
significant improvement in the quality of single
photon emission computed tomographic (SPECT) im
ages has been demonstrated through the use of two
dimensional prereconstruction filtering of the SPECT
projection (or acquisition) images (1â€”5).To obtain the
maximum restoration of image quality, the restoration
filter should be designed to account for the image
blurring [modulation transfer function (MTF)], the
noise level, and the object which was imaged (1â€”6).
Using the normalized mean square error as the opti
mization criterion, and images of the Alderson Organ
Scanning Phantom with liver and spleen inserts, a
count-dependent Metz filter has been previously devel
o_ for use in two-dimensional prereconstruction ff1-
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tering the SPECF liver and spleen studies (1). This filter
has been â€œoptimizedâ€•for a number of imaging condi
tions (MTFs) (4,5). However, it was noted that altera
tion of the filter parameters from those determined
from the phantom studies was required to obtain the
most visually pleasing images for organ systems (ob
jects) which were quite different from the liver and

spleen studies for which the filter was optimized.
This paper describes a method which uses interactive

visual feedback (7-9) to allow an operator to select
from among a family of â€œoptimalâ€•Metz filters (i.e.,
those designed for a particular MTF) the filter best
suited for the image being processed (i.e., object imaged
and noise level). The visual feedback comes from two
sources. The first is the viewer's subjective impression
of image quality (7-9). The second comes from a plot
of the frequency-domain filter overlayed onto the one
dimensional compression ofa smoothed estimate of the
power spectrum ofthe blurred object. We have observed
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A numberof factorsmustbe consideredwhenforminga digitalfifterto two-dimensionally
filtersingle photon emission computed tomographic (SPECT)acquisition images. In an effort
to providesubjectivelyoptimalfiltering,a programhas beendevelopedwhichprovidesTMreal
timeâ€•visual feedback. This allows a user to select from among a family of Metz filters tailored
for the imaging conditions (i.e., formed to deconvolve scatter, septal penetration, and
combined collimator and intrinsic spatial resolution ksses). @Jso,a guideline for assisting the
userin selectingfrom amongthe possibleMetzfiftershasbeenformulated.Thisguidelineis
based upon knov@4edgeof the probability distribution of the noise power spectrum, and
consistsof choosingthe filterwhichhasa valueof 1.0 whenthe one-dimensional
compressionof the imagepowerspectrumequalsthe 90% confidencelimitfor noise
fluctuations.Theprogramstarts by filteringa planerreferenceimagewith the Metzfilter
computedfor the radionudide,collimator,magnification,andcount-levelof the image.This
filteris displayedbesidethe imagewhere it is ovetlayedon a plotof the logarithmof the one
dimensionalcompressionof the imagepowerspectrum.Theuseris thenallowedto varythe
filterparametersthroughmovementof a joystick.By doingthe filteringusingan array
processor, a new filtered image is formed and disp@yedless than a second after movement
of the joystick.Visualfeedbackfromthe seriesof filteredimagesthus producedas wellas
the plots of the filter overlayed on the estimated blurred object power spectrum are used to
obtaina visuallyâ€œoptimalâ€•filter.Thefiltercanbe adaptedto the visualpreferencesof the
individualreader,andservesas a usefulteachingtool on the effectsof filtering.
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for SPECT studies that adjusting the Metz filter so that
it has a value of 1.0 when the blurred object power
spectrum equals the 90% confidence limit for fiuctua
tions in the noise power spectrum generally produces
images which are close to those interactively chosen by
the users.

