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ESTIMATION FROM SAMPLES

In the preceding paper, we discussed statistical tech
niques for describing a set of dataâ€”descriptive statistics.

Here we begin to consider inferential statistics: how to
deal with problems wherein it is not practical to obtain
and manipulate observations on every member of the
population of interest. Our approach is to study a sample
from the population. (Indeed, it is a convention of in
ferential statistics that "population" means a groupâ€”not

necessarily of personsâ€”that is studied by sampling.) To

the extent that the sample group is representative of the
population from which it is taken, inferences properly
drawn from the sample will apply to the population.

Description of population characteristics. Statisticians
often refer to a population characteristic as a variable;
for example, height, weight, and bone density would all
be considered variables. The distribution of the values
of a variable in the population can be represented by a
sample histogram constructed with measurements from
a sample group. Similarly, the sample mean and stan
dard deviation (x and s) may be used to estimate the
population mean and standard deviation (^ and a).
Statisticians refer to statistics such as x and s as random
variables, since they vary randomly in repeated samples
from the same population. The corresponding mean and
standard deviation of the populationâ€”which are con
stantsâ€”are referred to as parameters. In distinguishing

population parameters from their sample estimates,
Greek symbols are generally used for the former and
Roman symbols for the latter.
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Variability of random samples. The ability of sample
statistics to describe population characteristics depends
very much on the representativeness of the sample. To
get some idea of the variation in random sampling (called
random error), consider the data from a Mayo Clinic
study of serum urea concentrations in 5,594 subjects.

Suppose that, having been provided with the values,
we want to know their mean and standard deviation but
do not want to add up 5,594 numbers and do all the
necessary further calculations on that large a scale. The
5,594 observations can be considered a population in the
statistical sense and a random sample can be selected
from it. Such a sample amounting to 100 observations
is presented in Table 1, and a mean (x) of 36.56 and
standard deviation(s) of 20.27 have been calculated from
it. In fact, when the complete but tedious calculations
were performed by a computer, the population mean (n)
was 35.33 and the population standard deviation (<r) was
21.55.

Since the samples drawn from a population vary, so
do the estimates derived from them. To illustrate, we
have drawn nine additional samples, each of size 100,
from the population described above. As Table 2 shows,
the means associated with the resulting set of 10 samples
varied from 32.31 to 38.93.

Accuracy of sample mean as estimate of population
mean. In judging how accurately a sample mean esti
mates the population mean, one begins with the reali
zation that large samples are more reliable representa
tives than small ones. The procedures to be described
here are suitable for samples containing as few as 60
observations, provided that the population does not have
outliers or severe skewness.

With samples of sufficient size, regardless of the
underlying distribution in the population, 95% of all
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TABLE 1. DISTRIBUTION OF SERUM UREA
VALUES (mg/dl) IN A SAMPLE* (N = 100)

DRAWN RANDOMLY FROM A POPULATION
(N = 5,594)t

Value Frequency Value Frequency

16

18
19
20
22
23
24
25
26

27
28
29
30

31
32

33
34

35

36
37
38
39
40

41
42
44
45
46
50
52
66
68
82
88
95
103
173

2

3

1
2

5
3

5

1

2

1
1

1

1
N= 100

" Mean of this sample (x) is 36.56 and standard deviation

(s) is 20.27; for calculations of x and s, see paper 1.
T From O'Brien PC, Shampo MA: Statistics for Clinicians:

4. Estimation From Samples. Mayo Clin Proc 56:274-276,

1981.

sample means are within two standard errors of the
population mean. The standard error of the mean (SE,)
equals the standard deviation of the sample divided by

TABLE 2. MEANS OF 10 100-OBSERVATION
SAMPLES FROM POPULATION OF 5,594

SERUM UREA OBSERVATIONS*

Sample No.
Sample mean

(mg/dl)

1

2

3

4
5

6

7

8

9

10

36.56

33.92

34.24

33.00

35.47

36.67

35.15

38.93

32.31

36.57

' From O'Brien PC, Shampo MA: Statistics for Clinicians:

4. Estimation from Samples. Mayo Clin Proc 56:274-276,

1981.

the square root of the number of observations in the
sample:

So in sample 1 (Table 1), in which s = 20.27 and N
100,

20.27 20.27

10
= 2.03

And since the sample mean lies within two standard
errors of the population mean in 95 of 100 instances, one
can calculate the 95% confidence interval (CI) having
the limits:

95% CI = xÂ±2-SE

Considered strictly, the "2" in the equation above is an

approximation of a quantity that varies with sample size.
But with N = 60 it is 2.00, and with extremely large
samples it is 1.96; so when sample size is large, 2 usually
is satisfactory. Continuing the application to sample 1,
whose mean is 36.56:

95% CI = 36.56 Â±2 â€¢2.03

= 36.56 Â±4.06

Thus we can be confident, but not absolutely sure, that
the population mean lies somewhere between confidence
limits 32.50 and 40.62.

