When nuclear medicine discusses gallium imaging, one name will keep coming up...

Neoscan
gallium citrate Ga 67
from medi-physics™

Neoscan can aid in demonstrating the presence and extent of Hodgkin’s disease, lymphoma and bronchogenic carcinoma. Positive uptake in the absence of prior symptoms warrants follow-up as an indication of a potential disease state.

Neoscan means gallium citrate Ga 67 from Medi-Physics, Inc. Neoscan can aid in demonstrating the presence and extent of Hodgkin’s disease, lymphoma and bronchogenic carcinoma. Positive uptake in the absence of prior symptoms warrants follow-up as an indication of a potential disease state.

Neoscan means gallium citrate Ga 67 that is produced by MPI on both the East and West Coasts and is available from 6 locations across the country for easy access when you need it. Neoscan is calibrated twice weekly in two convenient sizes: 3.0mCi and 13.2mCi.

Neoscan means gallium citrate Ga 67 that MPI will send to you with no additional delivery charge along with your supply of Sodium Iodide I 123, Technetium Prepared Products or Xenon 133-V.S.S. (xenon Xe 133).
With deliveries to meet your needs.

Contact the facility nearest you to arrange a standing order:
San Francisco (415) 659-2184
Toll Free (In Calif.) (800) 772-2446;
(Outside Calif.) (800) 227-0483
Los Angeles (213) 245-5751
Houston (713) 641-5731
Toll Free (Inside Tex.) (800) 392-1893

Chicago (312) 671-5444
Toll Free (Outside III.) (800) 323-3906
New York/New Jersey (201) 757-0500
Toll Free (Outside N.J.) (800) 631-5367
Miami (305) 557-0400

Neoscan™
gallium citrate Ga 67

For complete product information, consult the package insert, a summary of which follows:

DESCRIPTION: Neoscan for diagnostic use is supplied as a sterile, apyrogenic aqueous solution for intravenous injection. Each milliliter of the solution contains 2 millicuries of gallium Ga 67 at calibration time, no-carrier-added, 2.5% sodium citrate, and 1% benzyl alcohol as a preservative. The pH is between 4.5-7.5. Gallium Ga 67, with a half-life of 78.1 hours, is cyclotron produced by the proton irradiation of zinc Zn 66-enriched zinc oxide. The radionuclidic composition, at calibration time, is not less than 98.9% of the total activity from gallium 67 with less than 1% of the total radioactivity due to gallium 66 and with zinc 65 and other radiocontaminants contributing less than 0.1% of the total activity.

INDICATIONS AND USAGE: Neoscan may be useful to demonstrate the presence and extent of Hodgkin's disease, lymphomas, and bronchogenic carcinoma. Positive gallium Ga 67 uptake in the absence of prior symptoms warrants follow-up as an indication of a potential disease state.

CONTRAINDICATIONS: None known.

WARNINGS: This radiopharmaceutical should not be administered to children or to patients who are pregnant or to nursing mothers unless the information to be gained outweighs the potential hazards. Ideally, examinations using radiopharmaceuticals, especially those elective in nature, in women of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses.

PRECAUTIONS: A thorough knowledge of the normal distribution of intravenously administered gallium citrate Ga 67 is essential in order to accurately interpret pathologic studies. The finding of an abnormal gallium concentration usually implies the existence of underlying pathology, but further diagnostic studies should be done to distinguish benign from malignant lesions. Neoscan is intended for use as an adjunct in the diagnosis of certain neoplasms. Negative results do not preclude the presence of disease.

Gallium citrate Ga 67 as well as other radioactive drugs, must be handled with care. Appropriate safety measures should be used to minimize radiation exposure to clinical personnel and to patients, consistent with proper patient management.

No long-term animal studies have been performed to evaluate carcinogenic potential.

Adequate reproduction studies have not been performed in animals to determine whether this drug affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Gallium citrate Ga 67 should be used in pregnant women only when clearly needed.

Gallium citrate Ga 67 has been found to accumulate in breast milk and should not be used in nursing mothers.

Safety and effectiveness in children have not been established.

ADVERSE REACTIONS: No adverse reactions have been reported with the use of Neoscan at this time.

DOSEAGE AND ADMINISTRATION: The recommended adult (70 kg) dose is 2-5 millicuries. Neoscan is intended for intravenous administration only. The patient dose should be measured by a suitable radioactivity calibration system immediately prior to administration.

Studies indicate the optimal tumor-to-background concentration ratios are often obtained about 48 hours after administration. However, considerable biological variability may occur in individuals, and acceptable images may be obtained as early as 6 hours and as late as 120 hours after injection.

Approximately 10% of the administered dose is excreted in the feces during the first week after injection. Daily laxatives and/or enemas are recommended from the first day of injection until the final images are obtained in order to cleanse the bowel of radioactive material and minimize the possibility of false positive studies.

Radiopharmaceuticals should be used only by persons who are qualified by training and experience in the safe use and handling of radionuclides and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

HOW SUPPLIED: Neoscan is supplied as a no-carrier-added sterile apyrogenic aqueous solution for intravenous use. Each milliliter contains 2 mCi ± 10% gallium Ga 67 at the time of calibration with 2.5% sodium citrate. Benzyl alcohol 1% is present as a preservative. The pH is between 4.5-7.5.

The contents of the vial are radioactive and adequate shielding and handling precautions must be maintained.