METhODS

Use of ImagePowerSpectrumin Filter Design
In the frequency domain, a digital filter is a sequence of

numbers which are multipliedwith the frequencycontent of
an image (its Fourier transform) during the process of filtering.
In this way, the filter sifts the frequency content of an image

such that each component is enhanced (filter term greater
than 1.0), passed unaltered (filter term equal to 1.0), atten
uated (filter term less than 1.0), or completely removed (filter
term equal to 0.0). Each component of the image in the
frequency domain consists of a real and an imaginary part.
The relative magnitudes ofeach ofthese determines the phase
angle of the component (or angular offset from zero degrees
of the cosine term represented by the component). In image
processing,it is well known that the phase of the Fourier
transform of an image is more important than the magnitude
(11). In the restoration filtering of nuclear medicine images it
is usually assumed that the camera does not, on the average,
shift the position of counts and that the line spread functions
are symmetric. This results in the magnitudes ofthe frequency
terms being altered but not the phase angles. Thus restoration
filters are generally based on the imaging system MTFs and
not the optical transfer functions (OTFs) which include phase
information. If one was to try to restore the image for patient
motion for instance, then the inclusion of phase information
in the filter would be necessary (12). Restoration filters gen
emilyfollowthe inverseof the MiT up to some point which
is image specific and then smoothly decrease toward zero to
avoid unduly amplifying frequency components which are
dominated by noise (1â€”6).

This observation can be understood by analyzing the image
power spectrum. The image power spectrum portrays the
relative distribution of power among the frequency compo
nents of the image (13). It can be modeled as consisting of
the sum of the power spectrum of the blurred object (the
object as altered by the MTF during acquisition) and the
power spectrum of the noise. It has been shown that for
images degraded by Poisson noise, the power spectrum of the
noise fluctuates around a constant mean value equal to the
total count (6,14,15). Since the blurred object power spectrum
generally decreases with frequency, a point is reached where
the noise power spectrum becomes significant compared to
that of the blurred object. The frequency at which this tran
sition occurs depends upon the count level, the object being
imaged, and the MTF (1,3â€”6,9,10).Designing a filter by
visually determining when the noise first becomes significant
compared to the blurred object can provide an important key
to optimal filter design (3,10).

In the present work, this key is provided by presenting the
operator with a display of the processed image and the loga
rithm ofthe one-dimensionally compressed image power spec
tram after subtraction of the average noise level (i.e., the
estimated blurred object power spectrum) and filtering with

an equallyweighedthree-pointfilter(i.e., three-pointmoving
average). The present Metz filter is displayed overlayed onto
the plot of this estimated spectrum. A horizontal reference
line is displayed at a filter level of 1.0 and a second horizontal
reference line is displayed at the 90% confidence limit of the
fluctuations in the noise power spectrum. Since the individual
terms of the two-dimensional noise power spectrum follow a
Chi-squareddistributionwithtwodegreesoffreedom (13,16),
the 90% confidence limit is 2.3 times the mean value of the
noise power spectrum. This value was checked using twenty
five 128 by 128 pixel images and it was determined that an
average of 9.9% (s.d. of 0.4%) of the individual frequency
terms exceeded this value at frequencies where noise domi
nates the image power spectrum. A joystick is used to vary
the count-level for which the Metz filter (1 7) is formed and,
hence, the shape of the filter while visually watching the
overlayed curves and the restored image. We have observed
at the count level of SPECT acquisition images that generally
the most visually pleasing planar images (and SPECT slices
reconstructedfrom them) result when the Metz filter is -@1.0
whenthe blurred objectpowerspectrum firstequals the 90%
confidence limit for fluctuations in the noise power spectrum.
This heuristic guideline means that the filter is adjusted to
have a value of 1.0 when there is a 10% chance it would be
otherwise amplifying frequency terms where the noise domi
nates the object.

Count-Dependent Metz Filter
The restoration filter selected for visual optimization was

the count-dependent Metz filter (1,4,5,17). The one-dimen
sional frequency domain form ofthe Metz filter is defined as
(18,19):

M(f) = MTF(f)' . [ I â€”( l-MTF(f)2)â€•), (1)

where f is the spatial frequency, MTF is the modulation
transfer function, and X is a factor which controls the extent
to which the inverse filter [first term on right of Eq. (1)] is
followed before the low-pass portion ofthe filter(second term)
dominates. The parameters of the Metz filter were optimized
using images of the Alderson Organ Scanning Phantom with
liver and spleen inserts and minimizing the normalized mean
squarederror (NMSE)as the optimizationcriterion.

