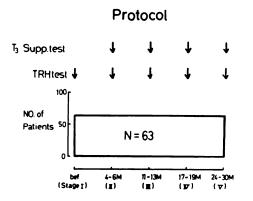
Triiodothyronine Suppression Tests and TSH-Releasing Hormone Tests Before and After I-131 Therapy for Graves' Disease

Hajime Tamai, Tetsuya Nakagawa, Hideaki Takahashi, Noriyuki Ohsako, Osamu Fukino, Rishun Shinzato, Hiroyuki Suematsu, Fumio Matsuzuka, Kanji Kuma, and Shigenobu Nagataki

Khyshu University, Fukuoka; Kuma Hospital, Kobe; and University of Tokyo, Hongo, Tokyo, Japan

T₃-suppression and TRH tests were repeatedly performed in 63 patients with Graves' disease before, and 6, 12, 18, and 24 mo after I-131 therapy. These patients were selected from more than 200 I-131-treated patients; they satisfied the criteria of clinical euthyroidism, with normal serum T₄ concentrations at least during the period between 6 mo and 2 yr after the therapy. The numbers of T_3 -suppressible patients increased, but only 27 of the 63 patients (43%) were suppressible at 2 yr after therapy. Those responding to TRH also increased, and 36 of 63 patients (57%) responded to TRH at 2 yr after therapy. Most of T₃-suppressible patients were TRH responsive. Although serum T₄ concentrations were within the normal range, serum T_3 levels were above normal in almost one third of these patients, and most of those with high serum T_3 levels were T_3 -nonsuppressible and TRH-nonresponding. Investigation of changes in T₃-suppressibility and TRH-responsiveness in individual patients revealed that although incidence of T₃-suppression and TRH responsiveness increased, seven patients became T₃-nonsuppressible and ten patients TRH-nonresponding within 12 mo of the time when they had been T₃-suppressible or TRH-responsive. Among TRH-responders, the number with exaggerated response to TRH increased gradually and reached 28 of 36 patients (78%) at 2 hr after therapy.


These results suggest that in Graves' patients with normal serum T_4 concentrations after I-131 therapy: (a) incidence of T_3 -suppressibility and TRH-responsiveness increases and reaches 50% even 2 yr after the therapy, and that serum T_3 levels are high in T_3 -nonsuppressible and TRH-nonresponding patients; (b) the results of both tests at 6 mo after therapy are not prognostically reliable; (c) latent hypothyroidism begins within 2 yr after I-131 therapy even in patients with normal serum T_4 and T_3 concentrations; and (d) failure to respond to TRH, or to T_3 -suppression, is not proof that a patient requires further treatment with I-131.

J Nucl Med 21: 240-245, 1980

Radioiodine, provided enough is given, can induce either hypothyroidism or remission of hyperthyroidism in all patients with toxic goiter. The advantages of radioiodine therapy are its great efficacy and the fact that organs other than the thyroid are not injured. The isotope currently used almost exclusively in therapy is I-131 (1). The clinical usefulness of triiodothyronine (T_3) suppression tests has been demonstrated in the diagnosis of Graves' disease and in the prediction of the outcome of thionamide therapy (2-4). The response of serum thyroid-stimulating hormone (TSH) to stimulation by thyrotropin-releasing hormone (TRH) is also useful to distinguish the thyrotoxic state from eumetabolic states (5,6). However, the relationship of both tests in the

Received Feb. 23, 1979; revision accepted Sept. 27, 1979.

For reprints contact: S. Nagataki, MD, Third Dept. of Internal Medicine, Univ. of Tokyo, Hongo, Tokyo 113, Japan.

FIG. 1. General protocol of present study. Sixty-three untreated patients with Graves' disease were treated with I-131. Serum T₄, T₃, T₃-U, and TSH levels were determined at least once at 6 mo, and TRH and T₃-suppression tests were made before and at 6-mo intervals for 2 yr.

