Mechanism of Gallium-67 Accumulation in Tumors

Min-Fu Tsan and Ursula Scheffel

Research Service, Veterans Administration Medical Center, Departments of Physiology and Medicine, Albany Medical College of Union University, Albany, New York; and Divisions of Nuclear Medicine and Radiation Health Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland

Neoplasms are characterized by increased perfusion, increased permeability of their capillary beds to macromolecules, and a delay in new lymphatic vessel growth. These lead to the increased entry and residency time of macromolecules in the interstitial space of tumors. Multiple factors contribute to the localization of 67Ga in tumors. Adequate blood supply is essential; at areas with no blood supply such as the necrotic center of a large tumor, there is no 67Ga accumulation. Gallium-67, mainly in the form of transferrin-67Ga complex, is delivered to the tumor through capillaries with increased permeability. In tumors, some 67Ga is taken up by tumor cells; some may also be taken up by inflammatory cells when they are present. Gallium-67 binding proteins, such as lactoferrin or ferritin, may also contribute to the accumulation and retention of 67Ga in tumors; however, their roles are less clear. The intensity of these various factors determine their relative contribution and the degree of 67Ga accumulation in tumors.

Since the first demonstration of gallium-67 (67Ga) accumulation in neoplastic lesions in 1969 (1), the mechanism of 67Ga localization in tumors has been extensively studied (2–4). These studies are usually done in the following two systems: (a) in vitro, by measuring 67Ga uptake by tumor cells in culture, and (b) in vivo, by studying 67Ga uptake by tumors implanted subcutaneously or intramuscularly in animals.

The in vitro system has the advantage of being simple and reproducible. However, since in vitro conditions are different from those of the tumors in an in vivo situation, observations made in a tissue culture system may not be applicable to the in vivo situation. On the other hand, the in vivo system has the disadvantage of being complex with the variables being studied difficult to control. In addition, tumors are usually implanted subcutaneously or intramuscularly, which is not the origin of the tumor. Whether these implanted tumors represent the natural condition of tumors remains unclear. Nonetheless, considerable information exists in the literature to allow meaningful and rational conclusions to be drawn. This review analyzes the current knowledge of the mechanism of 67Ga accumulation in tumors.

Regional Pathophysiology of Neoplasms

Knowledge of the pertinent pathophysiology of tumors is important in understanding the mechanism of 67Ga accumulation in tumors. Neoplasms, like inflammatory lesions, are characterized by increased permeability of their capillary beds to macromolecules (5,6). This is largely due to neovascularization and the large intercapillary pores associated with the new growth of capillary beds. The total perfusion to tumors is often increased in comparison to surrounding normal tissue. Moreover, there may be a delay in new lymphatic vessel growth. These factors lead to the increased entry and residency time of macromolecules in the interstitial fluid space of tumors (5,6).

Transport of 67Ga in Circulation

This subject has been recently reviewed (7). Briefly, after i.v. injection of carrier-free $[^{68}$Ga]citrate, >99% of the radioactivity present in the circulation is in the plasma, the rest being associated with white blood cells (8,9). Using ultrafiltration, it has been demonstrated that almost 100% of 68Ga present in normal plasma is protein bound (10,11). In addition, using affinity chromatography, Vallabhajosula et al. (11), have clearly...
shown that 67Ga in normal plasma is almost exclusively bound to transferrin. Like Fe$^{3+}$, 67Ga binds to the two specific metal binding sites of human transferrin; however, its binding constants (log $k_1 = 20.3$ and log $k_2 = 19.3$) are considerably lower than those of Fe$^{3+}$ (log $K_1 = 22.8$, log $K_2 = 21.5$) (12). When 67Ga-labeled human transferrin is subjected to dialysis against normal saline in vitro, significant dissociation occurs (10).

In addition to transferrin, other iron-binding proteins in plasma, such as lactoferrin and ferritin have been shown to bind 67Ga. At physiologic pH, lactoferrin has a higher affinity for 67Ga than transferrin (13). The affinity of ferritin towards 67Ga is lower than that of transferrin, although under certain conditions transfer of 67Ga from the transferrin-67Ga complex to ferritin has been demonstrated (14). The role of lactoferrin and ferritin in the transport of 67Ga in the circulation is not clear. Their plasma concentrations, i.e., 0.4–2.2 μg/ml for lactoferrin (15) and 0.01–0.25 μg/ml for ferritin (16) are at least three orders of magnitude lower than that of transferrin (2 mg/ml) (17). It is most likely that under normal circumstances, lactoferrin and ferritin do not contribute significantly to the plasma transport of 67Ga. Their role in pathologic conditions associated with elevated plasma levels of lactoferrin or ferritin such as infection or iron overload (16,18), however, needs further investigation.

