency
response on lesion detectability. The form of the Mets filter
tested in this study was the MTF form described earlier. The
MTF used in the filter included scatter and was equivalent to
the â€œaverageâ€•detector response function used to blur the
projections ofthe cylindrical body.

The filters were applied as two-dimensional, radially sy
metric, preprocessingfilters. The filtering was performed in
the frequency domain by an array processor (Analogic AP400
array processor). A noise projection image processed with a
Butterworth filter with a cutoff frequency of0.l5 cycles/pixel
and n = 10 is shown in Figure2C.

Image Reconstruction
The final step of the image simulation was to reconstruct

transaxial slices from the filtered projection data. The filtered
backprojection technique was used. Before backprojecting, the
projection array was linearly interpolated to increase the num
ber ofprojection values eight times. This projectionarraywas
then backprojected into the reconstruction matrix in a nearest
neighbor manner. An example of a processed, reconstructed
image is shown in Figure 2D.

Observer Study
The observer study was performed using the two-alterna

tive-forced-choice (2AFC) and ROC (9,10) methods. Five
biomedical engineers and two radiologists took part in the
2AFC study. In this study, a total of 64 images with lesion
and 64 images without lesion were simulated, and those
images were processed with each ofthe filter functions. A trial
consisted of64 image pairs processed with the same filter. The
pairing of images with and without lesion was randomized
before each trial. Each observer viewed the 64 image pairs
processed with each of the filter functions. In addition, the
observers viewed the 64 pairs with no smoothing. The images
with lesion were reconstructed at the level ofthe lesion center.

A B

C D
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Prior to data collection, the observers were put through a
training session in which the actual lesion location was shown
to the observer after each response.

Five biomedical engineers took part in the ROC study
including three who participated in the 2AFC study. One
hundred and eight ofthe 128 images used in the 2AFC study
were used in the ROC study. The remaining 20 images were
used for ROC training purposes. Fifty percent of the 108
images contained a lesion. Each observer viewed the 108
images processed with each filter function as well as the 108
images unprocessed. Observers rated on a scale of one to five
their confidence in the presence of a lesion. As in the 2AFC
study, observers were put through a training session before
each trial in which the actual lesion location was shown after
each response. The observers were told prior to the study that
â€˜-50%of the images contain a lesion.

The display system consisted of an 8-in. black and white
monitor with 256 gray levels. The images were normalized
such that the mean pixel value was constant across all images.
The display map was linear. Pixels 3 s.d. or more above the
mean pixel value received full display intensity, and pixels 3
s.d. or more below the mean received the minimum display
intensity. Observers were encouraged to view the images at a
comfortable distance and to take as long as they liked in
making a decision. Most decisions were made within 10 sec.

RESULTS AND DISCUSSION

2AFC Experiment
The results ofthe 2AFC experiment for the Hanning,

Butterworth, and Metz filters are shown in Figures 3A,
3B, and 3C, respectively. The percentage of correct
responses has been plotted against cutoff frequency for
each filter (against power factor for Metz). The data
points represent the weighted mean and standard devia
tion of the mean for the seven observers. Recall that
the cutoff frequency is defined differently for the Han
ning and Bufterworth filters and that the power factor
for the Metz filter determines the degree of enhance
ment. The control (no filter) is equivalent to an infinite
cutoff frequency for the Hanning and Butterworth flu

ters and has been plotted as such in Figures 3A and 3B.
These two curves can be expected to slope down and
approach the no-filter data point as the cutoff frequency
is increased beyond the range of this study. In Figure
3C, the results ofthe control image set have been stated
explicitly.

A qualitative examination of Figure 3 reveals clearly

that smoothing improves lesion detectability in these
images. All of the filters tested scored substantially
better than the control which received no smoothing.
The Hanmng filter did not exhibit an optimum cutoff
frequency, nor did the Metz filter show an optimum
power factor. The Butterworth filter, however, did show
a well-defined optimum cutoff frequency near 0.15
cycles/pixel.

The statistical significance of the differences between
the 2AFC results was tested using the two-tailed t-test
for paired data. We were interested in pairing the But
terworth filter which scored the highest (v@=0. 15 cycles!
pixel) against other cutoff frequencies for the Butter
worth filter, the best Hanning filter (v@= 0.35 cycles/
pixel), the Metz filter at power 4, and the control. The
two-tailed p values from these paired t-tests are shown
in the upper portion of Table 1. We also paired the
Metz filter at a power of 4 against other Metz filters,
the best Hanning filter, and the control. These two
tailed p values are shown in the lower portion of Table