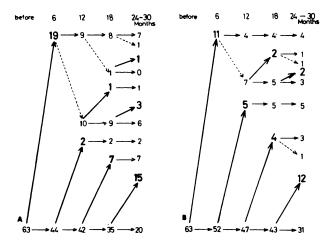
course of Graves' disease after I-131 therapy has not been clearly elucidated. In the present experiment, T_3 -suppression and TRH tests were performed before and after I-131 therapy of Graves' disease to investigate (a) the correlation between T_3 -suppressibility and TRH-responsivity, (b) the changes in the response to T_3 suppression and TRH tests, and (c) the relationship between the concentrations of serum thyroid hormone and T_3 -suppression and TRH tests.

MATERIAL AND METHODS

Our subjects (eight males and 55 females, average age 43.6 yr) were selected from more than 200 I-131-treated patients with Graves' disease. They satisfied the criteria of euthyroidism, with normal serum T_4 concentrations

and normal T_3 uptake (T_3 -U) at least during the period between 6 mo and 2 yr after therapy. Before I-131 therapy, all patients were treated with antithyroid drugs for 1 to 2 mo. After the clinical euthyroid state had been achieved, the patients received I-131 therapy. Treatment with antithyroid drugs was continued for 2 to 3 mo to maintain T₃-U, serum T₄, T₃, and TSH concentrations within their respective normal ranges (T₃-U: 23-35%, T_4 : 5.0-13.5 μ g/dl, T_3 : 80-180 ng/dl, TSH: <5 μ U/ml). The mean dose of I-131 given to these patients was 5.9 mCi per patient or 80 μ Ci/g of thyroid tissue (7). As shown in Fig. 1, the T₃-suppression and TRH tests were repeatedly performed in 63 patients with Graves' disease. T₃-suppression tests were carried out at 6 mo (Stage II), 12 mo (Stage III), 18 mo (Stage IV), and 24 mo (Stage V) after treatment; TRH tests were performed at the first visit (Stage I) and also 6, 12, 18, and 24 mo after I-131 therapy. All of these patients were clinically euthyroid and their serum T₄ concentrations and T₃ uptakes were within the normal range at least during the period between 6 mo and 2 yr after the therapy. In regard to the T_3 -suppression tests, suppressibility was defined as reduction of the 24-hr thyroidal uptake of I-131, to 50% or less of its previous level, by administration of 75 μ g of T₃ daily for 8 days (2). TRH tests consisted of i.v. injection of 500 μ g TRH,* with blood samples for TSH measurement collected before (0), and at 15, 30, 60, and 90 min after injection. TRH responsivity was considered positive when basal TSH levels were $<2.0 \,\mu\text{U/ml}$ and the peak value $>6.2 \,\mu\text{U/ml}$, or when the difference between the two values was more than 5 μ U/ml if the basal value was >2.0 μ U/ml. Hyperresponsiveness to TRH was defined when the peak value of TSH was >35 μ U/ml (5.6.8.9). Values for

After therapy	T+, S+*	T+, S-	<u> </u>	T-, S-	Total T+	Total S+
4–6 mo (Stage II)	8	11	3	41	19/63(30.5%)	11/63(17.4%)
11–13 mo (Stage III)	7	4	2	50	11/63(17.4%)	9/63(14.2%)
17–19 mo (Stage IV)	12	6	3	42	18/63(28.5%)	15/63(23.8%)
24–30 mo (Stage V)	26	10	1	26	36/63(57.1%)†	27/63(42.8%)†


[†] Significant at P <0.01.

serum T_4 and T_3 concentrations, and T_3 -U, were determined by commercial kits, and serum TSH concentrations were measured by a double-antibody technique (10). Statistical significance was assessed by t-tests and Cochran Q tests (11).

RESULTS

The frequencies for TRH-responders and T₃-suppressible patients after treatment are shown in Table 1. The percentages are based on the number of patients seen at the indicated times. Approximately 6 mo after the therapy, 19 out of 63 patients (31%) had responded to TRH. By 12 mo the TRH-responders had decreased. Thirty-six of 63 patients (57%) responded to TRH 2 yr after therapy. The percentage of T_3 -suppressible patients was 17% at 6 mo, 14% at 12 mo, 24% at 18 mo, and 43% at 24-30 mo following treatment. The increased percentage was significant (by Cochran Q test) between the 18th and 24th month after treatment in TRH-responders, and between the 18th and 24th month after therapy in T₃-suppressible patients. The TRH-responsiveness and T₃-suppressibility were similar in more than 80% of the patients.

