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A. COMPARING TWO PROPORTIONS (THE RELATIVE
DEVIATE TEST AND CHI-SQUARE EQUIVALENT)

The previous paper presented a method for comparing
observations of two continuous variables. Such variables
are called â€œcontinuousâ€•because they can have a con
tinuum of values;and the measurementof interest was
the level of free thyroxine.

Formulationof theproblem.We nowconsiderhowto
compare dichotomous variables, which are observed as
yes-no, alive-dead, normal-abnormal, and so on. For an
example, let us compare the incidence (yes-no) of a side
effect (headache) in association with each of two drugs:
15 of 50 cases with drug F and 8 of 50 cases with drug
G.

Note that the dichotomous observations of each group
can be summarized by a proportion, which will express
the incidence within the group as a degree on a contin
uous scale of possibilities. Let irF and ir@represent the
proportions (true but unknown) of the incidence of
headache associated with drugs F and G, respectively,
in the population. For an estimate of@ we can use the
sample proportion PF= 15/50 = 0.30; and for irGwe can
use the sample proportion p@= 8/50 = 0.16.

Using these terms, we state the familiar questions: (1)
Is there a real difference between these groupsâ€”that is,
does 7F lrG?â€”and(2) if so, how large may the dif
ference be?
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Question1:Is therea difference?If @rF= 7rG(if the
proportions @â€˜Fand 7@Gare the same), we can write this
unknown common proportion as iro. To obtain a corre
sponding sample statistic (po) in accord with the null
hypothesis that there is no underlying difference between
the samples (that the apparent difference is only random
variation), we pool the samples:

15+8
P0@ Ã·@ = 0.23

This resulting value of 0.23 is an estimate of the common
proportion assumed (for test purposes) to satisfy the
hypothesis in question.

Again we compute the ratio (here we use the test
statistic z) of the difference between the two data sets
to thestandarderrorof thedifference(thevariability
within each data set as calculated with the sample sta
tisticpo).Still assumingthat thenullhypothesisistrue
(no underlying difference between the samples), we use
the common proportion po in the denominator for this
calculation.

PF PG

I 11
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0.30â€”016

\/I 0.23(0.77)

= 1.663
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In this example we will reject the null hypothesis (irF
= TG)if eitherdrugisfoundtocausefewerheadaches
than the other. (This differs from the interpretations in
the two preceding sections. There we asked, a priori, â€œIs
A superior to B?â€•Here we are asking, â€œIseither F or G
superior to the other?â€•)Hence we look for the proba
bility ofgetting a value ofz that is either 1.663 or higher
(signifying more headaches with drug F) or â€”1.663 or
lower (signifying more headaches with G). From ap
propriate tables, this probability P 0.096; so we remain
unsure that either drug excels the other in regard to in
cidence of headache.

Question2: How large maythedifferencebe?An ap
proximate 95% confidence interval for irF @rGcan be
calculated with this formula:

95% CI = PF PG

:1: i 96 . @/PF(iâ€” PF)@ PG@â€” PG)

. NF NG

Note that because the confidence interval will contain
values of @Fand 71Gthat are unequal, we can no longer
use p@in our estimate of the standard error:

95% CI = 0.14 Â±1.96 . @/0.30;0.70 + 0.16;0.84

=0.14Â±0.163

Thus the 95% confidence limits are â€”0.023 and
+0.303.

Even though the P value (0.096) is greater than 0.05
and the 95% confidence interval for irF â€”7rGcontains
0, we still might conclude that the data provide sugges
tive evidence of a superiority for drug G. Our large
confidence interval (reflecting the somewhat small
sample size) indicates that drug G may offer a sub
stantial advantage despite the lack of statistical signifi
cance.

It is a convention that P values are to be considered
significant only if they are less than 0.05, and some in
vestigators require P values less than 0.01 for convincing
evidence against the null hypothesis. However, the dis
tinction between significant and nonsignificant test re
suIts depends on circumstances in the individual study,
and often an intermediate interpretation is appropriate,
as it is here. More generally, a P value should be inter
preted as a measure of the strength of the evidence
against the null hypothesis. Such strength can have many
degrees, and it offers more meaning than â€œenoughâ€•and
â€œnotenough.â€•

Comment.1. An additionallessonisconcealedin this
example. Suppose the investigators had not thought
carefully about the problem of associated headaches
until they saw that more occurred with F than with G.
They might have formulated a hypothesis that G was
superior in this regard and tested it looking only for a

difference in one direction. The outcome would have
been a statistically significant superiority for drug G (P
= 0.048).

What is the probability that this approach to hy
pothesis testing will lead to an erroneous conclusion? Let
us suppose that there is no real difference between F and
G. The probability of erroneously concluding that G is
superior is 0.048. However, it is equally likely that the
sample results would favor F by the same amount; and
this also would give P = 0.048. Thus the probability for
error is the probability ofconcluding G superior to F plus
the probability of concluding F superior to G, which is
0.048 + 0.048 = 0.096.

In general, how do we determine whether to look for
differences in just one direction (a one-sided test) or in
both directions (a two-sided test)? The answer is to
formulate the hypothesis clearly, and before the data are
collected. The way the hypothesis is stated will determine
how the test should be done. For example, when we ask
the question â€œIsexperimental drug A superior to pta
cebo?â€•We clearly are looking for a difference in only
one direction. If the experimental drug is found to per
form either the same as or worse than placebo, the same
negative conclusion will be reached. Since it is not our
goal to establish that A is worse than placebo, a one-sided
test is appropriate. (Notice that this was the situation in
our previous examples, where all our tests were one
sided.)