Advantage is taken ofthe count-dependent behavior of the
Metz filter by giving the user joystick control over the total
count used to form the filter. The joystick is set so that when
it is in the center of its range, the actual count is used. When
the joystick is moved up or down, the count is increased or
decreased, respectively, by a fractional power of 2.

Implementation
Figure 1 provides a flow chart ofthe visual filter optimiza

tion program which was implemented on a standard nuclear
medicine computer system with an array processor.t The user
is first prompted to move the joystick below the center of its

range. This is because the interactive phase of the program is
later initiated by having the viewer move the joystick back
aboveits center position.The user is then requestedto select
the appropriate radionuclide and collimator (4,5), and specify
the camera size and magnification which was employed during
acquisition. The first frame of the SPECT acquisition set is
then passed to the array processor and forward Fast Fourier
transformed (FFT'ed) (20). The program then calculates the
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Calculate And Display:
1) Metz Filter
2) Filtered Image

Filter
Selected

played. The program then constantly monitors for a change
in joystick position and a new filter and image are displayed
less than a second after a change in joystick position occurs.
Thus the filtering process is under the â€œreal-timeâ€•control of
the user. Once the user is satisfied with the filtered image, the
filter parameters are stored for use in processing the entire
SPECT acquisition set by pressing the â€œMâ€•key ofthe terminal.
All ofthe acquisition frames are then filtered, and the resulting
image set used in the reconstruction of transverse SPECT
slices.

RESULTS

Figure 2 illustrates the results of applying the inter
active visual optimization program for prereconstruc
tion filtering a 99mTcliver and spleen SPECT study.
The upper portion of each subsection of the figure are
the displays presented to the user for different positions
of the joystick. The lower portion of each subsection
shows a comparison of two transverse slices resulting
from the reconstruction of the acquisition image set
filtered by the filters ofthe upper portion. In subsection
A, the actual acquisition image, a â€œsoftâ€•Shepp-Logan
filter (1,5), and the slices resulting when the Shepp
Logan filter is employed during reconstruction are
shown. It should be noted that the Shepp-Logan filter
is applied only one-dimensionally during reconstruc
tion of the SPECT slices; whereas, the filters of subsec
tions Bâ€”Dare applied two-dimensionally, before recon
struction. Subsection A is provided to allow comparison
to a standard SPECT filtering method. Subsection B
shows the Metz filter and resulting images for the
original count-dependent Metz filter formed for this
study (4). Subsection C shows these for the Metz filter
selected according to the guideline that the filter equal
1.0 at the frequency when the blurred object power
spectrum reaches the 90% confidence limit ofthe noise
power spectrum. Note that it is not greatly different
from the ifiter of Figure 2B. This is not surprising since
this filter was formed to be optimal in the NMSE sense
for an image ofthe Alderson liver and spleen phantoms.
The fourth subsection (D), shows the filter and resulting
images for a filter which is over amplifying the noise
content of the image (following the inverse filter too
far).

A similar set of images is presented in Figure 3 for a
99mTcbone study. Note that the original count-depend
ent Metz ifiter (Fig. 3B) is quite different from that of
the visually selected filter (Fig. 3C). The reason for this
is that the estimated power spectrum of the blurred
object extends to higher frequencies before approaching
the level of fluctuations in the noise power spectrum
than it did in the liver and spleen study. The coronal
and transverse SPECT slices shown in Figure 3 illustrate
the improved definition of the anatomy which occurs
(in particular, the better contrast between the vertebral
bodies and disk spaces in the coronal slice, and visual

