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Because the field of statistics has become so important
in medicine, it is well worth the time of a physician in
nuclear medicine to become acquainted with the lan
guage of statistics, the elementary concepts, and a few
of the more commonly used procedures. For this purpose
we are presenting these essentials in a series of six short,
nontechnical papers. Obviously, what can be accom
plished in the brief space allotted each of them is limited.
However, the reader can expect to gain an understanding
of what statistics is, an ability to understand the statis
tical aspects of much of the medical literature, a feel for
when it will be necessary to consult with a statistician,
andâ€”for those occasionsâ€”an ability to communicate
effectively with him.

Unfortunately, such an elementary acquaintance as
weoffer may lead a reader to overestimate his statistical
capabilities and fail to consult a statistician in under
taking a research effort. We do not believethat this series
of papers, or any review of statistics at the introductory
level, will enable anyone to proceed without professional
assistance in medical research requiring statistical ex
pertise.

Medical research studies may be classified into two
broad categories. Descriptive studies are intended to
describe the characteristics of only the study group, using
observations obtained from every member of the group.
Inferential studies, on the other hand, are designed to
enable the investigator to use observations from selected
individuals (a sample) to form conclusions about the
larger group (population) from which they were
drawn.

First, we will deal with descriptive studies, focusing
on summary statistics (such as the mean and median)
and graphic techniques (such as histograms and scatter
diagrams). We then describe how one may estimate
characteristics of the population from characteristics of
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a small number of its members randomly selected. These
principles are then applied to the problem of testing
hypotheses about the population by the use of some of
the more common testing procedures.

The last three papers discuss topics in medical re
search common to both types of research studies. In
cluded are some problems that arise in evaluating the
association between two characteristics, analyzing sur
vival data (where one must be careful if not all persons
in the study were observed until death, or if some may
have been followed up longer than others), determining
normal values, evaluating a new medical procedure, and
applying sequential statistical methods (which enable
the investigator to test hypotheses while the study is in
progress, with a view toward terminating the study
early).

As we have indicated, our purpose is to offer an ac
quaintance with these topics for only a small investment
of the reader's time. Throughout, the discussion will be

kept at an elementary level, omitting all mathematical
derivations and, as much as possible, mathematical
formulas. It is our hope that, upon completion of this
series, the reader will be encouraged to go on to a further
study of statistics. Many excellent elementary textbooks
are available.

DESCRIPTIVE STATISTICS

Statistics is the mathematical technique or process of
gathering, describing, organizing, analyzing, and in
terpreting numerical data. In describing a set of nu
merical data, we are especially interested in two of their
characteristics: typical values and variability.

Typical values. It is often desirable to characterize a
set of numbers by a single value that is considered to be
typical. Among several kinds of such values, the ones
used most commonly are the mean and median.

Mean. This is computed by summing the individual
data points, then dividing this sum by the number of
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observations (N) in the data set. We illustrate with the
following hypothetical data:

-2, 0, 2, 4, 6 (N = 5).

.-2 + 0 + 2 + 4 + 6 10
The mean is â€”= â€”= 2.

Median. If N is odd, the median is defined as the
middle value: half the other observations are equal to it
or smaller, and half are equal to it or larger. For the data
set (â€”2,0,2,4,6), the median is 2. If N is even, one takes

the midpoint between the two inner values: the median
of ( 1, 5,6,7) is 5.5; and the median of (4,10,18, 36) is
14.

Others. Another kind of central value is the mode,
defined as the most frequent or most common value.
Other types of averages are sometimes encountered in
addition to the arithmetic mean described above, such
as a geometric mean or a harmonic mean, but these will
not be discussed further in our series on elementary
statistics.

Variability.Regardlessof whichsummaryterm(mean
or median) has been used to characterize the center of
the data, the question of variability arises. Specifically,
one is interested in the range of values that occur most
commonly and how closely individual values tend to
cluster around the center.

A useful method is to determine the 25th percentile
(P2s) and the 75th percentile (P75). Of all the values
under consideration, 25% lie below P2sand 75% lie below
P75.The interquartile range (also called the semiquartile
range) extends from ?2s to PjÂ¡and this range includes
50% of the data points. In some instances, an investigator
may find other percentiles more appropriate.

In very small data sets, an informative statement re
garding variability is given by the rangeâ€”the smallest
value and the largest. However, a disadvantage of the
range is that it depends heavily on the size of N: as more
observations are included (as N becomes larger), the
range usually gets larger (though it may remain un
changed). The range also may be greatly influenced by
outliers, as will be illustrated below.