The 95% confidence interval provides a valuable in
dication of how much has been learned about the popu
lation mean from the sample. To obtain a narrower
confidence interval, a larger sample is necessary. In the
example above, if a confidence interval with a width of
just 4 units instead of 8. 12 (40.62 - 32.50) is desired, the
sample will have to be increased to approximately 400
observations.

Influenceof small sample size. Thus far we have been
using methods suitable for a moderately large sample.
When the sample contains fewer than 60 observations,
the number 2, by which we multiply the standard error,
must be replaced by a larger number (obtained from
special tables). This number, which increases as sample
size decreases, is designated by the symbol /*N-I-

Thus, when sample size is less than 60, decreasing the
sample size increases the width of the confidence interval
in two ways: (a) the standard error of the mean is in
creased, as illustrated in the previous section, and (b)
/*N-I itself, the multiplier of the standard error, is in

creased. To illustrate, suppose that the standard devia
tion of 20.27, derived from the 1OO-observationsample,
had been obtained from a sample of only 10 observations.
Then:

2U7
VTÃ” 3.16
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But also, the 95% confidence interval must be calcu
lated thus:

95% Cl = -i -SE

For the present sample (N = 10), /*N-i = 2.26. With

this, and with the same mean obtained from sample 1
(36.56),

95% CI = 36. 56 Â±2.26 -6.41

= 36.56 Â±14.49

providing 95% confidence limits of 22.07 and 51.05.
So â€”despite retention of the same sample mean and

standard deviation â€”the change from a basis of 100

observations to only 10 has changed the standard error
from 2.03 to 6.4 1 and the width of the 95% confidence
interval from 8.12 (40.62 - 32.50) to 28.98 (51.05 -

22.07).
Comment. 1. Note that the standard deviation is not

very helpful in describing the variability of the sample
in Table 1. Specifically, the mean minus the usual two
standard deviations becomes negative, which no actual
serum urea value could be. As mentioned in the first
paper of this series, the standard deviation has its greatest
usefulness in relating sample means to population
means â€”which is done by converting it to the standard

error.
2. It will become more readily apparent in subsequent

papers that much of the information required by statis
ticians in order to make probability statements is avail
able only in special tables. Because the goal of this series
is merely to acquaint the reader with basic concepts, the
mechanics of working with the tables will not be dis
cussed. It is hoped that the reader will not attempt to
analyze his or her data, or even design the experiment,
without the assistance of a statistician.

3. In this section we have dealt with the mean of a
simple measurement, the serum urea concentration, and
of course it might as well have been body weight, days
of hospitalization, or any other measurement. But fur
ther, the same concept of estimating a population mean
from a sample â€”and for determining the confidence
limits of the estimate â€”can be applied to differences
(such as case-by-case differences in bone density before

and after treatment) and to proportions (such as pro
portion of patients benefiting from a drug). The concepts
presented here have very wide use in medical statis
tics.

ONE SAMPLE OF PAIRED OBSERVATIONS
(PAIRED f-TEST)

The previous section showed how a sample drawn
from a large population can be used to provide an esti
mate of a population statistic (such as an estimate of the
mean value of a variable) and also how the accuracy of
such estimates can be assessed. In this section, those

methods will be applied in a procedure called the "paired
/-test" to solve a medical problem.

Formulation of the problem. We need to evaluate the
effectiveness of heparin in increasing the concentration
of free thyroxine. The population of interest consists of
all patients who will receive heparin if it is used clinically
in the future. The problem may be stated in three ques
tions: (1) Will the drug increase the level of free thy
roxine? (2) If so, by how much? (3) Did we have enough
data?

With the use of MA-Bto represent the mean difference
between measurements after (A) and before (B) treat
ment, if the drug is administered to the entire population
as defined, the questions may be stated statistically: ( 1)
Is MA-B= 0? (2) If not, how large is MA-B?(3) How ac

curately have we estimated MA-B?
Of course, it is not possible to determine MA-Bdirectly

by measuring the after-before difference in the total

population of future patients. However, the methods
described in the preceding section can provide inferences
about this parameter.