Since in circulation 67Ga binds to transferrin, the plasma level of unsaturated iron-binding capacity (UIBC), which is a measure of apotransferrin, greatly affects the binding of 67Ga, its plasma clearance, tissue distribution, and body retention (19–22). Bradley et al. (19) noted that 67Ga uptake in soft tissues and tumors was decreased, while urinary excretion of 67Ga was increased, when the plasma unsaturated iron-binding capacity (UIBC) in tumor-bearing rats was reduced by whole-body irradiation. In contrast, an increase in UIBC in iron deficient rats elevated the 67Ga body retention, especially in the liver and spleen, while tumor uptake remained unchanged (20). Similar changes in 67Ga biodistribution and excretion patterns due to alteration in the serum UIBC have been reported by others (21,22).

Factors Affecting the Accumulation of 67Ga in Tumors

Increased capillary permeability. Increased capillary permeability and the expanded extracellular space of tumors play an important role in the accumulation and retention of radiopharmaceuticals, including 67Ga, in tumors. As early as the late 1950s, iodine-131 human serum albumin was found to localize in certain tumors (6,23,24). The currently widely used brain scanning agent, technetium-99m diethylenetriaminepentaacetic acid (DTPA), an extracellular agent, also takes advantage of the breakdown of the blood-brain barrier in brain lesions including neoplasia (5,6). Tzen et al. (25) have shown that intramuscular injection of histamine which increases capillary permeability, causes focal accumulation of intravenously-injected 67Ga.

Tumor cells. A variety of tumor cells accumulate 67Ga and may contribute to the localization of 67Ga in tumors. The mechanism of 67Ga uptake by tumor cells has been studied in detail. Several mechanisms have been proposed.

Hayes et al. (21,26,27) suggest that 67Ga enters tumor cells, presumably by simple diffusion, as a result of the hyperpermeability of the tumor cell plasma membrane. There is no direct evidence, however, for this hypothesis. On the other hand, English et al. (28) have shown that several types of tumor cells do not significantly accumulate 67Ga unless the plasma membrane permeability barrier is disrupted as in nonviable cells.

Anghileri et al. (29–31) suggest that tumor cell 67Ga uptake is due to competition of binding by 67Ga to calcium and magnesium-binding sites. The calcium and magnesium-binding sites in their system, however, are poorly defined. In addition, 67Ga is present in trace amount (carrier-free), it is difficult to imagine that 67Ga will compete favorably with calcium or magnesium which are present in much higher concentrations in the cells. Clinically, there is poor association between 67Ga uptake and calcium content in tumors, e.g., neuroblastoma, which are frequently calcified, exhibit a low incidence of 67Ga localization (3).

Hoffer et al. (13) propose that binding of 67Ga by lactoferrin present in some tumors is responsible for 67Ga accumulation. High lactoferrin content in some tumors has been previously described (32). Hoffer et al. reported that two patients, one with Hodgkin’s disease and one with Burkett’s lymphoma, had increased 67Ga uptake in the tumor tissue subsequently found to contain lactoferrin (33). However, the binding of 67Ga to lactoferrin in tumors has not been demonstrated. Furthermore, since lactoferrin is present inside the cells, one has to account for the transfer of 67Ga across the cell membrane.

Using a tissue culture system, Sephton and Harris (34,35) observed that human transferrin enhanced 67Ga uptake by a number of tumor cell lines and proposed that 67Ga accumulation in tumors was due to transferrin mediated uptake by tumor cells. As an extension of this hypothesis, Larson et al. (36) proposed that there were transferrin receptors in tumor cell surface which were responsible for the internalization of transferrin,67Ga complex. Enhancement of 67Ga uptake by tumor cells in culture occurs at low concentrations (<0.1 mg/ml) of human transferrin (34–37). Studies using higher concentrations of transferrin have repeatedly shown an inhibition of 67Ga uptake (36–38). The actual concentration of transferrin in the tumor interstitial fluid is not known. It is important to point out that tumor cells do take up 67Ga in the absence of transferrin (34–39).
A number of in vivo studies have been done attempting to elucidate the role of transferrin on the tumor uptake of 67Ga, however, the results are conflicting. Increased plasma transferrin as determined by UIBC either reduced tumor uptake of 67Ga (21) or had no effect (20). Similarly, a reduction of serum UIBC either reduced tumor 67Ga uptake (19) or had no effect (21). Conflicting results have also been reported for the effect of preincubation of 67Ga with serum proteins on 67Ga tumor uptake. Larson et al. (40) and Wong et al. (41) found enhanced 67Ga uptake when 67Ga was preincubated with serum (40) or apo-transferrin (41). This was interpreted as binding of 67Ga to transferrin played an important role in the in vivo tumor uptake of 67Ga. Vallabhajosula et al. (42), on the other hand, did not observe a difference in tumor uptake between 67Ga preincubated with human transferrin and $[^{57}]$Gacitrate. Since after i.v. injection of $[^{57}]$Gacitrate 99% of the tracer is bound to plasma transferrin (8,11,22), it seems unlikely that pre-incubation of 67Ga with serum or transferrin before injection would substantially increase the binding of 67Ga to serum transferrin to account for the observed effects. These in vivo studies are difficult to interpret since, as mentioned earlier, the status of iron saturation of plasma transferrin profoundly affects the plasma level, body retention, and organ distribution of intravenously injected 67Ga. Recently, Scheffel et al. (37) have shown that transferrin at concentrations which enhance 67Ga uptake by hepatoma cells in culture, have no effect on the hepatoma uptake of 67Ga in an isolated, perfused rat liver with implanted hepatoma.