The results in Table 1 can be summarized as follows.
The Butterworth (v= 0.15) and Metz at power 4 scored
significantly better than the control at low p levels. The
differences among filters, however, are less substantial.
The Butterworth filter at the 0.15 cutoff frequency was
significantly better than other Butterworth cutoff fre
quencies tested, except 0.125, at a p level of 0.14. The
0. 15 Butterworth filter was not significantly different
from the Metz filter at power 4, but both ofthese filters
were better than the best Hanning filter at a p level of
0.14. The Metz ifiter at a power of 4 was not signifi
cantly different from powers 2, 6, or 12.
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FIGURE 3
A: Resultsfrom2AFC experimentusingthe Hanningfilter.The resultsdo notdemonstratean optimumcutofffrequency.
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0.15 cycles/pixel. C: Results from 2AFC experiment using the Metz filter. The results with the Metz filter do not
demonstrate an optimum power factor. The scores are approximately equal to the score obtained from the optimum
cutoff frequency for the Butterworth filter.
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Butterworth (v@ 0.15)

TABLE 1
Two-Tailed p Values from Paired t-Tests

of the Difference in 2AFC Scores

A curious finding from this study is the lack of a
clearly defined optimum cutoff frequency for the Han
ning filter. The relative insensitivity of lesion detecta
bility to changes in cutoff frequency for the Hanmng
filter may be due in part to the diagnostic task and
tumor model employed in this study. Detectability of a
simple target in a uniform background may benefit as
much from noise suppression as from high spatial res
olution, and for this reason, smooth Hanning filters can
perform as well as high cutofffrequency Hanning filters
which preserve resolution but allow the appearance of
high frequency noise.

Unlike the Hanning filter, the Butterworth did dem
onstrate an optimum cutoff frequency (near 0.15
cycles/pixel). Why the Butterworth demonstrated an
optimum cutoff frequency and the Hanning did not is
not clear. Insight into why the 0.15 cutoff frequency
produced the greatest lesion detectability for the But
terworth filter can be gained by examining the relation
ship between the filter function cutoff frequency and
the size of the detected lesion. Figures 4A, 4B, and 4C,
are plots of the Butterworth filter in the spatial domain
at cutoff frequencies of 0.125, 0. 15, 0.175 cycles/pixel,
respectively. Also plotted in each figure is a profile
through the lesion center in a projection image in which
the lesion is at a distance from the detector approxi
mately equal to the radius of rotation. These figures
illustrate the fact that the optimum Butterworth filter
cutoff frequency, 0. 15 cycles/pixel, is the filter function
which is closest in size to the detected lesion. Whether
or not this finding can be generalized to lesions of
different sizes remains to be tested. If so, it may be
possible to use a priori knowledge of lesion size as a
guideline for selecting the Butterworth filter cutoff fre
quency.

Butterworth(v@0.1)0.11Butterworth
(v@0.125)0.40Butterworth
(v@0.175)0.14Butterworth
(v@0.2)0.01Hanning

(v@=0.35)0.08Metz
(power =4)0.46Nofilter0.00Metz

(power=4)Metz

(power =2)0.90Metz(power=6)0.78Metz

(power =12)0.31Hanning
(v@=0.35)0.14Nofilter0.00

Caution should be exercised in generalizing these
results beyond the context ofthis study. We have tested
these filters in terms of lesion detectability in images
containing a uniform background. In situations involv
ing structurally more complex images and different
diagnostic tasks (such as discrimination) different re
sultsare likely.Nevertheless,we feelthe resultsof this
study offer important insights into the behavior of these
ifiters in SPECT imaging. It should also be emphasized
that the formof the Metzfilterusedin this studywas
the MTF form. As reported earlier, King Ctal. (2) have
found the generalized exponential form of the Metz
filter produces images substantially more pleasing vis
ually. It will be interesting to test this form in similar
observer studies.
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The data from this 2AFC study suggest that the
Hanning is the weakest of the three filter types tested.
This is perhaps due to the response of the Hanning
ifiter at low frequencies. Unlike the Butterworth filter
which maintains a gain close to one at low frequencies,
or the Metz filter which exceeds unit gain in the low
frequency range, the Hanning filter drops below unit
gain relatively quickly (Fig. 1). Because the signal in
nuclear medicine is mainly contained at these low
frequencies, this drop-off may be responsible for the
decreased detectability with the Hanning filter in this
study. Figure 5 shows that contrast of low frequency
components in the Hanning filtered image is reduced
relative to the Butterworth and Metz images.

The question now is, which of the Butterworth and
Metz filters is the optimum filter for this study? The
Metz filter at power factors 2, 4, and 6 scored essentially
the same as the optimum Butterworth filter. Ifit is true
that the optimum cutoff frequency for the Butterworth
filter is dependent upon the lesion size, then the pref
erence should be for the Metz filter since typically one
does not know the lesion size a priori. Although their
2AFC scores were similar, Figure 5 shows that the Metz
filtered image is qualitatively different than the Butter
worth filtered image in that the contrast of low fre
quency structures is enhanced with the Metz filter. In
order to understand better the behavior of the Butter
worth and Metz filters and to reveal possible differences
between them, we performed an ROC confidence-rating
experiment testing the optimum Butterworth filter
(cutoff frequency of 0.15 cycles/pixel), the Metz filter

which scored the best (power factor of4), the Metz filter
at power factor 12, and the control.

