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NORMAL VALUES

In interpreting the significance of a laboratory mea
surement, it is often helpful to know how the value ob
tained in a given case relates to a set of values from a
healthy reference population. What percentage of
healthy persons have higher (or lower) values?

For this purpose, we first must find the distribution
of the variable in the healthy population.

Estimatingnormalvalues.Distributionin sample. The
basic approach is the same as in several previous un
dertakings: since it is not possible to make observations
of every member of the population, we rely instead on
estimates derived from a sample. For illustration, con
sider the population of 5,594 serum urea values in Part
2. Since those values were unknown to us, we drew a
sample of 100 values randomly from the population with
which to estimate certain characteristics of the popula
tion (such as its mean). The same values are presented
again in Table 1 with percentile values added.

As usual, the high percentiles are matched to the large
values, and the percentile matched to a value indicates
what percentage of all the values rank lower. Thus the
largest of the 100 values (173 mg/dl) is the 99th per
centile (P99); the next value (103 mg/dl) is the 98th
percentile; and so on. If there were 200 values in the
sample, rather than 100, the largest observation would
estimate the 99.5 percentile; and if 82 mg/dl were then
the 10th largest value, that would still be our estimate
of the 95th percentile.

As Table 1 stands, however, with 95% of the obser
vations less than 82 mg/dl, 95% also are less than 69, or
any number between 82 and 69. As a result, any of these
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numbers could be used to estimate the 95th percentile.
Rather than choosing the largest, it is conventional to
choose a value in between (such as 75). Various strate
gies for making an appropriate choice have been devel
oped and are commonly used. In general, larger samples
produce smaller gaps; and sample sizes should be made
large enough so that the ambiguity resulting from this
problem is negligible.

Provided with a distribution of percentile values in a
sizable sample, a physician can determine approximately
how his patient's serum urea value relates to those in the

reference population. From Table 1, for example, he
would know that a value as large as or larger than 50
mg/dl is uncommon, estimated to occur in only 10%of
that population.

Sample size. As in any situation where we must rely
on sample estimates, we are concerned with their vari
ability. Here we consider percentile estimates from 10
samples of 100each, drawn from the population of 5,594
(the same samples drawn in Part 2, now represented by
selected percentile values in Table 2). Clearly, the values
for PSOare less variable than the values for the very high
percentiles (P90, P95,and P99).Although a sample con
sisting of 100 values ordinarily is adequate for estimating
the center of a population, it isa very small basis for es
timating the outer percentiles (such as P5 or P95).

Refinements. In our example we have deliberately
oversimplified the problem of estimating normal per
centiles. Normal values of many variables are affected
by the age and sex of the subjects. Statistical methods
are available for estimating age- and sex-specific per
centiles, but they obviously require data from more
subjects overall.

Comment. It is a common misconception that, in
general, 95% of population values lie within two standard
deviations of the population mean. (The proposition is
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TABLE 1. DISTRIBUTION OF SERUM UREA
VALUES IN A SAMPLE (n = 100) DRAWN

RANDOMLY FROM A POPULATION (N =
5,594)*tValue,

mg/dl17310395888268665250464544424140393837Frequency
and

percentile(P)11111

(P95)1121

(P9o)121535

(P75)213'

Mean of sample is36.56;t

O'BrienEstimations1981PC,Shampo MAValue,

mg/dl36353433323130292827262524232220191816Frequency
and

percentile(P)26239

(Pso)46622

(P25)2463

(P,o)25(P5)111standard

deviation is20.27.Statistics

for clinicians:4.from

samples. Mayo ClinProc 56:274-276,

true only under special, infrequently occurring condi
tions, as when the population values have a Gaussian
distribution.) This misconception has given rise to the
regrettable practice of estimating the 2.5 and 97.5 per
centiles simply as the mean Â±two standard deviations
(\Â± 2s). Applied to the first sample of 100 serum urea
values in our example (presented in Table 1), x Â±2 s
yields 36.56 Â±2 â€¢20.27, giving the impossible result ?2.5
= â€”3.98mg/dl. Clearly, the method is unsuitable for

general use.
For two nontechnical papers providing an excellent,

more detailed discussion regarding the choice of a suit
able reference population and the estimation of popu
lation percentiles, see Elveback (/,2).