Changes of responsiveness to TRH and T₃-suppression tests in patients after I-131 therapy are summarized in Fig. 2, A and B. The numbers of patients whose TRH-responsivness and T₃-suppressibility changed from negative to positive, and from positive to negative, are shown for the 2 yr of observation. Regarding the TRH test (Fig. 2A), between 0 and 6 mo and between 18 and 24 mo, TRH-responders increased. Conversely, between 6 and 12 mo, 10 of 19 responders became TRH-nonresponsive. In regard to the T₃-suppression test (Fig. 2B), between 0 and 6 mo, 11 patients became suppressible.

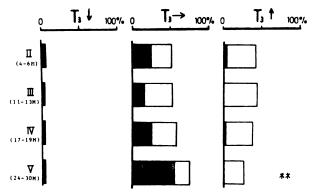


FIG. 2. Reactions to TRH and T₃-suppression tests. (A) Changes of responsiveness to TRH test in each stage; (B) Changes of T₃-suppression tests in each stage; \rightarrow : from nonresponders to responders, or from T₃-nonsuppressible to T₃-suppressible patients. \rightarrow : from responders to nonresponders, or from T₃-nonsuppressible to T₃-suppressible to T₃-supp

CONCENTRATIONS AND THYROIDAL I-131 UPTAKES WITH CHANGES IN THE TRH AND T₃-SUPPRESSION TESTS TRH-**TRH-responders** nonresponders Serum T₃ $1.5 \pm 0.1^{\dagger}$ $1.2 \pm 0.1 (P < 0.05)$ (ng/ml) 10.1 ± 0.4 Serum T₄ 9.5 ± 0.3 (N.S.) $(\mu g/dI)$ Thyroidal I-131 38.9 ± 2.0 33.6 ± 1.9 (N.S.) uptakes (%) T₃-nonsuppressible T₃-suppressible Serum T₃ 1.4 ± 0.1 1.2 ± 0.1 (N.S.) (ng/ml) Serum T₄ 9.3 ± 0.3 9.5 ± 0.4 (N.S.) $(\mu g/dI)$ Thyroidal I-131 36.9 ± 2.3 33.4 ± 2.2 (N.S.) uptake (%) * Values are obtained from those in Stages II \rightarrow III, III \rightarrow $IV, IV \rightarrow V.$ [†] Means ± s.e.

TABLE 2. CHANGES IN SERUM T₃ AND T₄

In 6 to 12 mo, the patients who became suppressible and those who became nonsuppressible were almost equally numerous. However, among those whose responses changed between 18 and 24 mo, the patients who became suppressible greatly outnumbered the total who became nonsuppressible. Table 2 summarizes the changes in serum T₃ and T₄ concentrations, and in thyroidal I-131 uptakes, with changes in the TRH and T₃-suppression tests. Serum T₃ concentrations decreased significantly with changes in the TRH tests. However, serum T₄ levels and thyroidal I-131 uptakes were not changed with changes in the TRH tests. Changes in T₃-suppressibility were not accompanied by changes in serum T₄, T₃ concentration, or thyroidal I-131 uptake. Figure 3 shows the

FIG. 3. Relationship between serum T_3 level and ratio of positive response to TRH test. **2**: positive response to TRH, **1**: no response to TRH. ******: P <0.01.

