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The goal of singlephotonemissioncomputerizedtomographyis to map out a
three-dimensionaldistributionof a radlonuclidethat is concentratedIn a structure
of Interest.There are a numberof Imagingmodalitiesthat achieve this goal with
varying degrees of success. in this study, computer simulation is used to explore
a novel imagingmodality,orthogonal-viewcoded-apertureimaging.Furthermore,
a comparisonis made betweentwo reconstructionalgorithms,one beingan itera
tive back-projectionalgorithmandthe othera MonteCarlo algorIthm.Finally,cvi
dence is presentedsuggestingthat a deficiencyInthe projectiondata dueto multi
plexingis lessdisturbingthan that dueto limitedangularrange.
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data can be acquired simultaneously. Such a system is a natural
candidate for dynamic studies.

2. It is well known that coded apertures are capable of much
higher photon-collection efficiencies than collimators. For certain
objects this may permit lower dose or exposure time (1,7,8).

3. Because the data include projections over a wide range of
view angles, the severe artifacts associated with limited-angle
imaging schemes are avoided.

4. The imaging geometry is well suited to the use of modular
cameras (Milster TD, et al., unpublished data).

In order to simplify the simulations, the dimensionality of the
problem was reduced by collapsing the vertical dimension. Instead
of reconstructing a three-dimensional distribution, a two-dimen
sional distribution was sought from a one-dimensional data set.
Figure 3 illustrates this collapsed geometry, which was the imaging
modality we explored by computer simulation. Note that an es
sential feature of the three-dimensional case was maintained: depth
information was sought from a dimensionally deficient data set.

The reconstruction grid used in the simulations contained 64
x 64pixels,whilethedetectorarrayshad256elementsineachof
the two views. The ratio of object elements to be reconstructed to
detector elements was 8: 1. The one-dimensional coded aperture
was a uniformly redundant array (URA) of eight pinholes, the
same array being used in each of the two orientations (9).

The reconstructions were performed by two fundamentally
different algorithms, which are individually described in the next
two sections. Following this, these two algorithms are compared.
Finally, a comparison is made between reconstructions using
multiplexed data and reconstructions using limited-angle data.

ITERATIVE BACK-PROJECTION

It is convenient to express the formation of the coded image in
operator notation:

We have known for some time that coded-aperture imaging
can be used to encode tomographic information (1 ). However,
most attempts to exploit this property of coded apertures have
focused on single-view geometries, namely, those using a single,
planar-coded aperture. Such schemes collect projection data
confined to a limited angular range. It has become increasingly
evident that this kind of limitation in the data set is almost im
possible to overcome (2). In contrast, Lefkopoulos et al. (3) re
cently reported favorable reconstructions using an orthogonal-view
coded-aperture system in which each of the two orthogonal-coded
apertures consisted simply of two pinholes. Figure 1 depicts such
an imaging system in which a more complex pinhole-coded aper
ture has been substituted for the two-pinhole apertures. Other
investigators have examined similar orthogonal-view systems
(4-6).

The reconstruction task here is ambitious, since we seek to
reconstruct a three-dimensional distribution from a two-dimen
sional data set, namely, the coded images. This is tantamount to
trying to solve for N3 unknowns with N2 equations. A second kind
ofdeficiency in the data is due to the overlap of the various pinhole
projections (Fig. 2). In the region of overlap, the data are mixed
or â€œmultiplexedâ€•so that it is no longer possible to know through
which pinhole a given photon passed. It is hoped that these defi
ciencies can be overcome in part with the use of prior knowledge
about the object.

Despite the problems associated with these data deficiencies,
the orthogonal-view coded-aperture system offers several advan
tages.

1. There is no detector motion in this scheme, so that all of the
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FIG. 1. Proposed orthogonal-view coded-aperture system. Over
lapping pinhole projections of object on detector surfaces form
coded image.

g=Pffl,

where f is the two-dimensional true object and g is the one-di
mensional coded image representing the data set. The operator P
is a generalized projection operator. In the case of a multiple
pinhole coded aperture, P corresponds to projecting each object
point through each of the pinholes to the detector plane.

