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Inverse Monte Carlo as a Unified
Reconstruction Algorithm for ECT
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Tomographie reconstruction for single photon emission computed tomography (SPECT) with
simultaneous compensation for attenuation, scatter, and distance dependent collimator
resolution is provided by an Inverse Monte Carlo (IMOC) reconstruction algorithm. A detection
probability matrix is formed by Monte Carlo solution to the photon transport equation for
SPECT acquisition from a unit source activity in each reconstruction source voxel. The
measured projection vector will equal the product of this detection probability matrix with the
unknown source distribution vector. The resulting large, nonsparse system of equations is
solved for the source distribution using an iterative Maximum Likelihood EM estimator.
Reconstruction of experimentally acquired projections from phantoms shows quantitative
compensation for scatter and attenuation. Comparison with filtered backprojection (FBP)
reconstruction shows an improvement in resolution recovery, contrast, and signal-to-noise for

the IMOC algorithm. Reconstruction of clinical studies shows improved contrast, structural
resolution, and noise characteristics.
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he goal of quantitative emission computed tomog
raphy (ECT) is to determine the concentration of pho
ton emitting radiopharmaceuticals within a body from
measurements of the photon flux exterior to the body.
Historically, a solution to the general mathematic prob
lem presented by transaxial tomographic reconstruction
was presented by Radon in 1917 (7). While a filtered
backprojection technique was applied to radioastron-
omy imaging as early as 1957 (2), KÃ¼hland Edwards
(3,4) were the first to apply the technique for recon
structing source distributions to single photon emission
computed tomography (SPECT). Filtered backprojec
tion (FBP) (5-7) is commonly used as the reconstruc
tion algorithm for SPECT, although several iterative
algebraic techniques have been proposed (8-12). The
convolution-based FBP algorithm models ECT as a
Radon transformation of the source space (unknown
activity distribution) into a projection space (measured
photon projections). The sampled projection space is
transformed into an estimate of the source space by
application of the inverse Radon transformation, usu
ally performed using Fourier techniques. While FBP
provides a computationally efficient reconstruction
technique which lends itself to standard linear systems
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analysis (13-15), the algorithm is based on a simple,
idealized model of ECT and neglects important physical
characteristics which are inherent in the acquisition of
clinical data. More complete modeling of ECT acqui
sition in a typical clinical setting forms the basis for
Inverse Monte Carlo (IMOC), a new unified algorithm
for ECT reconstruction which includes simultaneous
compensation for scatter, attenuation, and collimator
divergence (76).

In the idealized Radon transform model of SPECT,
depicted in Fig. 1, the acquired projection at a position
x' on the face of the camera oriented at angle 6, is given

by the line integral along the path through the activity
distribution S(x,y). There are several implicit assump
tions in this representation of an ECT projection. First,
the line integral form assumes that the observed flux at
the point x' on the detector is only due to activity along

the infinitesimally narrow line. This condition is equiv
alent to assuming perfect collimation with no diver
gence and requires that there be no spatial spread in
the crystal as well as no collimator penetration. Second,
the line integral assumes no photon attenuation within
the body. Third, this model assumes no scatter since all
contributing source elements are assumed to lie on the
line. While there do exist algorithms for attenuation
and scatter which may be used with FBP (77-22), in
all of these techniques the two compensations are per
formed sequentially rather than simultaneously and all
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FIGURE 1
Filtered backprojection model of SPECT projection. Re
quired assumption of line integral

rely on empirical parameterizations. The parameters
used will depend not only on the physical properties of
the acquisition, but even on the order in which the
compensations are applied. Attenuation compensation
typically is applied with parameter values which com
pensate partially for scatter (3,4), and thus will require
different parameter values if the data has been scatter
compensated. The empirical scatter and attenuation
parameters will depend partially on characteristics of
the acquisition system such as energy resolution and
must be experimentally determined at each application
site. These are not reasons to dismiss the sequential
compensation techniques, but do provide motivation
for seeking a unified algorithm which implements the
scatter and attenuation information simultaneously
with the reconstruction process. A unified reconstruc
tion algorithm will estimate a source pixel activity based
on simultaneous consideration of all projection ele
ments which can contribute to the source pixel and will
include in this consideration the effects of scatter, atten
uation, and collimator divergence.