EVALUATING A NEW DIAGNOSTIC PROCEDURE

When a new medical procedure has been developed,
such as emission computed tomography (ECT), it is
necessary to evaluate the contribution to patient care that
will result from its use. In this situation, the subjective
opinion of the physician responsible for patient care will
be essential, and perhaps it will determine the ultimate
decision as to the procedure's usefulness. It is also de

TABLE 2. MEAN AND SELECTED
PERCENTILES OF SERUM UREA VALUES IN

10 SAMPLES (EACH n = 100)*

Mean, Values for selected percentiles
Sample mg/dl P50 Pgo PSS Psg

1t

2
3
4
S
6
7

8
9
10

36.56
33.92
34.24
33.00
33.47

36.67
35.15

38.93
32.31

36.57

2.07

Population 35.33
values^

32
31
31
31
31

32
30

32
30

32

0.8

31

SO
60
50
43
46

48
52

50
48
46

2.7

48

82
57
62
52
60
56
61

69
56
55

173
103
123
86
220

172
123

388
93
174

8.8 89.3

60 124

* O'Brien PC, Shampo MA: Statistics for clinicians: 4.

Estimations from samples. Mayo Clin Proc 56:274-276,

1981.
t From Table 1.

* The standarddeviation (s) of the 10 values listed directly

above.
Â§From population of 5,594 values.

sirable, however, to perform studies that will provide
objective, quantitative data. Three aspects that should
be considered are ( 1) the reliability of the procedure, (2)
its accuracy, and (3) how its results compare with those
of conventional methods.

We shall use evaluation of ECT to illustrate how each
of these concerns may be addressed. The statistical
methods used will differ slightly, according to whether
the measurement of interest is dichotomous (such as
presence or absence of a tumor) or continuous (such as
tumor size). We shall consider the dichotomous type
first.

Analyzing dichotomous data. Reliability. The reli
ability of a method (also called its precision) is its ability
to provide the same answer in repeated observations.
(Whether it provides the correct answer is not at issue
here but will be considered in the section on accuracy.)
Reliability has two aspects: inter-interpreter and intra-
interpreter.

For evaluation of inter-interpreter reliability (con
sistency of observations by different interpretersâ€”inour
example, nuclear medicine physicians), a set of ECT
images showing a broad range of the abnormalities of
interest, and including some showing normality, are
presented in random sequence for interpretation by each
physician participating in the study. Of course the actual
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TABLE 3. ACCURACY OF TEST RESULTS-
SCHEMATIC REPRESENTATION OF THE DATA

Disease status
Positive Negative

(has (does not
Test result disease) have disease) Total

Positive

Negative

Total a + c

b
d

b + d

a + b
c + d

a+b+c+d

status of each subject must be unknown to the physician
at the time he viewsthe image (but this information must
be available for subsequent assessment of the accuracy
of image interpretation). This type of evaluation requires
a large number of images, at least 100 and sometimes
more.

It is also desirable to evaluate intra-interpreter reli
ability (the consistency with which the same interpreter
arrives at the same diagnosis when viewing the same
image). This may be accomplished by repetition of the
study outlined above; however, any possible learning
effect should be minimized. A method often used to ac
complish this, at least in part, is to use a large number
of images, randomly rearrange the order for each repe
tition, and separate the repetitions by suitably long time
intervals. As before, it is essential that the observer make
his judgment without knowing the status of the pa
tient.

Accuracy. The accuracy of a procedure is measured
by its ability to give the correct answer. Often this is
expressed by the error rates: the proportion of false-
positive results and the proportion of false-negative re
sults. A test result is said to be a false positive if it is
positive but the actual status of the patient is negative.
Similarly, a false negative means that the test result is
negative but the patient's actual status is positive. The

possibilities for classification of the study results are
indicated schematically in Table 3. With the notation
in Table 3, the proportions of false positives and false
negatives are b/(b + d) and c/(a + c), respectively.