Collection of data. First, it is necessary to obtain a
random sample from the population. Suppose only a very
small pilot study consisting of 10 patients (N = 10) is to

be done. If it can be assumed that patients present
themselves in random order, the sample can be obtained
simply by taking the next 10 patients who need treat
ment. Because it is rarely possible to conduct a truly
random collection in medical practice (as is often done
in population surveys, for example), the question of the
representativeness of the sample is an important aspect
of any inferential study but it will not be pursued in the
present section.

Suppose the sample is obtained appropriately, the level
of free thyroxine is measured, heparin is administered,
and the level of free thyroxine is measured again. In
Table 3, note that two measurements are made on each
patient. It is because these two measurements arc made
on the same patient, and thus are correlated rather than
independent, that the data are regarded as a single
sample of paired observations.

In the sample, there is a mean increase (A) of 0.440
ng/dl, and this serves as an estimate of drug effect in the
population. It implies that heparin may increase the level
of free thyroxine.

However, that result is based only on sample data,
subject to random error (which means that other samples
from the same population probably would give different
results). So one wonders: If there is no real difference
between A and B (the null hypothesis), how often would
a difference as large as 0.440 ng/dl occur in repeated
samples from the population?

Question 1: Is MA-B= 0? The procedure is to make a
probability statement of the sort, "//a given assumption

or hypothesis regarding the population (such as MA-B=

0) is true, then the probability of obtaining this sample
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TABLE 3. MEASUREMENT OF FREE
THYROXINE (ng/dl) BEFORE AND AFTER 12-

HOUR ADMINISTRATION OFHEPARINPatient12345678910A

= +0.440 ng/dl
s = 1.057 ng/dl
SEi = 0.334 ng/dlAfter

(A)1.91.71.31.40.52.32.72.52.91.0*

A positive A represents an

thyroxine.Before

(B)2.20.71.02.70.71.20.91.31.31.8A(A-B)--0.3+

1.0+0.3-1.3-0.2+

1.1+
1.8+
1.2+

1.6+0.8increase

in level of free

result is no more than (a value to be calculated)." And

if the probability turns out to be sufficiently small, that
will provide a basis for rejecting the null hypothesis. In
other words, when the sample result (an observed fact)
is nearly impossible in conjunction with the hypothesis,
one may reject that hypothesis in favor of an alternative
hypothesis that seems more consonant with the data (for
example, /XA.Bis greater than 0). One must recognize
that all probability statements are "If . . . then .. ."

statements, expressing the probability that, under
carefully stated circumstances, something will happen
or be true.

In the present example (Table 3), the first step toward
determining the quantity needed for completing the
probability statement is to calculate the size of the mean
difference relative to the standard error of the difference.
If the pair-by-pair differences include no outliers or ev
idence of severe skewness, the following formula may be
used:

/ = A/SEA

(Notice that the variation associated with A, which is
SEA, Â¡sbased on the variation among the pair-by-pair
differences.) Substituting from Table 3,

, =0.440/0.334= 1.317

And, using special tables or computing facilities, we find
that, if MA-B= 0. then the probability of obtaining a value
for t greater than 1.317 is 0.110. This probability is often
referred to as a P value; so here, P = 0.110. It means that
the observed difference would occur by random variation
(without an underlying real difference) in 11.0% of
samples.

The interpretation of this probability must be clear
and not careless. What can we say?

1.We cannot reject the hypothesis MA-B= 0. Since the
observed results would occur fairly often even if heparin
had no real effect, that may be the caseâ€”no real ef
fect.

2. Conversely, we cannot rule out the possibility that
a real effect exists, since a real effect may have gone
undetected because of the small sample size. We can say
only that the evidence in favor of a real increase is not
statistically significant.

Question 2: How large is MA-B?In this situation, it is
of interest to ask, "What values of Â¿Ã•A-Bare consistent
with the observed results of our study?" The methods
described in "Estimation From Samples" can provide

a 95% confidence interval for MA-B:

95% CI = Ã„Â±?*N.|-SE

The value of /*N-I is obtained from a standard sta
tistical table: for the present example (N = 10) it is
2.26.

Thus,

95%CI= 0.440Â±2.26-0.334
= 0.440Â±0.750

So we may be confident that the interval from â€”0.310

to +1.190 contains the true value of MA-B-The confi
dence stems from the fact that intervals constructed by
this method contain the true value in 95% of trials with
different samples. Obviously, the result obtained in our
small sample could have occurred with no real under
lying difference or with a sizable positive real difference
(level of free thyroxine increased) or even a negative real
difference (level of free thyroxine decreased).