For a first estimate of the original object, we could simply
back-project the coded images through the coded aperture. The
operation of back-projection, which we represent by the symbol
B, is illustrated pictorially in Fig. 4. The result (Fig. 5a) is a blurred
versionofthe original object (Fig. 6a) in which the space-variant
point spread function is shown in Figs. Sb & Sc. The combined
operations of projection followed by back-projection, are then,
equivalent to a single blurring operation.

1st estimate:@ = BP(f)

This first estimate obviously needs further processing. One ap
proach is to performdeblurringwith the iterativeJacobi algorithm
(10). By blurring the latest estimate and comparing this with a
blurredversionoftheobject,a correctiontermisformedthat can
beaddedtothelatestestimatetocreatea newestimate:

K + 1 estimate: 1'K+I 1@K+ a[@i â€”BP(@K)1.

object

FiG. 2. MultiplexIng of data. In region where projections overlap,
It is notpossibleto knowthroughwhichpinholegivenphoton

detector 2
,,4i56 elements)

aperttN@e2

(8 Plnholes)\___________III II

object (64 x 64)

1
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FiG.3. Geometryfor simulations.Verticaldimensionhasbeen
collapsed so that task is to restore two-dimensIonal depth Infor
matlon from one-dimensionalcoded images.

Here a is an acceleration parameter that affects the rate of con
vergence of the algorithm.

This algorithm is similar in spirit to the well-knownART and
SIRT algorithms used in computed tomography. Both ART and
SIRT algorithms can be interpreted in terms of discrete projection
and back-projection applied iteratively. The Jacobi algorithm,
however,updates the projection of the latest estimate only once
per iteration, whereas this is not true of either ART or SIRT al
gorithms.

There are somedesirable features associated with the iterative
approach.

I. By truncating the iterative process appropriately, noise
amplification is suppressed.

2. This approach provides a computationally straightforward
way of handling a space-variant imaging problem.

3. Most importantly, the algorithm provides a convenient
framework for enforcing prior knowledgeat each iteration. For
example, it is known in advance that the distribution of radionu
clidesmust bea positivequantity. Therefore,a constraint isapplied
that forces each intermediate reconstruction to be positive. In
addition to the positivity constraint, we can enforce a constraint
implying knowledge of the outer boundary of the object. Recon
structions with and without these constraints are shownin Fig. 6.
The convergenceof this simulation is shown in Fig. 7.

A MONTE CARLO APPROACH: SIMULATED
ANNEALING

Reconstructionwasalso performedby a Monte Carlo algorithm
that is completely different in character from the more conven
tional iterative back-projection approach. This second method
models the reconstruction procedure as an optimization problem
in which the cost function describes how well the reconstruction

(8 pInholes)

FIG.4. Back-projectionstep.ShownIsback-projectionofsingle
detector element in coded image.
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FIG. 5. Firstestimateof object.(a):First
estimate of object is blurredversionof true
object. (b):Space-variant blur function is
shown for point in center of field. (c):
Space-variant blur function is shown for
point at edge of field.

agrees with the data (coded images) while conforming to the
constraints. We define the cost function or â€œenergyâ€•of an object
estimate as the RMS difference between its coded image and the
true object's coded image, namely, the original data. The latest
object estimate is constructed by adding or subtracting single
â€œgrainsâ€•of brightness to the earlier estimate in a random fashion
(Fig. 8). Grains that decrease the energy of the system are always
accepted. However, in order to avoid getting trapped in local
minima, the algorithm also accepts some grains that actually in
crease the energy according to the Boltzmann probability law,
borrowed from statistical mechanics.The probability that a grain
producinga change in energy i@Ewillbe acceptedisgivenformally
by:

P(E@E)= fe@E/@'T z@E 0

11

where T = effective temperature of the system

K = Boltzmann's constant.

The effective temperature can be thought of as a parameter of
the algorithm subject to program control. The temperature is
slowly reduced in stepwise fashion, allowing the energy at each step
to achieve a type of â€œthermodynamicequilibriumâ€•so that the total
energy fluctuates about some mean value. Premature freezing of
estimates is avoided by reducing the temperature slowly in this
fashion. Because this procedure mimics the annealing process used
in the production of solid-state materials, the algorithm has been
called simulated annealing (11-13).