User Moves Joystick
Below Center Of Range

Select:
1) Radionuclide
2) Magnification

Calculate And Display:
1) 1-D Power Spectrum
2) Metz Filter
3) Fitered Image

User Moves Joystick
Above Center Of Range

-9

Yes

User Changes Effective

CountLevelBy MovingJoystick

Filter Projection Images
And Reconstruct Slices
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FIGURE 1
Flowchart of the interactive visual optimization program.

smoothed estimate of the object power spectrum (7), and the
a priori â€œoptimalâ€•Metz filter based on MTF, pixel size, and
count level. This filter is then displayed overlayed on the
normalizedlogarithmof the estimated blurred object power
spectrum as discussed above. The Fourier transform of the
image is then multiplied in a circularly symmetric fashion by
the filter with the result being stored in a differentbuffer in
the data memory of the array processor(21). This alleviates
the need to read the image from disk, pass it to the array
processor, and forward FFT it each time the image is ifitered.
The ifiteredFouriertransformofthe imageis inverseFFT'ed,
and returned to the host computer for display.

The initial ifitered image and filter remain displayed until
the user moves the joystick above its central position at which
time a new filter and filtered image are calculated and dis



FIGURE 2
The top of each figuresubsection
exceptA containsthefilteredSPECT
liver and spleenacquisitionimages
with plots of the corresponding filter
overlayedon the normalizedloga
rithm of the estimatedpower spec
trumof the blurredobject.Insubsec
tion A the actual acquisition image is
shown along with the filter applied
one-dimensionallyduringreconstruc
lion. The upper honzontal line is
drawnat a filtervalueof 1.0,andthe
lowerhorizontallineis the 90% con
fidence limit for fluctuations in the
noise power spectrum. Bottom of
each subsection shows two trans
verseslices reconstructedfrom ac
quisitionimagesets. The slices are
from the centraland upperportions
of the liver,respectively.Filtersare:
A: Shepp-Loganfilterwith cutofffre
quency equal to the Nyquist fre
quency.B: originalcount-dependent
Metz.C: Metzjudgedtobe optimal
accordingto our guideline.D: Metz
filter visuallyjudged to over-decon
volvethe study.

BA

D

FiGURE 3
The top of each figure subsection
exceptA containsthefilteredSPECT
bone acquisition images with plots of
the corresponding filter overlayed on
the normalized logarithm of the esti
matedpowerspectrumofthe blurred
object. In subsectionA the actual
acquisition image is shown along
with the filter applied one-dimen
sionallyduring reconstruction.The
upper horizontalline is drawn at a
filtervalueof 1.0, andthe lowerhor
izontal line is the 90% confidence
limit for fluctuations in the noise
power spectrum. Bottom of each
subsectionshows a coronal and a
transverseslice reconstructedfrom
each acquisition image set. Filters
are:A: Shepp-Loganfilterwithcutoff
frequency equal to the Nyquist fre
quency.B: Originalcountdependent
Metz.C: Metzjudgedtobe optimal
accordingourguideline.D:Metzfilter
visuallyjudged to over-deconvolve
thestudy.
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ization of the increased uptake associated with a frac
ture involving the pars) with pre-reconstruction filtering
of the SPECT acquisition images with the interactively
selected filter.

Figure 4 shows a similar set ofimages for a thallium
201 perfusion study. The SPECf slices in this case are
short-axis views. Notice the improved definition of the
left and right ventricular cavities that interactive Metz
filtering provides.

Figure 5 provides a comparison of iodine-123-labeled
iodamphetamine brain images (5) filtered as in the
previous figures. Notice the marked improvement in
anatomical definition of both the planar reference im
age, and SPECT transverse slices which results from
joystick optimization of the Metz filter.

