FDA Letter to Radioactive Drug Research Chairpersons

TO THE EDITOR: The following letter was sent to chairpersons of the Radioactive Drug Research Committees in an effort by the Food and Drug Administration (FDA) to answer certain questions that are frequently asked regarding the requirements of a study that may be performed under 21 CFR 361.1 "Prescription Drugs for Human Use Generally Recognized as Safe and Effective and not Misbranded: Drugs Used in Research." I believe your readers may be interested in it.

Since the initiation of research with radioactive drugs in 1975 under 21 CFR 361.1, we have observed with satisfaction the acceptance and growth of the concept within the nuclear medicine community. Inevitably, as decisions by your committees have been made under the provisions of 21 CFR 361.1 and reviewed by FDA staff, some questions have arisen as to what the regulations would permit. In particular, there has been a tendency to try to utilize 361.1 to carry out early clinical trials of a radiopharmaceutical drug that properly are conducted under an IND. We would like to provide our views on these questions.

Part 361.1 designates certain research uses of radioactive drugs as "generally recognized as safe and effective." When a drug is generally recognized as safe and effective it is not a "new drug," as defined by the Food, Drug, and Cosmetic Act which states that a "new drug" is one "not generally recognized, . . . as safe and effective for use under the conditions prescribed, recommended, or suggested in the labeling . . ." When a "new drug" is used in humans and the drug is not yet approved for marketing, an IND is required. No IND, however, is needed to study a drug that is not a new drug. The RDRC cannot provide an exemption from the act for new drugs, but can determine, under the specific requirements set forth in 361.1 that the drug to be used is, under the conditions specified by the investigator's protocol and approved by the committee, not a new drug.

The provisions of the RDRC regulations specifying how a committee can determine that a drug is "generally recognized as safe and effective" and, therefore, not a new drug, are detailed in 361.1. Let me address these briefly.

The type of research that may be undertaken with the drug must be intended to obtain basic information and not to carry out a clinical trial. The types of basic research permitted are specified in the regulation, and include studies of metabolism, human physiology, pathophysiology, or biochemistry. Types of research studies not permitted under this regulation are also specified, and include those "intended for (the) immediate therapeutic, diagnostic or similar purposes, or to determine the safety and effectiveness of the drug in humans for such purposes (i.e., to carry out a clinical trial)." The notice of proposed rule making for this regulation stated "the evaluation of the drug as a clinical tool, including comparison with other agents, should be considered as part of a clinical trial and subject to the requirements of 312.1," i.e., require an IND. (Federal Register, Monday, July 29, 1974). Although the distinction is clearly stated, there can be areas of overlap between "research" and "clinical trial" studies. It is recognized, for example, that the earliest studies showing localization of a drug in a particular organ or fluid space will have obvious relevance to the later trials; nonetheless, these early localization studies are considered basic research. We have, however, reviewed RDRC-approved protocols in which the evaluation of the drug as a clinical tool for particular organs or spaces was clearly the research objective. While, the distinction is not always clearcut, where doubt exists as to whether the research proposal is basic research, as defined in the regulation, the drug should be considered a new drug for which an IND is required.

The limitation on radiation dose is clearly stated and some have felt that these limits mean that the FDA has determined these radiation doses to be safe. The FDA does not feel that any dose of radiation is absolutely safe, or that higher doses than those proposed are necessarily unsafe. There was a need for the purposes of this regulation to find some reasonable level below which the radiation doses would present minimal risk. Based on the radiation dose limitations established by NRC for basic occupational radiation protection (10 CFR 20.101 and 20.102), we proposed these as levels below which a drug could be considered as not a new drug, so long as all other portions of the regulations were met.

Although methodology is specified in the regulation by which radiation dose estimates are to be derived and reported, with special attention to whole body, active blood forming organs, lens of the eye, and gonads, taking into account the contribution of radiocontaminants and other radiation exposure procedures associated with the study, the reporting has frequently been incomplete. The total calculated radiation dose exposure per study must include all aspects of exposure, including x-ray examinations and other isotope procedures related to the study. This should also include the radiation dose from possible radiocontaminants. The method of calculating the radiation exposure should be one that estimates a "worst case" situation as we would like to have adequate evidence that the radiation dose levels will not be exceeded. With radiopharmaceuticals in early investigation, adequate biodistribution data may not be available or may be equivocal so that the committee may not be able to establish that the radiation dose limits will not exceed the levels set by the regulation. Available methodology may also leave uncertainty as to whether radiation dose to the critical organs will be within the specified limits. Where the committee cannot be certain that the radiation dosage criteria will be met, an IND should be sought.