Monte Carlo algorithms have the attractive feature that they
are extremely flexible (14). Details of the imaging process such
as attenuation, pinhole vignetting, and scattering are easily in
corporated into the algorithm. It is also easy to enforce prior
knowledge constraints throughout the reconstruction. Positivity
is enforced by simply not accepting any grains that would imply
negative values in the reconstruction. An additional smoothing
constraint is incorporated by generalizing the definition of the
energy to include spatial correlation of nearest neighbor pixels in
the reconstruction. Figure 9 shows several reconstructions derived
with simulated annealing.

COMPARISON OF ALGORITHMS

The reconstructions presented in the previous two sectionsare
surprisingly good, considering the severe data deficiencies involved.
It is clear that tomographic imaging is possible with the orthogo
nal-view system. Figure 10 illustrates typical cross sections from
two reconstructions, showing that the reconstructions are quan
titatively accurate.

We turn now to the comparison of the two algorithms, where
it appears that both algorithms perform the reconstruction task
well. The simulated annealing reconstructions seem qualitatively
to have a slight edge over those reconstructed through iterative
back-projection. Simulated annealing also seems to â€œfindâ€•the
outer boundary of the object without the aid ofconstraints better
than iterative back-projection, although the reasons for this are
elusive. The real strength of the simulated-annealing approach lies
in its extreme flexibility. The iterative back-projection is the faster
of the two algorithms, taking approximately I hr to produce a re
construction on a PDP 11/34 minicomputer, whereas the simu
lated-annealing algorithm takes close to 8 hr on this machine. The
simulated-annealing algorithm has also been implemented on a
VAX 780, which has cut the reconstruction time to 10 mm. We
are currently putting both algorithms on an array processor to
further enhance computing speeds.
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FIG. 7. Convergence of iterative back-projectionalgorithm.
Mean-square errors between true object and Its estimate are plotted
as functionof iterationnumber.
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FIG.6. Reconstructionswithiterativeback-projection.(a):True
object. (b): Unconstrained reconstruction after 50 iterations. (c):
Reconstruction with knowledge of object's outer boundary, and
positivity constraint enforced at each iteration. (d): Constrained
reconstructionin which 3% Poissonnoise(at signalpeak)hasbeen
added to coded images.
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The real criterion for judging the success of an algorithm is the
ability to reconstruct an estimate that conforms to the a priori
constraints with the data. Both algorithms perform well in this
regard. When no noise is present in the data, either algorithm
produces an object estimate whose coded image I differs from the
true coded image I by less than I .3%, that is

RMS(I-1) < 1.3%

RMS(I)

whereRMS refersto root mean square. This is wellwithinrandom
noise fluctuations that would appear in a clinical study. The success
with which both algorithms achieve agreement with the data
suggests that the imaging task explored here is largely independent
ofalgorithm. For this reason we believethat significant improve
ment in the reconstructions will be achieved, not by fine-tuning
algorithms, but by optimizing the design of the coded apertures
and the geometry of the imaging system.

LIMITED ANGLE COMPARED WITH MULTIPLEXING

Next we compare the effect of taking data over a limited range
ofangles with that ofmultiplexing. Ifone were to open each pin
hole in the aperture one at a time and store its projection sepa
rately, then the effects of multiplexing would be removed.There
would be no overlap of projections and therefore no mixing of data.
Such a procedure closely resembles classical SPECT imaging
except that the projections now have a fan-beam geometry. If now
the sequentially opened pinholeswereconfined to only one of the
two orthogonal apertures, we would have classical SPECT data
over a limited angular range. The data would be free of any defi
ciency due to multiplexing, but would be deficient in the angular
range of projectionsavailable. This case has been extensivelycx
plored in the literature (15â€”16).It is interesting to compare this
case with the one in which a wide range ofangles is available but
multiplexing degrades the data. The latter corresponds to the or
thogonal-viewcoded-aperture imaging system described in this
paper. The comparison is made in Fig. 11, which presents strong
evidence that a deficiency in the data due to multiplexing is tol
crated more easily than that due to limited angular range.