DISCUSSION

The guideline which we have developed for filtering
SPECT acquisition images to aid in visually selecting
an optimal image is to move the joystick (change the
pseudo-total count) until the filter has a value of 1.0
when the estimate ofthe blurred object power spectrum
first equals the 90% confidence level for fluctuations in
the noise power spectrum. For the count levels of
SPECT acquisition images it is necessary to return the
filter to near 1.0 at about this frequency to avoid
amplifying the noise dominated frequency terms. The

one-dimensionally compressed and filtered power spec
trums of Figures 2â€”5do not give an idea of the varia
tions at high frequencies caused by noise because they
have been â€œaveragedoutâ€•in producing the compression
(6). A comparison of Figures 1 and 2 of Ref. (6) will
make these fluctuations obvious.

The choice of a 90% confidence limit is a heuristic
one. However, it seems reasonable as a starting point
for visual optimization for images acquired at the count
levels typical of SPECT acquisitions. The exact filter
judged visually optimal will vary with viewer prefer
ence, and object being imaged. Should such variations
prove not to be of major importance, then an automat
ically adaptive, image-dependent version of the Metz
ifiter could be implemented using our proposed guide
line.

The criterion which we have used in the past to
obtain â€œoptimalâ€•restoration of image quality is the
minimization of the normalized mean square error
(NMSE). In this paper we are proposing a new criterion,
that ofuser â€œpreferenceâ€•(7-9). Use ofthis criterion has
led to our proposed guideline which employs the image
power spectrum. This method puts the human viewer
and his visual system into the optimization process. It
has been known for sometime that the two criterion
(minimization of the NMSE and observer preference)
do not necessarily agree (22-25). This poses the prob
lem as to what is the â€œbestâ€•criterion, especially since
these are not the only criteria which may be used for

FIGURE 4
The top of each figure subsection
except A containsthe filtered @Â°i1
cardiacperfusionacquisitionimages
with plotsof the correspondingfilter
ovetlayed on the normalized loge
nthm of the estimatedpower spec
trum of the blurred object. In subsec
tionA the actualacquisitionimageis
shown along with the filter applied
one-dimensionallyduringreconstruc
tion. The upperhorizontalline is
drawnat a filtervalueof 1.0, and the
lowerhorizontallineis the 90% con
fidence limit for fluctuations in the
noise power spectrum. Bottom of
each subsection shows short-axis
SPECT slices.Filtersare: A: Shepp
Logan filter with cutoff frequency
equal to the Nyquist frequency.B:
Originalcount dependent Metz. C:
Metzjudgedto beoptimalaccording
toourguideline.D: Metz filtervisually
judgedto over-deconvolvethestudy. CS.1'
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FIGURE 5
The top of each figure subsection
except A containsthe filtered [1231]
iodamphetaminebrain acquisition im
ageswith plotsof thecorresponding
filter overlayedon the normalized
logarithm of the estimated power
spectrumof the blurred object. In
SubsectionA the actual acquisition
imageis shownalongwith the filter
applied one-dimensionally during re
construction.The upper horizontal
lineis drawn at a filter value of 1.0,
and the lower horizontal is the 90%
confidencelimit for fluctuations in the
noise power spectrum. Bottom of
each subsection shows two trans
verse SPECTslices. Filters are: A:
Shepp-Loganfilter with cutoff fre
quency equal to the Nyquist fre
quency.B: Originalcountdependent
Metz.C: Metz judgedoptimalac
cording to our guideline. D: Metz filter
viSUally judged to over-deconvolve
thestudy.
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image restoration (12). The answer is that there may
be no universally â€œbestâ€•criterion in that the choice
depends upon the task to be accomplished. That is,
lesion detection may require a different criterion from
the quantitation of uptake in the lesion. We plan to
compare the two criterion we have used through an
ROC study to determine ifeither is better at the task of
lesion detection.

The foundation for the use oftwo-dimensional filter
ing of SPECT acquisition images is the hypothesis that
optimal filtering of the planar acquisition images will
result in optimally filtered SPECF slices after recon
struction. This basis for filtering SPECT studies has
been observed to work quite well (1â€”5).However, the
effects ofdiscrete sampling, angular sampling, the ramp
filter, backprojection, and attenuation correction may
need to be accounted for in order to obtain SPECT
slices which are optimal in a NMSE or visual sense.