Much effort has been made to determine the intracellular localization of 67Ga, however, the results of these studies are conflicting. Swartzendruber et al. (43) have shown that intracellular 67Ga present in normal and neoplastic tissue is localized in the cytoplasm within lysosome-like bodies. Brown et al. (44) termed the lysosomal bodies "67Ga binding granules" (GBG) and showed a correlation between lysosomal enzyme activity and 67Ga concentration. Further investigations by the same group (45) describe microvesicles, which probably represent rough-surfaced endoplasmic reticulum, as being the major site of 67Ga binding in Morris hepatoma cells in contrast to normal liver cells in which 67Ga is mainly localized in the much larger GBG-lysosomes. Other investigators working with Ehrlich ascites cells (46) or Yoshida sarcoma cells (47), have not found an association of 67Ga with lysosomes.

Within the intracellular organelles, 67Ga is apparently bound to macromolecules. Hayes et al. (48) reported that the majority of 67Ga present in extracts from tumors and livers is associated with two macromolecules having molecular weights of ~120,000 and 45,000 daltons. The 45 kd protein is a glycoprotein which can be saturated by small amounts of stable gallium. Clausen et al. (9), on the other hand, have found about one-third of 67Ga activity in tumors is bound to ferritin (MW ~450 kd), while the remainder is associated with lower molecular weight proteins. Gallium-67 incorporation into the ferritin fraction of normal hepatocytes has been described by Hegge (49); however, Samezima et al. (50) reported that in rat liver cells no significant association of 67Ga with ferritin occurs. Aulbert et al. (51) report that 67Ga in tumors is bound to a protein with MW of 85-90 kd, which they assume to be transferrin. It is possible that the 67Ga binding protein found by Aulbert et al. is lactoferrin instead of transferrin since these two proteins have similar molecular weights.

Studies of subcellular distribution of 67Ga require disruption of cells and subsequent fractionation and separation. In vitro transfer of 67Ga from transferrin to lactoferrin (13) as well as from transferrin to ferritin (14) have been demonstrated. Thus, 67Ga may translocate during cell disruption and subsequent separation procedures. The results of these studies may reflect the relative affinity of 67Ga to various cellular components or macromolecules rather than the actual localization of 67Ga in intact cells.

Inflammatory cells. Some tumors are infiltrated with neutrophils and/or mononuclear cells. Since these inflammatory cells accumulate 67Ga (52–55), they may contribute to the localization of 67Ga in some tumors. The mechanism of 67Ga by these inflammatory cells has been recently reviewed (7).

Gallium-67 binding proteins. Theoretically, the presence of 67Ga binding molecules in the interstitial fluid of tumors may contribute to the accumulation and retention of 67Ga in tumors. Transferrin, lactoferrin, and ferritin all have been identified in tumors (4,32,33,51). However, the binding of 67Ga to lactoferrin or ferritin present in the interstitial fluid of tumors has never been demonstrated. In addition, whether these proteins are present in the tumor interstitial fluid in sufficient quantity to affect 67Ga uptake is not clear.

Acid pH. The pH of the interstitial fluid of tumors is slightly acidic as compared with the normal tissue. It has been suggested that the reduced pH in tumors may contribute to the accumulation and retention of 67Ga in tumors, since low pH promotes dissociation of 67Ga from transferrin-67Ga complex (13,56). However, exactly how this may contribute to 67Ga tumor uptake is not clear. As mentioned earlier, tumor cells can take up free 67Ga as well as transferrin-67Ga complex.

CONCLUSION

Considerable evidence suggests that the mechanism of 67Ga accumulation in tumors is complex. Multiple factors contribute to the localization of 67Ga in tumors: (a) adequate blood supply is essential, at areas with no blood supply, such as the necrotic center of a large
tumor, there is no 67Ga accumulation; (b) 67Ga, mainly in the form of transferrin-67Ga complex, is delivered to the tumor through capillaries with increased permeability; (c) in tumors, some 67Ga is taken up by tumor cells, some may also be taken up by inflammatory cells when they are present; (d) 67Ga binding proteins such as lactoferrin or ferritin, may also contribute to the accumulation and retention of 67Ga in tumors; however, their roles are unclear. The intensity of these various factors determine their relative contribution and the degree of 67Ga accumulation in tumors.

ACKNOWLEDGMENTS

This work was in part supported by the U.S. Veterans Administration and Public Health Service Research Grant HL-32418. The secretarial assistance of Maureen Loudis is highly appreciated.

REFERENCES

47. Orii H: Tumor scanning with gallium (67Ga) and its mechanism studied in rats. Strahlentherapie 144:192–200, 1972