A final and more realistic comparison involves introducing
random noisedue to the radioactive nature of the source into the
simulations. Now the two cases (unmultiplexed compared with
multiplexed) are compared when the total data acquisition time
is held constant. For the unmultiplexed case, only one pinhole
projection is recorded at a given time. The amount of time each
pinholeisopenisgivenbyT/N whereT is the total data acquisition
time and N is the number ofpinholes per aperture. In this case the
noise at the signal peak of the projection data is about 10.5%. By
contrast, the multiplexedcase allowsall projectionsto be recorded
throughout the entire data acquisition period, resulting in 3.0%
noise at the signal peak of the coded image. The results are shown
in Fig. 12. It is clear from these reconstructions that the multi
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reconstructionspace
FiG.8. Addingâ€œrainsâ€•toreconstruction.Codedimageofcurrent
object estimate is perturbed by adding or subtracting grains of
&I@tness to object estimate. For clarfty, only one pinhole in coded
aperture is shown.

FIG.9. Reconstructionswith simulatedannealing.(a):Trueobject.
(b):Reconstruction after testing 300,000 @â€˜ains.(c): Reconstruction
fromcoded Images with3% Poisson noIse (at signalpeak). Again,
300,000 grains were tested. (d) Reconstruction in which both at
tenuatlon and noise (3% at signal peak) have been included In
simulation.AnadditiOnalconstraintof knowledgeof outer boundary
was enforced, and 500,000 grains were tested.

b C

FIG. 10. Cross sectIonsof reconstruc
tins. (a): Object showing location of cuts.
Cross sections shown were made by av
eraging three adjacent horizontal lines. (b):
Crosssectionsoffteratlveback-projection
reconstruction. (C)Cross sectIons of sim
ulated annealing reconstruction.
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b a b

FIG. 11. Umltedanglecomparedwith multiplexing.(Reconstruction
by way of simulated annealing). (a): Orthogonal view unmuftiplexed.
(b): Orthogonal view muftiplexed. (c): Single view unmuftiplexed.
(d): Single view muftiplexed.

plexed case is less susceptible to degradation in the reconstructions
due to photon noise.This is because N times as many photonsare
collected in the multiplexed case as in the unmultiplexed case.

One might argue that this comparison underestimates the
number of photons that could be collected in the unmultiplexed
case since, for a given object, certain pairs of pinhole projections
may not overlap and could therefore be recorded simultaneously.
However, in order to know which pairs of projections don't overlap,
one needs some knowledge about the extent of the object in ad
vance. We believe that the comparison is reasonable when the
extent of the object is not known beforehand.

SUMMARY AND CONCLUSIONS

The orthogonal-view,coded-aperturesystempresentedhere has
potential as an imaging system for SPECT in clinical use. The
system is particularly promising for doing dynamic studies, where
detector motion can be a serious drawback. The simulations per
formed indicate that this system is able to restore tomographic
information successfully. The orthogonal-view system is much
more successful than its single-viewcounterpart because projec
tions can be obtained over a much wider angular range. This
concept is not limited to a strict orthogonal-viewdesign, and we
are working on multiple-view, coded-aperture systems in which
several coded apertures viewan organ of interest from a variety
of orientations.

In recent years there has been much interest in the problem of
tomography with projection data from a limited angular range.
The system presented bypasses this seemingly insurmountable
problem, but it introduces the problem of multiplexing. We have
presented evidence that the effects of multiplexing are tolerated
much more easily than the effects of limiting the angular range
of the projection data. This is particularly true when the random
nature ofthe source is introduced into the simulations, and the total
data acquisition time is held constant.

Finally, two fundamentally different reconstruction algorithms
have been compared. Both successfully give reconstructions con
sistent with the data and the constraints. Qualitatively, the re
constructions given by both algorithms are similar, suggesting that

FIG. 12. Limftedanglecomparedwithmultiplexingwithstatistical
considerations. (Reconstruction by way of simulated annealing). (a):
Orghogonal view unmuftiplexed. (b): Orthogonal view muftiplexed.
(C): Single view unmuftiplexed. (d): Single-view muftiplexed.

the imaging task studied here is largely independentof algorithm.
Weareworkingontheoptimizationofthecoded-aperturedesign
with respect to a given class ofobjects. It is hoped that an optimized
systemwillbe able to restore the clinicallymost important features
ofobjects within the class of interest. In addition, we are pursuing
phantom studies as well as simulations that model the full three
dimensional case.
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