A more realistic picture of SPECT photon acquisition
from a distributed source in an interacting medium is
shown in Fig. 2. Collimator holes are of finite length
and diameter and thus have an acceptance defined by
a cone (shown by the dashed line). Real collimators

have penetration and real detectors have finite spatial
resolution resulting in spreading of the tails of a point
source response. A 140-keV photon flux from techne-
tium-99m originating at the center of a water filled
cylinder of 11 cm radius will experience attenuation of
-80%. For every lOOphotons which are not attenuated,
there will be an additional unwanted contribution of
32 photons due to scattering.

There is then a discrepancy between the idealized
model of ECT required by FBP and the reality of
practical data acquisition. IMOC is presented as a re
construction algorithm which is based on a more real
istic model of the SPECT process.

Technique
The acquisition of projection profiles in SPECT is a

sampling of the photon flux distribution at the plane of
the gamma camera due to a distributed radioactive
photon source located in a scattering and attenuating
medium and thus the observed projections may be
represented by solutions to a photon transport equation
(23,24). Given a source distribution, solution of the
transport equation yields projection data. We desire to
solve the inverse problem: given the projection data,
find the source distribution. Based on a Monte Carlo
model which has been shown to successfully model the
SPECT imaging system (25-27), the reconstruction

Projection
element

FIGURE 2
Inverse Monte Carlo model of SPECT projection assumes
more realistic model
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problem is solved using inverse Monte Carlo (28,29).
Physical characteristics of the acquisition apparatus
(such as energy window setting, system energy and
spatial resolution, and radius of rotation) as well as of
the body (such as contour and density) are incorporated
in the Monte Carlo model. Note that this model does
not presuppose any preknowledge of the actual source
distribution but does suppose knowledge of the scatter
ing medium boundary (body outline). The ECT acqui
sition system is modeled using Monte Carlo techniques
resulting in a system of linear equations relating the
radiopharmaceutical distribution to the measured ECT
projection data. This linear system is solved to yield the
radiopharmaceutical distribution. Algebraically, the
ECT reconstruction problem may be written as follows.
Given a radionuclide source element SÂ¡,the projected
photon flux density Pj measured in a detector pixel
j(r,o) may be written:

START

P = T SIj - lijJn (1)
where TÂ¡jis a matrix of the probability of a photon
which originated in source element SÂ¡to be observed in
detector element PÂ¡.The ECT reconstruction problem
is to estimate SÂ¡given Pj. A flow chart of the IMOC
algorithm is shown in Fig. 3. Using the Monte Carlo
model, accurate estimates of TJJcan be computed for a
source voxel i. Since the system will typically be over-

determined (more equations than unknowns), and will
not have an exact solution due to instrumental and
statistical errors in the projection data, a minimum
variance solution is sought using the EM algorithm for
Maximum Likelihood estimation (30,31).

The reconstructed images were evaluated with crite
ria appropriate to the imaged object. Uniform activity
regions were compared by evaluating a percent root-
mean-square (%RMS) noise value. Resolution recovery

was determined for the line source images by computing
full widths at half maximum (FWHM) for a slice
through the image. The full widths were computed by
first order linear interpolation. For the cold defect phan
tom, an image contrast factor was computed. Projection
data were acquired on the Duke SPECT system (32)
with 0.32 cm/pixel spatial sampling and 2Â°per projec

tion continuous angular sampling. Slice thickness was
1.7 cm. Where 4Â°or 8Â°angular sampling is quoted, 2Â°

projections were summed to generate the desired an
gular sampling. The studies were performed using tech-
netium-99m ("Te) and data were acquired using a

20% energy window symmetrically centered at 140 keV.
A high resolution collimator was used. A circular orbit
was maintained with a radius of rotation of 14 cm.
Projection data were flood corrected for camera non-

uniformity and decay corrected. Scan times were typi
cally 22 min. The phantom* provides an 11 cm radius

cylinder 27 cm long.

Monte Carlo simulation
of projection j from
unit source Â¡ = TÂ¡Â¡

input projection
data P

solve

for

= Pi

FIGURE 3
Flow chart of the Inverse Monte Carlo algorithm.

The filtered backprojection was performed using a
ramp filter modified by a generalized Manning window
(75). The Manning window rolloff frequency will be
expressed as a fraction of the Nyquist frequency (1.56
cm"1 for the 0.32 cm sampling). Attenuation compen

sation for the FBP was achieved using the zeroth order
multiplicative algorithm of Chang (21) with an inter
action coefficient of 0.12 cm"' (33). This coefficient

value provides a limited compensation for scatter.