ROC Results
Figure 6 shows the ROC curves for the Butterworth

filter, the Metz filters, and the control. The curves were
obtained by fitting each individual observer's confi
dence-rating data to a binormal ROC curve (11) and
then averaging the ROC parameters across observers.
Also included in the figure is A@,or the area under the
ROC curve, for each filter. These values were also
obtained by averaging each individual observer's A7
score.

The results oftesting the statistical significance of the
differences between the ROC curves are now presented.
As in the 2AFC study, the no-filter ROC data demon
strated a highly significant decrease in observer per
formance by both bivariate and area tests for all mdi
vidual observers (12). However, these same tests did
not reveal a significant difference between the ROC
data of any two filters tested for a majority of the
observers. In order to obtain a measure of the signifi
cance of differences which combined the results of
multiple observers, we performed two-tailed, paired t
tests on the difference in area under the ROC curve,
A7, and on the difference in true positive fraction (TPF)

at given false-positive fractions (FPF). In terms of A7
score, there was no significant difference between the
Butterworth and Metz at power 4; however, both of
these filters performed significantly better than Metz at
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FIGURE 6
ROC curves of three filter functions and the control. The
no-filterROC curve is substantially depressed relative to
the filterfunctions curves. The curves for the Butterworth
(v@= 0.15 cycles/pixel)and the Metz at power 4 were not
different, but both were greater than Metz at power 12 at
low FPF values.

BUTTERUORTI4 e.175 METZ 4

FIGURE 5
Effects of three filters on tne reconstructed image. The
three filters rolloff at approximately the same frequency
range although the shape of each is different (Figures 1A,
I B,and 1C).Each filteraffects the image qualitydifferently.

649Volume29 â€¢Number5 â€¢May 1988



Metz
(power=4)Metz(power=12)NofilterButterworth(v@0.15)0.660.10.001Metz

(power =4)â€”0.060.002Metz
(power = 12)â€”â€”0.003

Metz(power= 4)Metz(power=12)FPF=0.050.10.20.30.50.70.90.050.10.20.30.50.70.9Butterworth

(v@1.00.950.700.540.500.641.00.100.050.080.240.480.600.58=
0.15)Metz

(power=â€”â€”â€”â€”â€”â€”â€”0.180.200.200.280.660.760.604)

TABLE 2
Two-Tailed p Values from Paired t-Tests

of the Differencein A@

filter functions can aid in selecting the proper operating
point for a given filter function. This study suggests that
the Metz filter at power 12 should not be used if one
prefers to operate with a conservative decision criterion.
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power 12. The two-tailed p values of these tests are
shown in Table 2. When the paired t-test was then used
to test differences in TPF at FPF values of 0.05, 0.1,
0.2, 0.3, 0.5, 0.7, and 0.9, there was no significant
difference between the Butterworth and Metz 4 at any
FPF. The Metz 12, however, was significantly worse
than both the Butterworth and Metz 4 in terms of TPF
at FPF values of 0.05, 0. 1, and 0.2. Table 3 shows the
two-tailed p values of these tests.

The results of this ROC study, then, agree well with
the 2AFC finding that smoothing, in general, improves
detectability in these images. And like the 2AFC exper
iment, the ROC study did not demonstrate any differ
ence in observer performance with the Butterworth
filtered images at v@= 0. 15 cycles/pixel and Metz fil
tered images at a power of 4. The results of the two
observers studies, however, did disagree in a couple of
ways. First, the area under the curve, A7, in the ROC
study was depressed relative to the 2AFC score. This
may be due to variance in performance across observers
since the two studies did not use exactly the same
observers. Second, in the ROC study but not in the
2AFC study, the Metz at power 12 performed signifi
cantly worse than the Butterworth filter at 0. 15 cycles!
pixel and Metz filter at power 4. This descrepancy could
also be the result of variance in performance between
observers of the two studies.

An interesting finding from the ROC study was that
the Metz filter at power 12 scored worse than the other
two filters only at low FPF values. Apparently, observers
cannot perform well with this filter when forced to be
conservative in their diagnostic calls. If the observer is
allowed to be liberal in his calls, he performs as well
with the Metz at power 12 as with Metz at power 4 and
the 0. 15 cutoff frequency Butterworth filter. Informa
tion concerning the shape of the ROC curves of these

TABLE 3
Two-Tailed p Values from Paired t-Tests of the Difference in TPF at a Given FPF
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