A parallel set of terms is also often used in describing
the accuracy of a test. Rather than focusing on the error
rates, it focuses on the proportion of cases that are clas
sified correctly. Thus, the sensitivity of a test is defined
as the proportion of patients with the disease who are
correctly classified by the test. Similarly, the specificity
of a test is defined as the proportion of patients without
the disease who are correctly classified by the test as
being disease-free. In terms of the notation in Table 3,

sensitivity = a/(a + c)

specificity = d/(b + d).

Another pair of useful numbers that can be derived

TABLE 4A. HYPOTHETICAL DATA FOR
EVALUATING ACCURACY OF A NEW

DIAGNOSTIC PROCEDUREDisease

statusTest

resultPositive

(a)Probably

positive(b)Uncertain

(c)Probably

negative(d)Negative

(e)TotalPositive

(has
disease)353020105100Negative

(does not
have disease)510203035100Total4040404040200

TABLE 4B. FALSE-POSITIVE AND FALSE-

NEGATIVE RATES FOR HYPOTHETICAL DATA
IN TABLE4ADeclared

positiveNoneaa

+ba

+ b +ca+b+c+da+b+c+d+eFalse-

positive
rate0.000.050.150.350.651.00False-

negative
rate1.000.650.350.150.050.00

from the array shown in Table 3 is the positive and
negative predictive values, which give the probability
that the patient has the disease when the test is positive
or does not have the disease when the test is negative.
These are a/(a + b) and d/(c + d).

Dichotomizing complex data. Some test results that
one wishes to treat as dichotomous are not that simple.
Even when the actual status of the patient must be either
positive or negative, the best obtainable test readings
may be "definitely positive, probably positive, uncertain,
probably negative, definitely negative."

If one forces those data into the dichotomous mold,
the numbers of false positives and false negatives will
vary with the placement of the dividing line. In such a
situation it is desirable to determine the numbers of false
positives and false negatives for each possible placement
of the division, as illustrated in Table 4A and B. The
rates in Table 4B may also be displayed graphically, in
what is called a receiver operating characteristic (ROC)
curve (Fig. I). Such a graph enables the reader to de
termine at a glance the continuum of possible false-
negative and false-positive rates. It also provides a con
venient method for comparing two procedures. For ex
ample, if the ROC curve for method A lies entirely below
the curve for method B, A would be judged superior to
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FIG. 1. Receiver operating characteristic (ROC) curve for hypo
thetical data in Table 4.

B. In applications, one may observe the curves to cross,
in which case the ranges where a superiority exists would
be of interest.

Comparative studies. The usual objective of a com
parative study is to compare the accuracy of an experi
mental method (ECT imaging in our example) with the
accuracy of one or more conventional methods (such as
conventional roentgenography). An important first step
is to define the patient group to be studied. It is essential
in this type of study that eligibility for the study should
not depend in any way on the outcome of either the ex
perimental or the conventional method. For this reason,
the patient's entry into the study should be determined

before he is examined by either method. Once a patient
is admitted to the study, examination by each method
should be done without knowledge of the results of the
competing method. Additional knowledge (certain
clinical information, for example) should not be available
with either method (unless such information is consid
ered an integral part ofthat method).

For ascertaining the relative accuracy of the two
methods, the true status of the patients must be known.
For example, if method A indicates the presence of a
tumor when method B does not, resolution of this dif
ference may be obtained from subsequent surgery. In this
situation, the willingness to do surgery should be the
same when A is positive and B is negative as when A is
negative and B is positive. If it is known beforehand that
the rate of false positives for each method is near zero,
this difficulty does not arise.

In the absence of a definitive diagnosis, the best that
can be done is to measure agreement between methods
A and B without attempting to measure relative accu
racy.