RESULTS

Results for Inverse Monte Carlo (IMOC) reconstruc
tions are presented here. Representative results for FBP
are included for comparison but no attempt is made to
thoroughly and quantitatively evaluate the comparison.
No scatter compensation has been applied to the FBP
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images which follow except for the use of 0.12 cm 'as

an interaction coefficient in the Chang attenuation
compensation.

A central slice through reconstructed images of a
uniform cylinder is shown in Fig. 4. The relative effects
of scatter and attenuation compensation may be seen
in Part A for IMOC. Ideal reconstruction of the uniform
cylinder will be flat. The reconstruction with no com
pensation shows the expected dip in the center due to
increased attenuation. When compensation is made for
attenuation only, the overall counts are increased and
the image is increased in the center. Compensation for
scatter removes this central increase and decreases the
total counts. Part B of Fig. 4 shows similar results for
FBP. An improvement in reconstructed image noise is
apparent for IMOC.

The cylindrical phantom containing a uniform dis
tribution of "Tc was scanned several times with a

range of activities to evaluate the behavior of the algo
rithm with projection data containing different statisti
cal noise contributions. The total counts in the projec
tion sets ranged from IO5to 1.4 x IO7. A rollofT fre

quency of 0.7fN was chosen for the FBP filter. Images
were reconstructed with 0.32 cm/pixel spatial sampling
and 8Â°angular sampling. Representative images along
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FIGURE 4
Central slice through reconstructed uniform cylinder for A)
IMOC showing effect of attenuation and scatter compen
sation B) FBP

with profiles (width = 1 pixel) are shown in Figs. 5 and
6. The improvement in noise for IMOC is apparent.
The results are presented graphically in Fig. 7 where
the %RMS as a function of total counts in the projec
tion set is plotted on a semilog scale. The solid circles
are the FBP results while the open circles are the IMOC
results. The solid curves are predictions using an ana
lytic expression (34) for noise propagation through the
FBP algorithm. There is a separate curve for each filter
rolloff. The solid circles follow the 0.7fNcurve very well.
From this figure we see the IMOC points follow a
similar curve as a function of counts but have a lower
%RMS content; however, a word of caution is in order.
As the number of iterations is increased with the EM
estimator, the noise will increase also. Since the IMOC
was initialized with a constant uniform source activity,
convergence was rapid and convergence (as determined
by a chi-squared test) was obtained after only four
iterations. This dependence of noise on number of
iterations along with the dependence of convergence
rate on object content (35) implies that a uniform
cylinder may be a deceptively simple test for IMOC.

In a typical clinical image there will be structural
information and the image will be interpreted by a
combination of its resolution recovery and noise. To
evaluate these factors in the reconstructed image, five
99mTcline sources were placed in the cylinder contain
ing 99mTcand water. Reconstruction of this phantom

was evaluated by %RMS in the uniform area and the
FWHM of the line sources. Results are shown plotted
in Fig. 8 as %RMS versus FWHM for FBP (solid circles)
and IMOC (open circles) where the number near the
open circle gives the number of iterations and the
number beside the solid circle gives the filter rolloff
frequency. The FBP shows expected behavior; as the
rolloff frequency is decreased, the resolution is degraded
while the noise is reduced. With IMOC, as the number
of iterations is increased from 4 to 20 the resolution
improves and the noise is reduced (although the noise
remains higher than the value obtained with the same
uniform concentration without the line sources). After
~20 iterations, however, the %RMS begins to increase
while the FWHM continues to decrease. This is in
contrast to the results for the uniform cylinder alone
where the noise increased monotonically with iteration,
confirming that the convergence behavior is dependent
on the information content in the image. When starting
with a uniform estimate of the activity, the algorithm
will converge much more quickly for a uniform source
distribution than for a more complex distribution.

Scatter and attenuation compensation were evalu
ated by reconstructing scans of line sources in air and
in water. With proper compensation, the image of lines
in water should reconstruct with same intensities as
those same lines scanned in air. Regions of interest were
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70 COUNTS

FIGURE 5
Reconstruction of uniform cylinder:
70,000 counts in projections. IMOC
on left, FBP on right IMOC (4it) FBP

set around the line image maximum and the values are
shown in Fig. 9 for IMOC. There is excellent agreement
between the compensated scan in water and the scan in
air verifying the simultaneous compensation for scatter
and attenuation provided by the IMOC algorithm.