Similar reasoning extends to the limitations on pharmacologic dose which "shall be known not to cause any clinically detectable pharmacologic effect in human beings." For the committee to conclude that this criterion has been satisfied,
there must be pharmacologic data available from studies in human subjects that would form the basis of the committee's action. If no data are available, even the smallest amount of the drug must be assumed to produce pharmacologic activity, and an IND should be sought.

Once approved, the study should be the subject of continuing review at the committee's quarterly meetings so that it does not evolve into a research project that no longer satisfies the criteria for RDRC approval. Reports of the progress of approved studies are made to us yearly, but there is a requirement for immediate reporting if the study involves exposure of more than 30 research subjects or of any research subject under 18 yr of age. This requirement has not been complied with in some cases, and we consider it important to our overview responsibility.

There are several other issues that have been the source of some confusion in the past:

1. The RDRC, as defined in 21 CFR 361.1 has no oversight responsibility or authority over an investigation carried out under an IND exemption. This authority is retained by the FDA. Title 21 CFR 361.1 however, does not in any way prohibit an institution from involving the RDRC in other policy matters, including the use of radioactive drugs, if it so chooses.

2. The RDRC is distinct from all other investigational drug review committees within an institution such as the radiation safety committee and the Institutional Review Board (IRB). The approval of both of these committees in addition to RDRC approval, is required before an RDRC investigation can be permitted to start.

3. The RDRC is established and chartered by the FDA under 21 CFR 361.1. It is not related to any specific type of license granted by the NRC or State-Regulatory bodies. These licensing authorities, of course, make their own regulations, rules, and requirements. For their own purposes, they may make an RDRC a requirement for a specific type of license, but these are not requirements under 21 CFR 361.1.

In sharing these observations with you, I also invite your comments. My intent is to preserve and improve the implementation of the RDRC regulations.

Questions and comments should be directed to Mr. Neil Abel, a Reviewing Pharmacist and the Executive Secretary of the Radiopharmaceutical Drugs Advisory Committee to the FDA. His address is the Division of Oncology and Radiopharmaceutical Drug Products, Office of Drug Research and Review (HFNI-150), Food and Drug Administration, Center for Drugs and Biologics, 5600 Fishers Lane, Rockville, Maryland 20857.

Robert Temple
Office of Drug Research and Review
Center for Drugs and Biologics
Rockville, Maryland

Sialadenitis Following Iodine-131 Therapy for Thyroid Carcinoma

TO THE EDITOR: Allweis et al. (1) recently demonstrated ten cases of radiation sialadenitis following radioiodine therapy for thyroid carcinoma. Our team inaugurated salivary gland scintigraphy in 1965 (2) and is also interested in salivary gland alterations in the follow-up of thyroid carcinoma. In 1980 we conducted a prospective quantitative study using dynamic salivary gland scintigraphy to evaluate radiation risk of iodine-131 (131I) therapy (3), as proposed by Dr. Allweis.

We examined 20 thyroid carcinoma patients (16 female, 4 male; age range 25 to 82 yr) three times each, applying 2 mCi technetium-99m pertechnetate and analyzing time-activity curves from regions of interest over parotids and submandibular glands (before 131I therapy, after cumulative doses of 170 mCi and 270 mCi 131I). All tests ran under full thyroid hormone substitution. Salivary secretion was quantified by pertechnetate uptake before and after stimulation (2 ml plain lemon-juice by mouth).

Our data demonstrated a dose-dependent reduction of salivary gland function due to high dosage 131I therapy. Parotid alterations were more frequent and more distinct than submandibular gland lesions.

For parotid glands, pertechnetate uptake after 270 mCi 131I is reduced on an average of 40% compared to 30% for submandibular glands (4).

A general survey of our 131I-treated thyroid carcinoma patients showed alterations of at least one salivary gland in about 30% (5). According to our data, in some cases complete loss of salivary gland secretion threatens after a cumulative dose of 500 mCi 131I.

In conclusion, we agree with Dr. Allweis that actual salivary gland function should be taken into consideration planning 131I therapy for thyroid carcinoma. Patients undergoing radioiodine treatment should consequently stimulate salivation during the days following 131I application. We feel that this, besides sufficient fluid intake, is one of the quite rare medical indications for lemon candies and chewing gum.

REFERENCES


W. Spiegel
Chr. Reiners
W. Börner
Abt. f. Nuklearmedizin der Universität
Josef-Schneider-Strasse 2
Würzburg, FRG

816 Letters to the Editor
The Journal of Nuclear Medicine