When actually comparing two methods, one often
finds that whereas one is more sensitive, the other is more
specific, making it difficult to ascertain on a quantitative
basis that one procedure is superior to the other. (How
ever, a qualitative assessment of the error rates may still
be possible.) Where possible, it is best to fix one of the
error rates at a desirable level and make comparisons on
the basis of the other error rate. As mentioned previously,
when test results are not dichotomous, graphing the

ROC curves for both methods on the same graph pro
vides an effective basis for making the comparisons.

Analyzingcontinuousdata. The concepts of reliability,
accuracy, and comparative studies described above still
apply when the measurement of interest is continuous,
as is tumor size. However, some of the statistical methods
are different.

For example, the reliability (internal consistency) of
observations may be expressed by the standard deviation
among repeated measurements. It sometimes happens
that the error tends to be larger when the quantity under
study is large, e.g., errors may tend to be larger in mea
suring large tumors than very small ones. To counter this,
it may be appropriate to express reliability by the coef
ficient of variation, which is the standard deviation di
vided by the mean (s 4- x).

In measuring accuracy, we are concerned with how
closely a set of measurements cluster about the true
value. Sometimes closeness is best measured by the
arithmetic difference between the true and observed
values. When the difference seems to be proportional to
the magnitude of the true value, it may be more appro
priate to express the difference as a percentage of the
true value. Often a graph, such as that shown in Fig. 2,
is helpful in evaluating accuracy. A graph of the cumu
lative distribution of the error (expressed either as a
difference or as percentage error) also may be useful, or
perhaps quoting appropriate percentiles from the cu
mulative distribution will suffice. Sometimes the abso
lute magnitudes of the error (in which negative signs are
disregarded) are most informative.

When results from two methods of measurement are
to be compared and the definitive measurement is
available (such as tumor size determined at surgery), one
can tabulate the errors for each method and compare the
two distributions of error. A statistical test of significance
also may be performed (based on the values of the ob
served errors, perhaps using a paired Student /-test).

Values
from

experimental
procedure so

0 10 20 30 40 50 SO 70

Values from reference method

FIG. 2. Measurements made by experimental method related to
those from reference method (each point represents the two values
in a single case), with lines of identity (â€”)and Â±10% error (â€”).
(From O'Brien PC, Shampo MA: Statistics for clinicians: 9. Evalu

ating a new diagnostic procedure. Mayo Clin Proc 56:573-575,

1981.)
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However, statistical significance ordinarily is of minor
concern in evaluating a new procedure.

Comment.Once the descriptive techniques described
above (and perhaps others) have been used, the ultimate
question, Are the reliability, the accuracy, and the im
provement over existing methods good enough? must
be answered by the physician.

SEQUENTIAL METHODS

The term sequential, in statistics, refers to the ap
proach to study design and data analysis in which the
data are reviewed at various points during the course of
the study. For an example, we may address the question
whether headache is more frequent with drug F or with
drug G, which is the same question that was addressed
in Part 3, but our method will be different. For the ex
ample developed previously, the study was begun by
randomly assigning half of a series of patients to receive
drug F and the other half drug G; and when the obser
vations had been made, the investigator tested the hy
pothesis that the frequency of headache with each drug
was the same, using an appropriate statistical method.

This time, however, we wish to monitor the data as
they are being collected, with a view toward terminating
the trial early if either drug appears definitely superior
to the other. As in the previous parts of this series, if the
data lead us to conclude that there is a differenceâ€”
whether at an interim review (with consequent termi
nation of the trial) or at completionâ€”we will want to
know the corresponding p value. That is, if no real dif
ference existed and our trial were repeated many times,
what proportion of those trials would provide such strong
evidence of a difference? For reasons to be discussed
later (in the Comment), however, the testing methods
described previously are not valid for use with a se
quential evaluation of the data: modifications are re
quired.

