
common approach to assessing the efficacy of a
diagnostic test involves descriptive modeling of the
test's use in clinical practice. Models are constructed
which relate attributes describing the patient (e.g.,
signs, symptoms, test results) to various outcomes (e.g.,
final diagnosis, choice of therapeutic management or
some measure of health status subsequent to manage
ment). The investigator first attempts to construct the
most accurate model relating attributes to outcomes
without using the result of the test-of-interest (TOI) as
an attribute, and then attempts a similar model includ
ing the TOI as an attribute. The difference in accuracy
of the two models provides a measure of the diagnostic
information provided, or the influence on clinical del
sions exerted, by the TO! relative to the other patient
attributes used in the models.

Many analytical modeling techniques may be em
ployed for this type of study. This paper reports results
of a study of radioisotope lung scanning for the diagno
sis and management of pulmonary embolism (PE) in
which Christensen's entropy-minimax pattern dete
tion method (1) was used to construct the required
models. This work is a part of the Society of Nuclear
Medicine Efficacy Study oflung scanning in which two
modeling techniques were used. Saenger et al. report
the results of logistic regression modeling in a related
paper (2).

ReceivedAug. 10, 1984;revisionacceptedDec.6, 1984.
For reprints contact: David A. Gift, MS, Dept. of Radiology,

8-220ClinicalCtr., MichiganStateUniversity,EastLansing,MI
48824-1315.

807Volume 26 e Number 7 e July 1985

Application of an Information
Theoretic Method
for Efficacy Assessment
David A. Gift, William R. Schonbein, Eugene L. Saenger, and E. James Potchen

Department ofRadiology, Michigan State University, East Lansing, Michigan

An information-theoreticpatternrecognitionmethodwas usedto constructdescriptive
models of data related to 1,674 radioisotope lung scan referrals for the purpose of
assessinglungscan influenceon diagnosisandmanagementof pulmonaryembolism.It was
observedthat, relativeto otherclinical Informationavailableprior to the scan,the lungscan
significantly improved the ability of the models to predict diagnostic and management
outcomes,implyingthat the lungscanhasSignificantinfluenceon theseclinicaldecisions.
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METHODS

Multivaniate data regarding 2,023 lung scan (IS)
cases were collected over the course of two years from
22 hospitals distributed across the U.S. The cases were
divided into two groups by a mid-way date of receipt of
the data collection forms. Models were constructed for
the Group I data (n 1,065), and the Group II data
(n = 958) were used to validate the performance of
models â€œtrainedâ€•on Group I data.

Data collected for each LS case included 24 signs,
symptoms and history variables, the referring physi
cians' pre-LS and post-LS choice of the most likely and
most important diagnoses for the patient (most impor
tant diagnosis is that which is most critical to the pa
tient's clinical management, although it may not be the
most likely diagnosis) and the likelihood estimates for
each ofthese diagnostic possibilities, the attending phy
sidians' pre-LS and post-LS choice of therapeutic man
agement strategy, the patients' discharge diagnosis,
and, from the nuclear medicine specialist who inter
preted the IS, the scan technique, three potential diag
noses indicated by the scan (in order oflikelihood), and
a description of defects seen in the scan, if any. All
information regarding the patient was obtained from
the referring physician, with the exception of the items
identified in the preceding sentence which were pro
vided by the nuclear medicine specialist. The data col
lection instrument and its design and testing are de
scnibed by Saenger et al. (2).

Since this study was intended to investigate LS refer
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rals prompted by concern regarding PE, the Group I
and Group II data were analyzed in subgroups defined
by the referring physician's pre-LS choice of most
important (MI) and most likely (ML) diagnosis. The
MI/ML diagnosis subgroup PE/PE accounted for 275
cases or 26% of Group I and 245 cases or 26% of Group
II. The MI/ML diagnosis subgroup PE/OTHER ac
counted for 640 cases or 60% ofGroup I and 514 or 54%
of Group II. The OTHER/OTHER and OTHER/PE
subgroups, representing 14% of Group I and 20% of
Group II, were not used in these analyses.

The influence of the LS on determination of dis
charge diagnosis and on the decision to use anticoagu
lant therapy (ACT) were selected as foci ofthis efficacy
assessment. For analysis of the former, two outcomes
were employed: discharge diagnosis including PE, and
discharge diagnosis excluding PE. Two outcomes also
were employed for analysis of the latter: management
including ACT, and management excluding ACT.