To truly have â€œreal-timeâ€•visual optimization of
SPECT slices one would like to be able to change the
filter parameters while viewing the display ofa selected
SPECT slice. With our present array processor we do
not have enough data memory to hold all ofthe acqui
sition images (typically 64) in the array processor at
one time. The resulting need to store images on disk
makes two-dimensional filtering of the acquisition im
ages followed by reconstruction and display ofa SPECT
slice too time consuming for â€œreal-timeâ€•optimization

of filters. Therefore, such an approach was not devel
o_. However, we have implemented software for the
interactive filtering of the one-dimensional projection
data ofa selected SPECF slice while viewing the display
of the slice. With this program the projection data for
the slice is filtered, and the slice is reconstructed and
displayed on the screen less than two seconds after the
joystick is moved. It was noted that the quality of the
one-dimensionally filtered slices never matched that of
the slices when two-dimensionally prereconstruction
filtering of the acquisition images was employed. This
illustrates the importance of using the data in adjacent
slices in an appropriately weighted fashion when recon
structing a SPECT slice. Two-dimensional prerecon
struction filtering does this and gains a significant ad
vantage over single slice filtering methods by doing so

(5).
The MiT used with image restoration was that ob

tamed from a line source at a depth approximately
equal to the mean free path of the photons used in
imaging (4,5). Lacking specific information on the
depth of lesions, this seems a reasonable choice. In
SPECT imaging the MTF varies much less across a slice
than it does with distance away from the collimator in
planar imaging (1). Thus a reasonable approach would
seem to be to determine the MTF postreconstruction,
and filter the slices postreconstruction (1). It should be
noted that three-dimensional filters would be required
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Conf-730687,1973,102â€”114.
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images: concise communication. J Nuci Med 1983;
24:1039â€”1045.
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tope scan image processing. Ph.D. Thesis, University
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15:164â€”170.
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Cliffs,NJ:Prentice-Hall,1974:148â€”171.

21. King MA, Doherty PW, Rosenberg RJ, et al. Array
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ware, and application in nuclear medicine. J Nuci
Med 1983;24:1072â€”1079.

22. Mannos JL, Sakrison DJ. The effects ofa visual fidelity
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Theory1974;20:525â€”536.

23. Pratt WK. Digital image processing. Englewood Cliffs,
NJ: Prentice-Hall, 1978: 174â€”182.
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image restoration methods. App! Optics 1978;
17:3384-3390.

25. Hentea TA, Algozi YR. Perceptual models and the
ifitering of high-contrast achromatic images. IEEE
TransSysMan Cyber1984;14:230â€”246.

if the advantage of using information in the adjacent
slices is not to be lost. Such an approach would again
be too time consuming, with our present hardware, for
the implementation of interactive filtering. Thus this
approach was not developed.

In this paper, as well as our past papers, we have
formed circularly symmetric filters. The image power
spectrum is not circularly symmetric (3). By averaging
over the annuli to produce a one-dimensional estimate
of the average image power spectrum, the two-dimen
sional nonsymmetry was lost. In preliminary studies we
have determined that use of circularly nonsymmetric
Wiener ifiters based on the actual two-dimensional
object power spectrum can significantly reduce the
NMSE. It is possible that extension of the joystick
control described herein to use with circularly nonsym
metric filters could significantly improve image quality.
This has not been tested.

The interactive optimization ofa filter under joystick
control serves as a good example of the â€œnumber
crunchingâ€• power that an array processor adds to a
nuclear medicine computer system. We have also found
it a good way to adapt the count-dependent Metz ifiter
to the image being processed, and to serve as an excel
lent teaching tool on the effects of filtering on image
quality.

NOTES

. PDP 1 l/34A, Gamma-l 1 System, Digital Equipment

Corporation.
t AP400, Analogic Corporation, Wakefield, MA.
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