All sequential methods that have been developed use
objective predetermined criteria for termination of the
trial. To illustrate, let us suppose that the investigator
in our hypothetical example decided he would be willing
to study a maximum of 120 patients in a clinical trial, 60
to receive drug F and 60 drug G by random assignment.
He plans to evaluate the data when each increment of
40 observations becomes available. At each evaluation,
he will use the methods described previously to compute
a chi-square (x2) statistic. If any of these statistics is

sufficiently large, the trial will be terminated with the
conclusion that one drug is superior to the other.

How large is "sufficiently large"? To ensure that the

conclusion of a difference will not be reached erroneously
in more than 5%of such studies, specially prepared tables
(not the tables of the x2 distribution referred to in Part

3) must be used. When statistical significance is indi
cated, the tables also provide the corresponding p value.

These tables indicate that the first 40 cases should yield
a x2 value exceeding 11.8,or the first 80 cases 5.9, or 120

cases 3.94.
Suppose that in the first group of 40 patients, head

ache is reported by fiveof the 20 who received drug F and
by 12 of the 20 who received drug G. These data yield a
X2value of 5.0. Since this is less than 11.8, the observed

difference between F and G is not sufficient to warrant
stopping the study at this point.

Therefore a second group of 40 patients is enrolled and
observed, and the combined results of the two groups are
headache in 10of 40 who received F and in 22 of 40 who
received G. These numbers result in a x2 value of 7.5;

and since 7.5 is greater than 5.9, the evidence at hand is
sufficient to warrant termination of the study with small
risk that further data would negate the apparent supe
riority of drug F.

Comment. 1. In this example, it might have been
tempting to compare each observed x2 value to percen-
tiles of the tabled x2 distribution, as in Part 3. With this

strategy, one would have obtained a p value of 0.025 at
the first test and, since this is less than 0.05, would have
concluded that the difference was statistically significant.
How often will an experimenter using this strategy reject
the null hypothesis incorrectly?

By definition, the probability of obtaining a statisti
cally significant result (p < 0.05) at the first review is
0.05. However, the probability of obtaining this result
on review of groups 1 and 2 combined (but not group 1
alone) is 0.033; and the probability of obtaining it on
review of groups 1, 2, and 3 combined (but not group 1
or groups 1 and 2 combined) is 0.024. Since the null
hypothesis will be rejected under any of these three cir
cumstances, the probability of rejection is 0.050 + 0.033
+ 0.024, which equals 0.107.

The reader should remember that, if one makes se
quential evaluations of data, special methodology should
be supplied by a statistician.

2. Procedures have been developed for performing a
test of significance as each observation is added to the
accumulated evidence, but they are generally impractical
and rarely used. Such plans are often referred to asfully
sequential. On the other hand, the type of sequential
design that we have described (where a test is performed
as successive groups of observations are added to the
accumulation) is referred to as group sequential.

CONCLUSION

Initiating a research study. One of the underlying
purposes of this series of papers has been to provide the
reader with a feel for the situations in which he should
consult with a statistician, and an ability to communicate
effectively in such consultation.

In undertaking a research effort, the first step is to
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formulate clearly the question your study is intended to
answer.

The next step is to talk with a statistician. The statis
tician will assist you in the design of the study (to ensure
that the answers obtained are valid and that the sample
size is sufficient to detect the effects that you are inter
ested in), setting up data collection procedures, planning
and implementing data analysis, interpreting and pre
senting the results, and preparing the manuscript.

How does one go about locating a statistician? Al
though there are a number of private consulting firms
available, probably the simplest and most cost-effective
strategy is to seek help from a large university. Most such
institutions have a statistics department. A brief phone
call to the departmental chairman usually will suffice
for referral to a statistician suitable for your needs.
(Statisticians tend to specialize in different areas, much
as physicians do.)