Question 3: How accurately havewe estimated Mv Hâ€¢'

(Was the sample large enough?) In general, confidence
intervals are very useful in assessing the adequacy of
sample size. If an effect exists, the harder we look for it
(the larger our sample) the more likely we are to find it.
A wide confidence interval says that we have not ex
amined a large enough sample, and in that circumstance,
failure to produce a small P value should not be regarded
as demonstration that no effect exists.

To illustrate this point further, suppose^hat in the
previous example the same mean increase (A = 0.440)
and standard deviation (s = 1.057) had resulted from a
sample of size N = 100. In this case, calculations similar
to those described above reveal P <0.001, indicating that
(if there is no real difference) random variation would
produce the observed effect less than one time in 1,000.
(The symbol < is read "less than"; conversely, the
symbol > is read "greater than.") Similarly, the 95%

confidence interval becomes 0.231 to 0.649â€”much
narrower than with the original small sample and no
longer including 0.

A schema for the paired f-test is shown in Figure 1.
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FIG. 1. Schema of analysis for difference
in paired data. Asterisks indicate that limits
other than 0.05 could be used. (Modified
from "Statistics for Family Physicians," in
Family Practice, O'Brien PC, Shampo MA,

Bachman JW. Philadelphia, W. B. Saunders
Company [in press])

Conduct
experiment

Compute difference
in each pair

ofobservations1Compute

mean
of differences

Interpretation

No significant difference:
> 5 of 100 sets of paired
observations would show
a difference this large,
even with no underlying

actual difference
(Null hypothesis not

rejected)

Interpretation

Significant difference:
without an underlying

actual difference,
<5 of 100 sets of

paired observations would
show a difference this large

(Null hypothesis
rejected)

Compute
95% confidence

interval

Are differences
within confidence
interval clinically

important?

Are differences
within confidence
interval clinically

important?

Comment. 1. One might ask, "How small a P value is
required to achieve statistical significance?" The answer

to this question depends on the circumstances of the
particular study, and in general it is best not to think in
terms of yes and noâ€”significant or not significant.

However, for guidelines one may consider P values be
tween 0.10 and 0.05 as suggestive of a difference, though
not statistically significant. The term "statistically sig
nificant" is usually reserved for situations where P is less

than 0.05; and often the evidence of a difference is not
considered conclusive unless the P value is less than
0.01.

2. Although the evidence of a heparin effect in the
present example, with N = 100, would be described as

statistically significant (not likely to occur in the absence
of a heparin effect), the more important questionâ€”is it
clinically significant?â€”is still unanswered. Whereas the

statistician can help in addressing this very important
question by providing confidence limits, as in the ex
ample, the ultimate decision must come from the clini
cian.

3. To provide the paired observations for the paired

/-test, each item in one data set must have an intrinsic
correspondence with oneâ€”and only oneâ€”item in the
other set. "Before" and "after" measurements from the

same person (as in our example) are a frequent source
of paired data. Pairing of data from different persons
may be appropriate if the persons have been carefully
matched. For instance, in comparing the effects of two
drugs, an investigator might exclude genetic variation
by using identical twinsâ€”giving drug X to one and drug

Y to the other. The resulting paired data would be ana
lyzed as in our example. More commonly, there may be
two or three factors with major influence on response to
treatment, making it desirable to recruit subjects in
pairsâ€”the members of each pair being similar to each

other with respect to the factors identified as most im
portant. Then, after one member of the pair is treated
and the other is not, an observed difference between them
should reflect response to treatment.

COMPARING TWO SAMPLES (THE TWO-SAMPLE /-
TEST)

In the previous example, the study design consisted
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simply of obtaining measurements before and after the
administration of heparin in a series of consecutive cases.
Although this type of study is satisfactory for many re
search objectives, it is not adequate for a full assessment
of the effectiveness of a drug. Specifically, we want to
know how the effect observed under our experimental
conditions compares with what would happen under
other conditions. For example, in many applications the
response to treatment may be dueâ€”in whole or in
partâ€”merely to a psychologic response of the patients
who receive the medication. In such situations, one may
distinguish the biologic from the psychologic components
by including a control group in the study. These patients
are similar to the experimental group, but they are to be
given only a placeboâ€”a preparation that resembles the
experimental drug in all outward respects but has no
biologic capability to affect the variable under study. Of
course it would be desirable in such situations to ensure
that the patient has no knowledge of which medication
he is receiving (drug or placebo), in which case the study
is said to be "single-blind." If the persons who perform

examinations and make decisions in the course of the
experiment also are not allowed to know whether drug
or placebo is given, the study is said to be "double-
blind."