While the line source in water phantom provides a
quantitative test for scatter and attenuation compensa
tion, a more difficult test is provided by a nonradioac-
tive defect surrounded by radioactivity. This test reflects
an important application of SPECT imaging; the detec-

390 COUNTS

FIGURE 6
Reconstruction of uniform cylinder:
391,000 counts in projections. IMOC
on left, FBP on right IMOC (4it) FBP
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FIGURE 7
Image noise for uniform cylinder phantoms. Results for
four iterations of IMOC compared with FBP results

tion of lesions in clinical liver scans. A measure of the
detectability of lesions is provided by the image contrast
which will vary between -1 for optimal contrast and 0
for minimal contrast. The presence of scatter will de
crease the image contrast (77,22) as will effects due to
finite system resolution (14). A cold sphere phantom
(6 cm diameter nonradioactive sphere placed in the
cylindrical phantom filled with radioactivity) was im
aged to evaluate the contrast recovery of the IMOC
algorithm. Results for this cold sphere phantom were
disappointing. The FBP reconstruction had a contrast
of -0.77 Â±0.07 which could be improved to ~0.97

using techniques of Ref. (22). Forty iterations of IMOC
were required to obtain contrast of "0.76 Â±0.05. One
hundred iterations obtained "0.89 Â±0.17 but with

increased uncertainty. An asymptotic test using a sim
ilar phantom and an array processor obtained "0.97 Â±

0.2 at 500 iterations requiring 25 min of computation
time. Although the IMOC reconstruction represents the
defect more accurately than the FBP, convergence was
disappointingly slow.

Two human brain studies were reconstructed with
compensation for attenuation and scatter. A recon-
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FIGURE 8
Resolution and noise for line source in uniform activity
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FIGURE 9
ROI analysis of line sources in water phantom showing
scatter and attenuation compensation for IMOC

structed image of a [99mTc]red cell blood-pool study is

shown in Fig. 10. The left side shows the IMOC recon
struction while the right side shows an FBP reconstruc
tion with a Manning window rolloff frequency of 0.7
Fn, a value which produced the most visually satisfying
FBP image and one typically used for clinical scans.
The total counts in the projection set was 326,000 and
24 iterations were performed. Higher contrast and su
perior resolution are seen in the IMOC image. Both
images were normalized to the highest pixel value. For
this blood-pool study the largest value occurred in the
sagittal sinusâ€”not a region of clinical interest. The
superior resolution of the IMOC reconstruction results
in this narrow object having a higher value above the
regions of interest than for the FBP. The resulting
depression of these lower lying regions which are of
interest complicates visual comparison of the two im
ages. To facilitate comparison in the interesting region,
profiles are shown above each image. The improvement
in noise and resolution characteristics for IMOC are
evident. A [99mTc]glucoheptonate brain study is shown

in Fig. 11 with IMOC to the left, FBP to the right and
with a profile shown above each. The improvement in
resolution and decreased noise provided by IMOC allow
finer detail to be distinguished in the low activity re
gions. Total counts in the projections were 165,000 and
40 iterations were performed. Both of these brain stud
ies were reconstructed assuming the cylindrically sym
metric, uniformly attenuating, and scattering source
region described above. While this assumption will
result in some error in the quantitative reconstructed
values, it is encouraging to note that the reconstructed
activity distribution has a correct noncircular shape and
that no serious artifacts were introduced by this as
sumption even when the actual source distribution
extended outside the modeled source region as in the
labeled cell study.
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FIGURE 10
"To-labeled red blood cell blood-
pool study for brain. IMOC on left,
FBP on right IMOC FBP

DISCUSSION
Inverse Monte Carlo (IMOC), a new reconstruction

algorithm for SPECT, is presented based on a detailed
physical model of the SPECT data acquisition process.
Monte Carlo techniques are employed to model the

system and an estimate of the source distribution is
made using a maximum likelihood EM estimator.
Compensation is provided simultaneously for scatter
and attenuation as well as for collimator divergence
since these effects are included in the transformation

