increased and after ~3 min, it reached a value corresponding to that observed after an i.v. injection. These results suggest that \({\text{Tc}}^{99m} \) is not retained in the liver and that the heart-to-liver ratio should be determined very early after the per-rectal administration (i.e., during the first transit of the tracer). The inherent problem of this approach is related to the low absorbed radioactivity in the early period.

In order to evaluate the incidence of hepatocellular damages on the tracer uptake, we calculated the \({\text{Tc}}^{201} \) heart-to-liver ratio and the \({\text{Tc}}^{123} \)-HIPDM lung-to-liver ratio at the 25th min in rats previously intoxicated with \(\text{CCL}_{4} \) and histologically proven to have developed hepatic necroses. The results suggested that the hepatocellular damages do not influence greatly the uptake of both tracers. Technetium-99m was not studied since it is not taken up by the liver cells.

In summary, the advantages of \({\text{Tc}}^{99m} \) due to its short half-life, low cost, and good rectal absorption are hampered by some major inaccuracies such as no liver retention which can overestimate the PSS if errors in timing occur. Thallium-201 is expensive but easily available. Its low absorption compared to other tracers does not impair its potential usefulness (7). Iodine-123 HIPDM presents interesting advantages as far as the three parameters studied are concerned but its expensiveness and its very short half-life prevent its routine use.

References

Daniel Urbain
Omer Jeghers
Hamphrey R. Ham
St. Peter's Hospital
Free University of Brussels
Brussels, Belgium

Dr. Urbain et al. report in their letter that in experimental animals, the uptake of \({\text{Tc}}^{201} \) or of \({\text{Tc}}^{123} \)-HIPDM by the liver is unaffected by the degree of hepatic cellular damage. However, in some of our patients with chronic active hepatitis, PSS was significantly higher when evaluated by \({\text{Tc}}^{123} \)-HIPDM than with \({\text{Tc}}^{99m} \); thus, liver damage did seem to affect the results.

Technetium-99m is not taken up by the liver, heart, or lungs, but is recycled continuously in the bloodstream. Thus, if the heart-to-liver ratio is obtained after a certain period of time, PSS will be found to be higher than it actually is. For that reason, use of the equation given in our paper (1) is necessary when \({\text{Tc}}^{99m} \) is used in this way; with \({\text{Tc}}^{123} \)-HIPDM and \({\text{Tc}}^{201} \), the calculation of PSS is more simple and direct.

The advantages of \({\text{Tc}}^{99m} \) are its relatively low cost, its capacity to make the portal vein visible, and at times, its depiction of the portal collaterals.

The clinical practicality of these methods to measure PSS by the use of radioisotopes is most important. In the more than 500 procedures for per-rectal portal scintigraphy we have done in some 400 patients in the past ten years (2), we have found \({\text{Tc}}^{99m} \) to be of great use.

References

Susumu Shiomi
Tetsuo Kuroki
Hironobu Ochi
Osaka City University Medical School
Osaka, Japan

Correction: Quantitative Measurement of Renal Perfusion Following Transplant Surgery

In the article “Quantitative Measurement of Renal Perfusion Following Transplant Surgery” (J Nucl Med 1988; 29:1656-1661) by Lear et al., Equation 3 is incorrect as shown on p. 1657. Equations 1, 2, and 3 are shown correctly below. The printer regrets the error and apologizes for any inconvenience to our readers.

\[F = \frac{A_d(T)}{\int_0^T C_d(t) \, dt}, \]

where

\[F = \text{blood flow to the organ}, \]
\[A_d(T) = \text{organ tracer activity at time, } T \]
\[C_d(t) = \text{concentration of tracer in the arterial blood entering the organ at time, } t. \]

\[C_d(t) = \frac{A_d(t)}{V_a}, \]

where

\[A_d(t) = \text{arterial activity of tracer at time, } t \]
\[V_a = \text{ultrasonically determined volume of arterial region} \]

thus

\[F = \frac{A_d(T)}{\int_0^T \frac{A_d(t)}{V_a} \, dt}. \]