Conversely, when comparing two drugs (as in the
present example), we may ask: â€œIseither drug superior
totheother?â€•In thisinstanceweclearlydesiretode
termine whether superiority exists in either direction, so
a two-sided test is appropriate.

The decision as to whether a test should be one-sided
or two-sided illustrates a very important principle in
statistics: the study objectives and specific hypotheses
to be tested should be formulated before the data are
collected.

2. Various computational formulas are available for
performing the test described in this section. Since they
all give the same P value, they are equivalent. The for
mula that is simplest computationally and is used most
commonly is called the chi-square (x2) test. (The num
ber actually computed is z2.) Although we have pre
sented the computations in terms of the relative deviate
statistic in order to provide a better understanding of the
test, in practicethe tests for comparing two proportions
are most commonly referred to as chi-square tests.

3. In our previous examples, the computed test sta
tistic was usually denoted by the letter t. Although any
letter could have been used, t ordinarily is chosen for
those situations because it corresponds to the name of the
statistical tables used in obtaining the related P values.
For the tables used in the relative deviate test for com
paring two proportions, the letter z is commonly used.
When the test is based on simple computational formulas
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(which yield the square of the relative deviate z), the test
statistic is denoted by the symbol x2.

B. COUNTING DATA

Evaluationof a singlecountingmeasurement.Fre
quently in nuclear medicine, we are concerned with
counting particles (or photons) emitted due to radioac
tive decay. If it can be assumed that the probability that
an emitted particle will be detected by the counting
system is constant during the time interval of interest,
some special statistical techniques may be used in eval
uating the data.

Specifically, under these circumstances it is appro
priate to focus attention on the total number of counts
observed (usually denoted by N) during some specified
period of time (t). Like measurements in our previous
examples, N will vary from one sample to the next. How
much of this change is mere random variation? In our
previous examples, we made use of repeated measure
ments in estimating the amount of random variation.
However, relying on our assumption of equiprobable
events occurring over time, we can now estimate van
ability based on the observed value of N. We use the
formula s = @/â€˜N@.Although we are estimating the same
quantity as before, the computational algorithm for
obtaining this estimate is different from that used in the
previous papers.

Usually, the number of counts that should be expected
is an unknown constant, which we will denote by N*. If
N is sufficiently large (greater than 20), we can set
confidence limits for N* using the formula:

95%CI = NÂ±2@/N

(For smaller values of N, one can use special tables.)
In some applications, interest focuses on the count

rate, R = N/t. For this, the standard deviation for R is
obtained from the formula SR = @/@7Eand the 95%
confidence interval is given by:

95%CI = RÂ±2@/@7t

Rather than counting for a fixed period of time, it is
sometimes more convenient to count until a predeter
mined total count is reached. Although the rate still
equals N/t, time then is the random variable and N is
the predetermined constant. That difference requires
alteration of the rest of the statistical approach; but we
shall not pursue it further.

Comparing two counts. Suppose that a scan has two
regions of equal area, but it is suspected that the emission
rate should be higher in the second region. To test the
null hypothesis that the observed difference reflects only
randomness of the observed emissions, we compute the
relative deviate.

Toillustrate,supposethecountsobservedwereN1=
4,225 and N2 = 4,900. The estimated standard devia

tions are 5i 65 and @2 70, and the 95% confidence
interval ranges from 4,095 to 4,355 in the first region and
from 4,760 to 5,040 in the second. The lack of overlap
of these two intervals suggests that the observed differ
ence is statistically significant. To confirm this impres
sion, we compute the test statistic:

z = @/N1+ N2

The corresponding P value is then obtained from special
tables or computing equipment.

For the example data:

â€” 4,900â€” 4,225

z â€”@@ 4,225

675

95.52

= 7.07

The corresponding P value, reflecting the probability
that the observed difference would occur as the result of
only random fluctuations in emissions, is less than 0.001.
Thus we conclude that a real difference exists between
regions.

Multiple counts. As we mentioned at the beginning of
our discussion on â€œCountingData,â€•the validity of the
statistical techniques that we have described depends
critically on our equiprobable assumptionâ€”that detec
tion (counting) of an emitted particle (or photon) re
mains equally probable throughout the period of ob
servation. We can check this assumption by making a
series of repeat measurements.

For example, suppose a series of 10 counts, all under
the same conditions, produced the data in Table 1.
Since we now have 10 measurements, we can estimate
variability in two ways. The first is the method intro

TABLE 1. HYPOThETICAL DATA
CORRESPONDINGTO 10 REPEATEDCOUNTS

1
2
3

38
61
61

4
5
6
7

50
49
65
41

8
9
10

51
70
58

= 54.4
5 = 10.4

s2i@ 1.988
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duced earlierâ€”based on the observed deviations of the observed variability was 1.41 times the expected.
10 counts from their averageâ€”providing a value of s To test the null hypothesis that the equiprobable as
10.4. The second method, based on the assumption of sumption is true, we compare D = s2/@(called index of
equiprobable counts in which@ = 7.4, is also an esti- dispersion) with values found in special tables. In this
mation of variability. Thus, the ratio of these estimates, case, we find that D 1.988 and P = 0.036, indicating

@ measures how much the observed variability cx- that the assumption may not be valid. The counting ap
ceeds the variability to be expected. In this case, the pears to be somewhat erratic.
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