Selection of attributes from those available for use in
modeling was accomplished in two steps designed to
select those attributes which would be most likely to
yield the best models with respect to the selected out
comes. First, attributes having extremely low frequen
cy, that is, occuning in less than 3% of cases, were
excluded due to the absence of discriminatory power.
No attributes occured with very high frequency, that is,
in nearly all cases; they also would have been excluded.
Second, an information entropy measure (described
below) was computed for the outcomes with the Group
I data partitioned in a univaniate manner for each
attribute (attribute present, attribute absent). Those 13
attributes producing the smallest entropy values were
selected for use in pattern recognition analyses. The
computer program is limited to 14-dimensional data;
the fourteenth attribute position was reserved for add
ing the lung scan diagnosis to the models. Results re
ported in this paper were derived from analyses using
the 13 binary attributes (yes/no, present/absent) listed
in Table 1 and the primary nuclear medicine diagnosis
regarding PE (secondary and tertiary IS diagnoses
were rarely reported, and mention of PE always oc
cured in the primary LS diagnosis).

DATA ANALYSIS

Attribute-outcome modeling of the data was per
formed using the entropy-minimax pattern detection
method of Christensen (1). The method operates by
systematically searching the entire data set for that
subset of cases having a common pattern of attribute
values and having the least information entropy, H,
estimated from the proportion of outcome occurrences
within the subset. The data in the subset are then
removed from further consideration and the process is

TABLE I
Patient Attributes Used In ModelIng

repeated until all of the original data have been parti
tioned into such subsets, or until a subset is identified
for which the entropy is not significantly different from
the entropy of the original unpartitioned data. Attni
bute patterns defining data subsets consist of logical
conjunctions of attribute values (e.g., cough and no
dyspnea and hypoxemia), and may involve any number
of the analyzed attributes.

The measure of information entropy used is Shan
non's (3),

H = â€”@p1log2 p.

where p@is the probability ofthe i-th outcome occurring
in the data subset, and the sum is over all outcomes. H is
maximized when all outcomes are represented in equal
proportions. As the proportion of the subset data repre
senting one specific outcome goes to unity and the
proportion representing all other outcomes goes to zero,
H also goes to zero. For this reason, H may be interpret
ed as a measure ofthe uncertainty associated with using
an attribute pattern as a decision rule in an attempt to
predict the outcome of a randomly-chosen sample for
which the outcome is unknown. Thus, the entropy
minimax algorithm models the data set by partitioning
it into subsets such that the H of the model is mini
mized. The model H is equal to the sum of all subset
H's, each weighted by that fraction of the original data
set samples which belong to the subset. That is, the
uncertainty associated with the set of decision rules
comprising the data set model is equal to the weighted
average of the individual decision rule uncertainties,
where the weighting factor is an estimate of the likeli
hood of having to use that individual decision rule in an
attempt to predict the outcome of a randomly-chosen
sample.

MODELING RESULTS

Results ofthe assessment ofLS influence on determi
nation ofdischarge diagnosis are shown in Table 2. Two
entropy-minimax models were constructed on each of
the Group I data subgroups, PE/PE and PE/OTHER.
In the first model, the thirteen attributes listed in Table
1 were related to the discharge diagnosis outcomes PE
and No PE. The information entropy of a data sub
group before modeling is computed from the prevalence
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sist of a hierarchical set of attribute-outcome relations
which may be thought of as a set of hierarchical dcci
sion rules for making predictions of outcome based on
knowledge of attributes. The rule set is hierarchical in
the sense that the rules must be applied in the same
order as that in which they were derived originally
during modeling. The pattern detection algorithm at
tempts to determine the least-H new attribute-outcome
relationship at each step in the modeling process, so the
rules tend to be derived in order of increasing informa
tion entropy. At some point in the modeling process,
after, say, k rules have been derived, a new rule may be
determined for which the predicted outcome probabil
ities are not significantly different for the original out
come prevalences. At this step, the decision rules are no
better at predicting outcomes than is prediction using
knowledge only of outcome prevalence. Hence, in vali
dating the performance of Group I models on Group II
data, only the performance of those first k rules (â€œk
rule setâ€•)is noted, where the (k + 1)-th rule is the first
for which the rule's predicted outcome probabilities are
not significantly different from the pre-model data set
outcome prevalences.

This practice provides another measure of model
performance in addition to predictive accuracies. The
proportion of the validation data set in which the k-rule
set makes predictions is a measure of the extent of the
model's descriptive ability in the validation data,

The validation results of Group I PE/PE and PE/
OTHER subgroup models on the associated Group II
subgroup data are shown in Table 4 in terms of the
predictive value positive (PVP), predictive value nega
tive (PYN), and proportion of the Group II subpopula
tion to which the k-rule set applies (% POP). In every
analysis but one (PVN for predicting ACT use in the
PE/PE subgroup), adding the LS result to the Table 1
attributes significantly (p < 0.03) enhanced the predic
tive performance of the models, as well as significantly
(p < 0.0001) extended the descriptive domain of the k
rule set.