Another statistic that is commonly used to describe
the variability in a set of data is the standard deviation.
This usage of the standard deviation appears to derive
largely from the mistaken belief that 95% of the obser
vations can be expected to lie within two standard de
viations from the mean. The falsity of this proposition
is easily demonstrated, for it is true only under special,
infrequently occurring conditions (such as the error
observed in a repeated series of measurements). Thus the
appropriateness of the standard deviation for descriptive
purposes is somewhat limited. However, it is useful in
other contexts (relating to the sample mean) that will be
discussed in later papers. The computations required for

calculating the standard deviation are illustrated
below.

Step 1. Square the deviation of each individual value
from the mean.

Step 2. Sum the squared deviations.
Step 3. Divide the sum by N â€”1. The result is called

the variance (s2).

Step 4. Obtain the standard deviation (that is, s) by
taking the square root of the variance

Stepl.
Original

data
-2

0
+2
+4
+6

Example

Deviation from
mean of +2

4
2
0
2
4

Step 2. Sum of squared deviations =
Step 3. (N = 5)

, sum of squared deviations 40S2 = a = â€” =
N- l 4

Deviation
squared

16
4
0
4

M
40

Step 4. s = VrW = 3.16.

Outliersand skewness. Although the mean and stan
dard deviation are the most commonly used statistics for
describing typical values and variability exhibited by a
set of data, they are not appropriate when outliers or
skewness is present. For example, suppose measurements
of bone mineral density of the lumbar spinal column in
seven 70-yr-old women produced the values 0.71, 0.73,
0.77,0.77,0.78,0.80, and 1.50 g/cm2. The value of 1.50,

clearly dissimilar to the other six observations, is termed
an "outlier." When it is included in the series, the mean

is 0.866, which is larger than six of the seven data points.
The standard deviation, 0.281, is more than twice the
range of the remaining six points when the outlier is \
omitted. Clearly, in this instance, the mean and standard
deviation do not provide an accurate description of the
set of data. In this case, the data would be described more
accurately by a statement that the median value is 0.77,
six values range from 0.71 to 0.80, and one value is
1.50.

As an example of skewness, suppose the seven values
had been 0.71, 0.73, 0.77, 0.83, 0.94, 1.20, and 1.50
g/cm2. The mean and standard deviation are 0.954 and

0.294, respectively. Note that the span from the smallest
value to the median is only 0.12 unit (0.71 to 0.83),
whereas the span from the median to the largest value
is0.67 unit (0.83 to 1.50). (When the values are arranged
in order of increasing size and those greater than the
median are more spread out than those smaller than the
median, we say the data are skewed to the right. This is
a common occurrence, particularly with data that cannot
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FIG. 1. Six data sets with same mean (x = 4) and same standard
deviation (s = 2.83). (From Elveback LR: A discussion of some

estimation problems encountered in establishing normal values.
In Clinically Oriented Documentation of Laboratory Data. Edited by
ER Gabrieli. New York, Academic Press, 1972, pp 117-138. By

permission.)

be negative, such as the usual laboratory measurements.
Less frequently one encounters data that are skewed to
the left.) Again the mean and standard deviation fail to
represent accurately the typical values and dispersion.
The median (0.83) and range (0.71 to 1.50) would con
vey this information better.

Generally, when data are highly skewed or when ou
tliers are present, the center is represented more mean
ingfully by the median. Variability usually is best de
scribed by quoting appropriate percentiles or the range
(or both), especially when outliers or skewness is present.
Ultimately, of course, the descriptive statistics discussed
above remain a summary. Considerably more informa
tion may be conveyed by a graphic display.

Limitations of the mean and the standard deviation
are illustrated by Fig. 1, which shows the manner in
which individual values of six hypothetical data sets are

200Frequency

iÂ»o
per 1 unit
of bone 120
density
(g/cm2) so40nâ€”; Jâ€”r---

6 8 1.0 12 14 16 18

Bone density (g/cm2)

FIG. 2. Histogram of bone density values from 105 normal women
corresponding to data in Table 1. Abscissa (x-axis) has unequal
intervals corresponding to column B in Table 1. Ordinate (y-axis)

has values corresponding to column D in Table 1.

distributed about the mean. (For example, notice that
in the distribution at the top of Fig. 1, most of the values
are less than the mean, with the data skewed to the
right.) Although the data sets depicted are very different,
all six have the same mean (x = 4) and the same stan
dard deviation (s = 2.83).