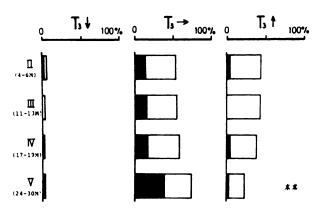
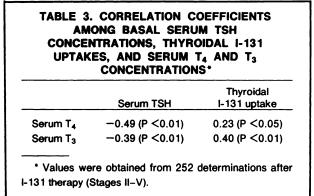



FIG. 4. Relationship between serum T₃ level and ratio of suppressed patients. ■: suppressed patients, □: nonsuppressed patients. **: P <0.01.

relationship between serum T₃ level and TRH responsiveness. Each column represents the number of patients as a percentage of the total patients in each stage. For example, in the Stage II patients, the number whose T₃ levels were below the normal range was only 3% of the number of patients in Stage II. Fifty-three percent of patients had normal serum T₃ concentrations, and approximately 50% of them were TRH responders. The percentage of Stage II patients with supranormal serum T₃ levels was 44%, but only 2% of them were TRH-responders. In patients whose serum T₃ concentrations were within the normal range, the proportion of TRH-responders increased significantly between Stages IV and V. Figure 4 shows the relationship between serum T₃ level and T₃-suppressibility. As in the TRH test, T₃-suppressible patients were noticeably increased in Stage V, after the therapy. Although serum T_4 concentrations and T₃-U were within the normal range, serum T₃ levels were higher than normal in almost one third of these patients, and most of the patients with high serum T_3 levels were T_3 -nonsuppressible. Table 3 shows the correlation coefficients among basal TSH concentrations, thyroidal I-131 uptakes, and serum T_3 and T_4 concentrations in 252 determinations after I-131 therapy (Stages II-V). Serum T₄ and T₃ concentrations correlated significantly with thyroidal I-131 uptakes but correlated inversely with basal serum TSH concentrations. The incidence of exaggerated response to TRH by those who responded in each stage is shown in Fig. 5. The number of exaggerated responders to TRH was 42% (eight of 19) at 6 mo, 45% (five of 11) at 12 mo, 44% (eight of 18) at 18 mo, and 78% (28 of 36) at 24-30 mo after I-131 therapy. There were no significant differences in the percentages of exaggerated responses among Stages II, III, and IV. The proportion of TRH hyperresponders, however, increased significantly in Stage V. Averages of serum T₄ and T₃ concentrations in 49 hyperresponders were $8.2 \pm 0.9 \,\mu g/dl$ and $1.2 \pm 0.1 \,ng/ml$, respectively, and those of 35 normal responders were 9.4

 \pm 0.3 µg/dl, 1.2 \pm 0.1 ng/ml. Serum T₄ concentrations were significantly lower in hyperresponders than in normal responders (P <0.05). In order to investigate whether the baseline TSH was better than the TRH responsiveness at predicting the outcome for these patients, values for baseline TSH, numbers of normal and hyperresponders, and number of patients whose basal TSH levels were greater than 5 µU/ml are shown in Table 4. All patients who had serum TSH levels greater than 5 µU/ml showed hyperresponse to TRH. However, more than 50% of hyperresponders showed basal serum TSH levels less than 5 µU/ml.

DISCUSSION

The advantages of radioiodine therapy are its great efficacy and the fact that the parathyroid, recurrent laryngeal nerves, and organs other than thyroid are not injured, although there are also important disadvantages to I-131 therapy. There is an interesting incidence of hypothyroidism in the years following therapy, despite initial induction of euthyroidism. Between 30 and 70% of patients followed have become hypothyroid after 10-20 yr (12). Even within 2 yr, radioiodine hypothyroidism had occurred in 5 to 25% of patients (13,14). However, the purpose of this study is not to observe

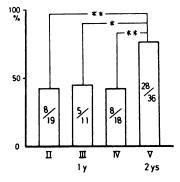


FIG. 5. Percentage of TRH-hyperresponders in each stage. Values shown represent percentage of hyperresponders: (number of hyperresponders to TRH)/(number of positive responders to TRH) in each stage.

merely the frequency of hyper- or hypothyroidism after I-131 therapy, but to investigate various thyroid functions in clinically euthyroid posttherapy patients with normal serum T₄ concentrations. In this study, the number of TRH-responsive and T₃-suppressible patients increased, reaching 57 and 43%, respectively, after 24–30 mo. Most of the T₃-suppressible patients were TRHresponsive. Although the frequencies of TRH-responders and T₃-suppressible patients increased, 10 of 19 TRH-responders and seven of 11 T₃-suppressible patients changed from positive to negative response between 6 and 12 mo. These undesirable changes may be due to temporal effects of I-131 therapy (15) or due to the effects of antithyroid drugs given for 1–2 mo after the therapy.