FIGURE 11
["mTc]glucoheptonate scan of brain.
IMOC on left, FBP on right IMOC FBP
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probability matrix. It is important to note that these
compensations are performed without the need for
empirical parameter input such as the modified atten
uation coefficient and scatter fraction (77-22) values
required for most attenuation and scatter compensa
tions. Instead, intrinsic parameters of the acquisition
system such as energy resolution and collimator dimen
sions are used in the Monte Carlo calculations. IMOC
reconstructions of experimental projection data were
presented along with filtered backprojection reconstruc
tions for phantom as well as clinical studies. Rate of
convergence (number of iterations required) for the
iterative IMOC algorithm was shown to be source object
dependent. Convergence (number of iterations required
for a stable solution) was faster for hot sources in a cold
background than for cold regions in an active back
ground. This nonlinear behavior is an important feature
of the iterative EM maximum likelihood reconstruction
algorithm and is a serious concern for further study.
For simple objects and high counting statistics where
each projection is unambiguous, convergence is rapid.
Where there is considerable ambiguity between projec
tions (as with small cold defects and/or high noise in
the projections) convergence will be slower. Preliminary
investigations indicate that the recovery of spatial fre
quency information is achieved at different numbers of
iterations for different spatial frequencies; higher spatial
frequencies appear at higher iterations while the lower
frequencies (smooth structure) are well defined at early
iterations. Compared with FBP, IMOC reconstructions
contained less noise and had better resolution. Although
scatter compensation was not included in the FBP
reconstructions, the sequential scatter compensation
techniques available (77,20,22) involve subtraction of
counts and will increase the FBP image noise. Success
ful simultaneous compensation for scatter and atten
uation was demonstrated for IMOC. A cold defect in
an active region required a disappointing number of
iterations to achieve only a modest image contrast. Two
clinical human brain studies were reconstructed provid
ing visually superior images.

The most dramatic improvements using IMOC are
apparent for those studies with few photon events. This
is significant since clinical SPECT studies are usually
count limited. This improvement in image noise is
believed due to several features of IMOC: the incorpo
ration into the EM algorithm of the knowledge that the
photon counting process follows a Poisson distribution,
the simultaneous solution approach, and that detailed
modeling provided by the Monte Carlo estimation
which reduces the inconsistency in the equations. The
most effective clinical implementation of IMOC in its
present state of development appears to be in studies
where the signal to noise ratio is too low for conven
tional FBP reconstruction. Specific applications include
iodine-123 HIPDM brain studies using high resolution,
low sensitivity collimation. The improved resolution

and noise handling characteristics of IMOC should
provide higher quality, high resolution images.

Another promising application may be thallium-201
imaging of the heart where standard techniques have
resulted in high noise reconstructions. At present, the
algorithm does not appear to provide great improve
ment for cold defect imaging such as required for liver
tumor detection. This latter deficiency is not fully
understood and is a focus for future research.

The most obvious disadvantage of the IMOC algo
rithm is the increased computation effort required to
reconstruct an image. The IMOC images shown here
were reconstructed into an image plane consisting of
4,020 pixels of width 3.2 mm. The computer time used
for the Monte Carlo modeling is proportional to the
number of image pixels reconstructed and was ~10 hr
on a VAX 11/780 minicomputer for the work shown
although reasonable results can be obtained in 4 hr. For
3.2 mm sampling at 45 angles, the EM step required
0.5-hr per iteration.

The clinical images shown were achieved with ~50
iterations or 25 hr. The EM step required 0.5 hr per
iteration. It should be recognized that the reconstruc
tion times presented here were obtained from develop
mental software and by no means represent optimal
algorithm performance. Preliminary investigation using
pipelined hardware (MAP 6420, CSPI) for the limited
case of 6.3 mm sampling at 36 angles resulted in
reconstruction times of 2 sec per iteration for the EM
step. Thus a clinical image could be reconstructed (20
iterations) in under 1 min.

Much work remains to fully refine and evaluate
IMOC as a clinically viable reconstruction algorithm
for SPECT. While theoretically pleasing, the EM algo
rithm is only one way to solve the system of equations.
Alternatives include iterative least squares (36), conju
gate gradient (37), maximum entropy (38), eigenvalue
decomposition (39), simulated annealing (40), ART
(8-10,12) and SIRT (77). Some combination of these,
utilizing the accurate system modeling provided by
Monte Carlo, will hopefully result in a reconstruction
algorithm for SPECT with simultaneous compensation
for attenuation and scatter which is versatile and rapid
enough for routine clinical use. The preliminary results
presented here demonstrate that the development of
IMOC providing simultaneous scatter and attenuation
compensation is a major step toward the realization of
quantitative SPECT.

FOOTNOTE
"Data Spectrum Corporation, Chapel Hill, NC (Deluxe

SPECT phantom).
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