GRAPHIC DISPLAYS

Graphic displays can be quite useful in conveying a
quick visual impression of large data sets.

Histograms. A very useful graph for this purpose is the
histogram, in which frequency is represented by area.
For example, Fig. 2 shows the distribution of bone den
sity values from 105 normal women (/). It can be seen
that there are more values in the interval from 1.0 to 1.1
g/cm2 than in any other interval of comparable width,
and that most of the values are less than 1.3 g/cm2 (the
area to the left of 1.3 g/cm2 is most of the total area). To

provide an understanding of histograms, we will work
through the steps that produced Fig. 2.

The first step is to list the observations in order of size,
indicating the frequency with which each observation
occurs (Table 1). One then forms class intervals,
grouping the data according to intervals of interest, or
in such a way as to ensure that each interval contains at
least some minimal number of observations. On occasion,
one may wish to use unequal class intervals. For example,
in describing the age at which death has occurred in a
group of subjects, the first year of life may be of special
interest; if so, class intervals 0-1,2-9,10-19, 20-29, and

so forth may be desirable. To illustrate the technique for
this expedient in the example involving the bone density
values, unequal class intervals (columns A and B of
Table 1) have been chosen, which will cause the columns
in the histogram to be of unequal width.

In column C of Table 1 are the frequencies, or the
number of observations that fall within each interval (in
the example, the numbers of subjects whose bone density
values fall within each interval). If all of the intervals

TABLE 1. DISTRIBUTION OF BONE
IN 105 NORMALWOMENBone

density,
g/cm2(A)0.60-0.690.70-0.790.80-0.890.90-0.991.00-1.091.10-1.191.20-1.291.30-1.491.50-1.69Width

of
interval

(B)0.100.100.100.100.100.100.100.200.20Fre
quency

(C)261219211311165Frequency

4- width

(D)20601201902101301108025DENSITYCumulative

%of
subjects

(E)1.97.619.037.157.169.580.095.2100.0
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were of equal size, these frequencies would suffice to
determine the relative heights of the bars to be plotted
in the histogram. Since the widths of the intervals are
unequal and the frequency is to be represented by area
(width X height), one must solve: frequency = width X
height. Thus,

frequencyheight = M
width

= frequency per unit measurement
(frequency per 1 g/cm2 of bone density).

With that information, Fig. 2 can be constructed.
Except in the case of very large data sets, one must

consider the problem of choosing interval widths, keeping
in mind the twin objectives of accurate detail and reliable
overall description of the distribution. These consider
ations are illustrated in Fig. 3. Apparently, many of the
peaks that are seen with use of 0.1 as the interval width
are artifactsâ€”notice that they disappear when an in
terval width of 0.3 is used. Conversely, with intervals of
1.0 virtually all detail is lost. However, no recommen
dation will be made for choosing between the two his
tograms in the middle (class intervals of 0.3 or 0.5) other
than to point out thatâ€”as will often be the caseâ€”the
informed judgment of the investigator will probably
serve better than any rule of thumb.

Whatever class intervals are chosen, whether of equal
or unequal width, the horizontal axis should be marked
at regular intervals (like a ruler), as in Fig. 2. The vertical
axis should start at 0 and also be marked at regular in
tervals, and should not be broken.

Frequency polygons. Frequency polygons provide a
useful method for comparing two data sets on the same
graph. (If the sets are not of the same size, their distri-
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FIG. 3. Histogramsof PO4levels Â¡n329 females, plotted with in
terval widths of 0.1, 0.3, 0.5, and 1.0 mg/dl. (From O'Brien PC,
ShampoMA. Statistics for Clinicians. 2. GraphicDisplaysâ€”Histo
grams, FrequencyPolygons,andCumulativeDistributionPolygons.
MayoC//nProc56:126-128, 1981.)

2SO

Percentage
frequency
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frequency
per 1 unit
of bone
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FIG. 4. Frequency polygons representing bone density values.
Frequenciesare expressedas percentagesof the respectivetotals.
A: data from 105 normal women (FromFig. 2 andTable 1).B: data
from 105 normal women (â€”)and 82 normal men (â€”).

butions first are made proportional, usually by conver
sion to a percentage basis.) To draw a frequency polygon,
one simply connects the midpoints of the tops of suc
cessive bars of the histogram (made with percentage
frequencies), as shown in Fig. 4A. A frequency-polygon
comparison of bone density values from the 105 normal
women in our previous example with the corresponding
values from 82 normal men is shown in Fig. 4B.