Regarding the serum T_3 , patients with supranormal serum T_3 levels were about 40% in Stages II, III, and IV, although their serum T_4 and T_3 -U concentrations were within the normal range. All patients with subnormal serum T_3 levels were TRH-responsive regardless of stage, whereas almost all patients with supranormal T_3 levels were TRH-nonresponders, and most of the patients with high serum T_3 levels were T_3 -nonsuppressible. Serum T_3 concentration appears to be very important in the diagnosis of subclinical thyrotoxicosis.

However, even among patients whose serum T_4 and T_3 levels were within normal limits, many showed hyperresponse to TRH: 42% of those who responded at 6 mo, 45% similarly at 12 mo, 44% at 18 mo, and 78% at 24-30 mo after I-131 therapy. Serum T_4 concentrations were significantly lower in hyperresponders than in normal responders. Exaggerated responses appeared to be the initial signs of hypothyroidism (16-18). As shown in Table 4, 50% of hyperresponders showed basal serum TSH levels less than 5 μ U/ml, and we therefore believe that the TRH test is important in predicting the outcome of I-131-treated patients.

In the present study, approximately 50% of patients, despite their clinical euthyroidism, did not respond to TRH and did not become T₃-suppressible by the end of 2 yr. Therefore, TRH-nonresponsiveness or T₃-nonsuppressibility may not be the indication for retreatment with I-131. From the present study on the course of Graves' disease in patients before and during a 2-yr period after I-131 therapy, we have found that (a) the incidence of T₃-suppressibility and TRH-responsiveness increased to include about 50% of the cases even 2 yr after I-131 therapy, and serum T_3 levels are high in T_3 -nonsuppressibles and TRH-nonresponders; (b) the results of both tests at 6 mo after the I-131 therapy are not reliable indicators of prognosis; (c) even though serum T_4 and T_3 concentrations are within normal range, latent hypothyroidism begins within 2 yr after I-131 therapy; and (d) failure to respond to TRH, or resistance to T_3 suppression, is not proof that a patient requires retreatment with I-131.

FOOTNOTES

* Synthetic TRH was obtained from Tanabe Seiyaku, Ltd., Osaka, Japan.

ACKNOWLEDGMENTS

This work was presented in part at Round Table Discussion: Endocrine/Metabolism, World Federation of Nuclear Medicine and Biology, September 17-21, 1978, Washington, D.C.

The authors thank Misses Sachiko Mine, Noriko Ikezumi, Kumiko Minami, Kuniko Kawasaki, and Keiko Mitsuhashi for their technical and secretarial assistance. The antigen and antisera for the RIA of human TSH were kindly supplied by the National Pituitary Agency and the NIAMDD, and human TSH Standard A was supplied by the International Laboratory for Biological Standards.

REFERENCES

- WERNER SC, INGBAR SH: The Thyroid. New York, Harper & Row, 1978, p 827
- WERNER SC: Response to triiodothyronine as index of persistence of disease in the thyroid remnant of patients in remission from hyperthyroidism. J Clin Invest 35: 57-61, 1956
- 3. CASSIDY CE: Use of thyroid suppression test as guide to prognosis of hyperthyroidism treated with antithyroid drugs. J Clin Endocrinol Metab 25: 155-156, 1965
- 4. HALES I, STEIL J, REEVE T, et al: Prediction of the long-term result of antithyroid drug therapy for thyrotoxicosis. J Clin Endocrinol Metab 29: 998-1001, 1969
- 5. NORMAN F, LORENTE M, KIRKLAND J, et al: Synthetic thyrotropin releasing factor as a test of pituitary thyrotropin reserve. J Clin Endocrinol Metab 34: 617-624, 1972
- SNYDER JP, UTIGER RD: Response to thyrotropin releasing hormone (TRH) in normal man. J Clin Endocrinol Metab 34: 380-385, 1972
- HAGEN GA, OUELLETTE RP, CHAPMAN EM: Comparison of high and low dosage levels of ¹³¹I in the treatment of thyrotoxicosis. N Engl J Med 277: 559-562, 1967
- 8. KRUGMAN LG, HERSHMAN JM: TRH test and as an index

of suppression compared with the thyroid radioiodine uptake in euthyroid goitrous patients treated with thyroxine. J Clin Endocrinol Metab 47: 78-83, 1978