Even when the psychologic effects are not an issue, a
meaningful interpretation of the data typically requires
comparison with some other regimen. Often, readily
available historical data will be helpful. However, in view
of potential differences in the patient populations, as well
as other factors that may be difficult to quantify, it is
usually desirable to incorporate a contemporary com
parison group in the study design.

We shall continue our example regarding the effect
of heparin on the free thyroxine concentration by sup
posing that the objective is to compare the results of 12
hr of heparin administration with those of 15 min of
heparin administration. Suppose that half the study
group was randomly assigned to the 12-hr regimen and
half to the 15-min regimen. Suppose the average increase
inJYee thyroxine level was 0.640 ng/dl for the former
(A|2 hr = 0.640), compared with 0.100 ng/dl for the
latter (A:5 min= 0.100), with corresponding standard
deviations of s, 2 hr = 1.057andsis mÂ¡n= 0.800, respec
tively.

Question 1: Is there a difference? Although the ap
parent effect of 12-hr administration of heparin is greater
than that of 15-min administration (0.640 vs. 0.100), we
ask the familiar question: What is the probability of
obtaining such an apparent difference in the absence of
a real difference? Assuming that the data contain no
outliers or severe skewness, and noting that the standard
deviations are similar, we compare the mean difference
between groups with the variability present in both
groups:

Spooled
N|2 hr

in which:
AI2 hr ~ AI 5 n,in= difference between mean change

in the 12-hr group and mean change in the 15-min

group
N 12 hr = number of patients in the 12-hr group
N 15 min= number of patients in the 15-min group
Spooled= a combination of the standard deviations of

the two groups (by a method we will not describe)
(Note that the denominator

Spooled \l
1

N|2hr

is analogous to the denominator in the equation for / in
the one-sample Mest. It is the standard error of the
difference in the numerator. In all of our examples using
the f-test, no matter how complicated the equation be
comesâ€”howmany factors or symbols are includedâ€”we
are still computing a relative deviate, dividing the nu
merator by its standard error.)

If we suppose that there were 100 patients in each
group, computation of spo0iedgives 0.916; and appro
priate substitutions yield:

0.640-0.100
t = == = 4.17

0.916A/â€”+ â€”
V 100 100

From suitable tables or computing facilities we find
that, if there were no difference between the effect of
heparin at 12 hr and that at 15 min, a value of t as large
as 4.17 would be obtained from 1.8% of repeated ex
periments (P = 0.018). Thus the data are not consistent
with the hypothesis of no difference at the P = 0.018
level. So we reject the null hypothesis: the observed result
is so unlikely to occur without a real underlying differ
ence that there almost certainly is such a difference.

Question 2: How muchdifference? The next question
is: How much drug effect do these data imply? In this
example, the 95% confidence interval for the true mean
difference (drug effectiveness) is given by:

â€¢Spooled *
/ l ,\ â€”-- + T

V N,2hr N ]5rnin

which, with appropriate substitutions, becomes:

95% CI = (0.640-0.100) Â±2-0.916-Volte

= 0.540 Â±0.260
= 0.280 to 0.800

Although we cannot be certain that this interval contains
the true difference, the method employed does provide

170 THE JOURNAL OF NUCLEAR MEDICINE



STATISTICS

Conduct experiment
using placebo

Conduct experiment
using drug

Apply two-sample
t test

Interpretation

No significant difference:
> 5 of 100 experiments
would show a difference

this large, even with
no underlying actual

difference
(Null hypothesis

not rejected)

FIG. 2. Schema of analysis for difference
between two independent samples. As
terisks indicate that limits other than 0.05
could be used. (Modified from "Statistics
for Family Physicians," in Family Practice,
O'Brien PC, Shampo MA, Bachman JW.

Philadelphia, W. B. Saunders Company [in
press])

Interpretation

Significant difference:
without an underlying

actual difference,
<5 of 100

experiments would show a
difference as large as this

(Null hypothesis
rejected)

Are differences
within confidence
interval clinically

important?

Are differences
within confidence
interval clinically

important?

an interval containing the true difference in 95% of ap
plications.

As before, the most important question must now be
addressed by the physician: Is the effectiveness of the
drug significant clinically?

A schema for the two-sample /-test is shown in Figure

2.
Comment. In addition to the design considerations

mentioned thus far, numerous others need to be con

sidered in developing a research protocol. Typically, one
must be careful to define clearly and in advance of the
study what the criteria will be for admission into the
study. These should be reported with the study results
so that the reader may judge whether the patient popu
lation of interest to him is similar. In short, many factors
would need to be considered, requiring the close coop
eration between clinician and statistician, before the data
are collected.
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