Cumulativedistributionpolygons.Another very useful
method for displaying the distribution of a data set is
provided by the cumulative distribution polygon (Fig.
5), which shows the percentage of observations less than

100

IM)
8O

Cumulative
percent 60

40

(25)
2O

Bone density (g/cm2)

FIG. 5. Cumulative percentage polygon of bone density values from
105 normal women (from column E In Table 1).
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any given value. Any desired percentile can be obtained
from it as well. For example, Fig. 5 indicates that among
the set of 105 bone density values in our familiar exam
ple, 1.38 corresponds to the 88th percentile (88% of the
observations were less than 1.38).

The graph is constructed by connecting consecutive
points from the cumulative distribution (column E of
Table 1) with straight-line segments. Cumulative fre

quency polygons can be plotted together, just as fre
quency polygons can; and this provides another way to
compare sets of data.

Scatter Diagrams. Some graphic displays can be used
for presenting data on a single continuous variable, such
as bone density. However, we now consider graphing the
relationship between two continuous variablesâ€”for

example, between age and serum IgE concentration,
tween age and serum IgE concentration.

The appropriate graph is a scatter diagram (Fig. 6).
Each point in the scatter diagram is determined by two
values. In our example, each patient will be represented
by a single point whose location is determined by his age
(on the horizontal scale) and his IgE value (on the ver
tical scale).

The first step in preparing a scatter diagram is to de
termine the range for each variable, so that the axes may
be properly labeled. The graph should be approximately
square, with no values plotted on the axes themselves.
For a scatter diagramâ€”unlike the graphs in the previous
sectionâ€”it is not necessary to start either axis at 0.

A scatter diagram should be one of the first steps in
data analysis. Data features that otherwise might go
undetected may become obvious on the scatter di
agram.

For example, in Fig. 6 it is apparent that one subject
(-*) is considerably older than the others in the group.

Also, there are more patients with IgE values below the
mean value (286 ng/ml) than above it. It can be said that
the age of 70 yr is an outlier and the data on IgE are

Serum

(ng/ml)

1750

1500

1250

1000

750

500

260

O
10 20 30 40 50 60 70 80

Age (years)

FIG. 6. Scatter diagram showing data (fictitious) relating IgE value
with age. (From O'Brien PC, Shampo MA. Statistics for Clinicians.

3. Graphic Displays â€”Scatter Diagrams. Mayo Clin Proc 56:
196-197, 1981.)

skewed. These are important elements to consider the
selecting appropriate descriptive statistics. For the
present data, medians and ranges would be preferable
to means and standard deviations.

This example illustrates a general rule that should
always be kept in mind when displaying data graphically:
The purpose of a graph is to convey a quick visual im
pression. Figure 6 accomplishes this by exposing the
presence of outliers and skewness. However, it would be
inappropriate to expect the reader to determine indi
vidual IgE measurements from such a graph, as that
information could be obtained more conveniently from
a table.

Previously we showed how two large data sets may be
compared by use of frequency polygons. With smaller
data sets, individual points may be plotted in a scatter
diagram. For example, IgE values in males and females
are compared in Fig. 7A.

When data are strongly skewed, as the data on Fig.
7A are, the display sometimes can be made more con
venient by a suitable transformation, such as taking
logarithms of the original measurements (Fig. 7B). The
same transformation may be accomplished simply by
plotting the original values on semilogarithmic paper.

Serum

(ng/ml)

1750
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1250

1000
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O
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Age (years)
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Serum 6

(In ng/ml)

Age (years)

FIG. 7. IgE values by sex. A, original measurements. B, logarithms
of measurements. (From O'Brien PC, Shampo MA. Statistics for

clinicians. 3. Graphic displaysâ€”Scatter diagrams. Mayo Clin Proc
56:196-197, 1981.)
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Although the logarithmic transformation probably is the
kind most commonly used, it is by no means the only one
to be considered. Another transformation that is useful
(especially when logarithms overcorrect, producing
skewness in the opposite direction) is taking the square
root of the variable.

If the transformation is successful in eliminating
skewness, conceivably one could compute descriptive
statistics (means and standard deviations) from the
transformed data. Although this may be useful in some
applications, it usually produces less satisfying results
than would be obtained by choosing a more appropriate
descriptive statistic that preserves the original unit of
measurement. Generally, transformations are more
useful in inferential than in descriptive statistics.
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