- 9. TAMAI H, SUEMATSU H, IKEMI Y, et al: Responses to TRH and T₃ suppression tests in euthyroid subjects with a family history of Graves' disease. J Clin Endocrinol Metab 47: 475-479, 1978
- 10. ODELL WD, WILBER JF, PAUL WE: Radioimmunoassay of thyrotropin in human serum. J Clin Endocrinol Metab 25: 1179-1188, 1965
- 11. SIDNEY S: Nonparametic Statistics for the Behavioral Sciences. Tokyo, New York, McGraw-Hill Kogakusha, 1956, p 161
- 12. HAGEN GA: Treatment of thyrotoxicosis with ¹³¹I and post-therapy hypothyroidism. *Med Clin North Am* 52: 417-429, 1968
- 13. SMITH RN, WILSON GM: Clinical trials of different doses of ¹³¹I in treatment of thyrotoxicosis. *Br Med J* 1: 129–132,

1967

- 14. DUNN JT, CHAPMAN EM: Rising incidence of hypothyroidism after radioactive-iodine therapy in thyrotoxicosis. N Engl J Med 271: 1037-1042, 1964
- MALON MJ, CULLEN MJ: Two mechanisms for hypothyroidism after ¹³¹I therapy. *Lancet* 2: 73-75, 1976
- 16. SNYDER PJ, UTIGER RD: Inhibition of thyrotropin response to thyrotropin-releasing hormone by small quantities of thyroid hormone. J Clin Invest 51: 2077-2084, 1972
- 17. SABERI M, UTIGER RD: Augmentation of thyrotropin response to thyrotropin-releasing hormone following small decreases in serum thyroid hormone concentration. J Clin Endocrinol Metab 40: 435-441, 1975
- 18. GORDIN A, SAARINEN P, PELKONEN R, et al: Serum thyrotrophin and the response to thyrotrophin releasing hormone in symptomless autoimmune thyroiditis and in borderline and overt hypothyroidism. Acta Endocrinologica 75: 274-285, 1974

ROCKY MOUNTAIN CHAPTER SOCIETY OF NUCLEAR MEDICINE ANNUAL MEETING

March 26-29, 1980

Holiday Inn

Park City Ski Resort Park City, Utah

The Rocky Mountain Chapter of the Society of Nuclear Medicine will hold its Annual Meeting on March 26–29, 1980 at the Park City Ski Resort, Park City, Utah.

Hepatobiliary and other gastrointestinal disorders is the topic and invited speakers include: Abass Alavi, Alan Fritzberg, William Klinginsmith, Mike Loberg, Leon Malmud, and John Moore.

For information contact:

Robert W. Beightol Intermountain Radiopharmacy 1C-409 University of Utah Medical Center 50 North Medical Drive Salt Lake City, UT 84132 Tel: (801) 581-8189

NUCLEAR MEDICINE GRAND ROUNDS NEW YORK CITY

2nd Monday of each month

6:00 P.M. - 8:30 P.M.

Cornell Medical College

Nuclear Medicine Grand Rounds will be held again this year on the second Monday of each month from 6:00 P.M. to 8:30 P.M. at the Cornell University Medical College. Each session has been approved for 2 hours of Category I credit for physicians and VUE credit for technologists.

The purpose of this meeting is to provide a forum for in-depth discussions of *clinical* problems in Nuclear Medicine. During the first hour, a lecture will be given by an outstanding expert on an important and current clinical topic. The second hour will be open for the presentation and discussion of interesting cases by members of the audience.

For further information contact:

Jerome G. Jacobstein Cornell University Medical College 1300 York Avenue New York, NY 10021