All four models of the PE/OTHER subgroup had k
rule sets comprised solely of â€œnegativeâ€•decision rules
(i.e., predict No PE or predict No ACT), thus, only the
PVN of these rules may be calculated. This particular
result may imply that, among those patients for whom

of these outcomes in the subgroup. Before modeling the
relationship of attributes to outcomes, one would have
only this prevalence information to use in predicting the
outcome for a randomly-selected patient. With respect
to this discharge diagnosis in the Group I subgroups
PE/PE and PE/OTHER, H 0.99 and 0.56 bit, re
spectively. The radix of the logarithm in Shannon's
expression for H determines the unit of information
entropy; base-2 logarithms make the unit of the mea
sure bits. As a reference, a prediction involving two
equally-likely outcomes, such as calling the flip ofa fair
coin, has H = 1bit. The entropy-minimax models of the
Group I subgroups PE/PE and PE/OTHER for diag
nostic outcome have H = 0.82 and 0.51 bit, respective
ly. Thus, modeling the relationship between Table 1
patient attributes and diagnostic outcome in the Group
I data subgroups results in reductions of predictive
uncertainty regarding discharge diagnosis of 17 and
9%.

In the second such model of the Group I data sub
groups the primary LS diagnosis was added to theTable
1 attributes. The resulting models for the PE/PE and
PE/OTHER subgroups have H = 0.57 and 0.45 bit,
respectively. The incremental reductions in model H,
relative to the Table 1 attributes alone, due to addition
of the LS diagnosis to the models are 25% and 11%,
more than doubling the reduction due to the Table 1
attributes alone.

Similar pairs of models were constructed for the
management-strategy outcomes ACT and No ACT,
and the results are shown in Table 3. With respect to
these outcomes, the Group I PE/PE and PE/OTHER
subgroups have H 1.0 and 0.64 bit, respectively. The
models relating Table 1 attributes to these manage
ment-strategy outcomes have H = 0.82 and 0.61 bit,
respectively, representing 18% and 5% reductions of H.
Adding the LS diagnosis to the Table 1 attributes
results in models having H = 0.66 and 0.57 bit, respec
tively, and 16% and 6% incremental reductions of H,
again roughly doubling the reduction due to the Table 1
attributes alone.

VALIDATION RESULTS

As described earlier, entropy-minimax models con
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TABLE 4
Performance of &oup I Models in soup II Data

PE is a possible but not most likely diagnosis, the LS has,
its greatest influence by diminishing the likelihood of
PE and discouraging use of ACT.

DISCIJSSION

As assessment of efficacy such as that described
herein involves observing the details ofmany individual
instances of clinical decision-making, then modeling
the data to determine if a particular decision input
noticeably affects aggregate decision-making behavior.
Here, data regarding 1,674 lung scan (LS) referrals

%were analyzed in an attempt to determine the influence

ofthe IS result on attending physicians' final diagnoses
regarding the presence of PE, and on their decisions to
anti-coagulate patients. Modeling of the first 915 IS
cases by entropy-minimax pattern detection demon
strated that models which include the LS result have
significantly reduced predictive uncertainty regarding,
a discharge diagnosis of PE or the use of anti-coagulant
therapy (ACT) than do models constructed without the
IS result. Validation of model performance in the re
maining 759 LS cases confirmed this result. Models
incorporating the IS result had greater accuracy, and
improved accuracy over a greater proportion of the
sample cases, than did models without the LS result.
The conclusion is that the lung scan significantly influ
ences aggregate clinical decision-making with respect
to the diagnosis and management of PE.

Discharge diagnosis and choice of therapeutic man
agement are subjective decision outcomes which were
chosen as endpoints for this study, rather than a â€œgold
standardâ€•such as the result ofpulmonary angiography.

This was done because of an intent to study the influ
ence of LS results in the context of typical clinical
practice. Angiography was performed in 5% of the
cases obtained for analysis. Limiting analysis to only
those cases for which angiographic results were avail
able would have resulted in a small and potentially very
biased sample (4). Furthermore, it was considered in
appropriate to require pulmonary angiograms of all LS
referrals at participating hospitals as part of the study
design.

It is important to note that the method for efficacy
assessment presented in this paper does not limit the
nature of the investigation. If subjective outcomes are
used, one may assess the relative influence of the test
of-interest (TO!) on these outcomes. If a â€œgoldstan
dardâ€•outcome is used, one may assess the relative
information provided by the TO!. In any case, this
method provides a means to assess the efficacy of the
TO! relative to other information available within the
context ofTO! use, which is a critical part ofan efficacy
study design.

The entropy-minimax method of pattern detection is
suited specifically to analysis of the â€œnoisyâ€•qualitative
data typical of clinical practice research, does not re
quire assumptions regarding the underlying statistical
distribution of the observed data, does not require sub
jective likelihood estimates (although they may be
used), and provides a reasonable means ofdealing with
missing data values (not a problem in this particular
study) (5). This and other combinatorial pattern recog
nition methods (6, 7) can be very useful as adjuncts to
traditionalstatistical methods ofmodeling for the study
of efficacy.
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