If you feel uncomfortable as you approach your first
meeting with the statistician, recognize this as a normal
and quite common reaction. Remember that it is his
responsibility to cut through the technical jargon and
address your specific needs. You, on the other hand,
should be prepared to explain those needs, remembering
that he lacks your medical background. Make sure you
can state very specifically what questions your study is
intended to answer, as this will be the starting point for
the collaborative effort. From this point, the process
should move quite naturally to considerations of study
design, data collection, data analysis, and interpretation
of results. Expect to meet with the statistician on a
continuing basis as the study moves through these stages.
If at any time his recommendations seem to violate
"common sense," insist on a satisfactory, comprehensible

explanation. The problem may well lie in his mathe
matical formulation, rather than in your lack of math
ematical sophistication.

Summary and final advice. In the preceding series of
articles, we have described some of the most elementary
concepts and methods in statistics. We started with de
scriptive statistics, discussing methods for describing a
data set by use of such descriptors as the mean and
standard deviation, median, and range (and interquartile
range). Graphic techniques for providing a quick visual
impression of the data, such as histograms and scatter
diagrams, were presented also.

We then turned our attention to inferential statistics,
establishing generalizations about a population by use
of a sample drawn from it. This process was illustrated
by describing some of the more common techniques, such
as confidence intervals, /-tests, and chi-square (x2) tests.

In each situation, the basic approach is the same: First,
the questions being addressed must be identified and
stated precisely. These questions, together with the re
sources available to the investigator, determine the ap
propriate study design, which in turn dictates the method

used for data analysis. Proper interpretation of the
analysis completes the process. It is essential that an
investigator who intends to rely on statistical inference
work closely with a statistician during the entire pro
cessâ€”fromquestions to study design to data analysis to
interpretation.

Two complementary aspects of data analysis were
presented: estimation and hypothesis-testing. Estimation

is attempting (by use of sample data) to ascertain some
characteristic of the population, such as the mean serum
urea level, or the difference between sets of paired data
(such as free thyroxine measurements made before and
after heparin infusion, case by case), or the difference
between the incidence of side effects associated with two
drugs. Because the estimates are based on sample data,
which are subject to random variation, we have shown
how to assess their precision by deriving standard errors
and confidence limits. Since precision improves with
increase of sample size, a confidence interval may be
viewed as a measure of the adequancy of sample size.

For hypothesis-testing, one first transforms the
question of interest into a null hypothesis. For example,
to determine whether a new treatment modality is more
effective than the established modality, one formulates
a hypothesis that there is no difference between their
effects. To assess the null hypothesis, one collects data
and computes a p value. Rejection of the null hypothesis
is based on a statement such as, "If the null hypothesis

(no difference) is true of the population, then the prob
ability that a sample of this size will show a difference
as large as the one that appears in our sample is less than
P."

When the data justify rejection of the null hypothesis
(that is, when the p value is very small), the results are
termed statistically significant (not to be confused with
clinically significant, a judgment to be made by a clin
ician). When the results of hypothesis-testing do not lead
to rejection of the null hypothesis, the interpretation may
be less clear. Accepting the null hypothesis may not be
justified if the lack of statistical significance may be
attributed to small sample size. Again, this question may
be addressed by consideration of confidence intervals,
if available.

An important principle is that statistics can only es
tablish an association and cannot define the cause and
effect. For example, statistics may establish an associ
ation between having a yellow-stained index finger and
the occurrence of lung cancer. However, it is obvious that
although the association is strong, "yellow finger" does

not cause cancer. In this case the observed association
between yellow finger and lung cancer is merely an ar
tifact resulting from the association between smoking
and lung cancer.

Some additional special topics that occur commonly
in medical research were discussed: evaluating a new
diagnostic procedure, determining normal values, de-
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scribing survivorship, and using sequential methods.
Although we alluded only briefly to some important
study-design considerations, it is worthwhile to keep in
mind the need for a comparison group, the desirability
of random double-blind treatment assignment, and the
important distinction between observational and ex
perimental studies.

In all the topics introduced, we only scratched the
surface; and of necessity, some topics were omitted en
tirely. We hope, however, we have provided the reader

with an introduction that will encourage a further study
of statistics and prepare him for wiser judgment of what
he reads.
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