When you think of gallium imaging, think of Neoscan™ from medi+physics™
The major medical centers are seeing the difference a Medx X-37 Upgrade can make.

Better pictures at low cost.
Medx can convert your existing 19 tube gamma camera to a modern 37 tube high resolution system for only $22,900.

Medx Update X-37 is a simple, practical way to modernize your existing Pho/Gamma III* or Pho/Gamma HP system. It provides you with a fully upgraded 37 tube system that guarantees you ¼ inch intrinsic bar pattern resolution for 99mTc.

For more information call (312) 991-0660.

Your present 19-phototube gamma camera has only ⅛" to ⅛" resolution.

We can convert it to 37 phototubes with a high ⅛" resolution.

* Registered trademark Searle Radiographics.
A reference is only as good as its source

Our sources have an excellent reputation for safety and convenience; they offer you references you can trust.

Sealed flood sources

Supplied as ^{57}Co (2 and 3 mCi) and ^{133}Ba (0.5 and 1.0 mCi) in two sizes, to check the uniformity and resolution of conventional and wide field-of-view gamma cameras, and for transmission imaging. The maximum acceptable variation in activity over the entire active area, is ±1% of the mean value. Each uniformly active plastic component is surrounded by inactive plastic and enclosed in an anodized aluminium casing. A shielded storage case is supplied with each source.

Anatomical marker sources

Spot sources are available as a 1 mm bead of ^{57}Co or ^{133}Ba (10 and 100 µCi). Features include a welded plastic capsule, point source geometry with a visible active bead, and colour coding for quick identification of nuclide and activity. They are packed in sets of three in shielded boxes; replacements are available separately.

Pen point tracers have a 1 mm diameter bead of ^{57}Co (100 µCi) sealed in the tip of a ball-point pen shaped holder with a brass shield for the active end.

Flexible sources are 50 cm x 4 mm diameter; ^{57}Co (100 µCi) is dispersed in an inner core of active plastic, sealed in an inactive PVC tube, and closed by aluminium caps.

^{129}I rod sources for γ counters

^{129}I (0.1 µCi) gamma/X-ray spectrum is virtually identical to ^{128}I, and has a half-life of 1.57×10^7 years. Calibration in terms of ^{128}I is available. The length is 100 mm, maximum diameter 15 mm—suitable for most manual and automatic counters. Active material is sealed in a plastic capsule attached to a handling rod. Other nuclides: ^{241}Am, ^{133}Ba, ^{57}Co, ^{60}Co, ^{137}Cs, ^{54}Mn, ^{22}Na, ^{75}Se, ^{123}mTe, ^{88}Y and mock ^{131}I.

The Radiochemical Centre

Amersham

THE EASY WAY TO YOUR PATIENT’S HEART

- RAPID EASY PREPARATION
- EXCELLENT BINDING EFFICIENCY
- STABLE FORMULATION
- CONVENIENT USAGE METHODOLOGY
- CONSISTENT RESULTS
- UNIT DOSE ECONOMY
OR MULTIDOSE UTILITY

Technetium Tc 99m Normal Serum Albumin (Human) Reagent Kit
DIAGNOSTIC-FOR INTRAVENOUS USE

BRIEF SUMMARY OF PRESCRIBING INFORMATION

Indications and usage
Technetium Tc 99m Human Serum Albumin is used as an agent for imaging the heart blood pool and to assist in the detection of pericardial effusion and ventricular aneurysm.

Contraindications
The use of Technetium Tc 99m Human Serum Albumin is contraindicated in persons with a history of hypersensitivity reactions to products containing human serum albumin.

Warnings
The contents of the kit are not radioactive. However, after the Sodium Pertechnetate Tc 99m is added, adequate shielding of the final preparation must be maintained.

This radiopharmaceutical preparation should not be administered to children or to patients who are pregnant or to nursing mothers unless the expected benefits to be gained outweigh the potential hazards.

Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of women of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses.

Precautions
The components of the kit are sterile and pyrogen-free. It is essential that the user follows the directions carefully and adheres to strict aseptic procedures during preparation of the radiodiagnostic.

Technetium Tc 99m Human Serum Albumin must not be used after three hours from the time of formulation.

Adequate reproduction studies have not been performed in animals to determine whether this drug affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Technetium Tc 99m Human Serum Albumin should be used in pregnant women only when clearly needed.

It is not known whether this drug is excreted in human milk. As a general rule, nursing should not be undertaken while a patient is on a drug since many drugs are excreted in human milk.

Safety and effectiveness in children have not been established.

Technetium Tc 99m Human Serum Albumin, as well as other radioactive drugs, must be handled with care and appropriate safety measures should be used to minimize external radiation exposure to clinical personnel. Also, care should be taken to minimize radiation exposure to patients, consistent with proper patient management.

For ordering, customer service and technical information call toll-free: (800) 431-1146, until 7:00 p.m. Eastern Standard Time. In New York State, call (914) 351-2131, ext. 227.
An NEN commitment today to nuclear medicine's tomorrow:

Our fourth cyclotron.

Nuclear medicine depends upon industry leaders to convert its research concepts into diagnostic agents for routine clinical use. In the past seven years, nuclear medicine has learned it can depend upon New England Nuclear.

In 1979, we are adding our fourth cyclotron... so you can continue to receive all the thallium-201 and gallium-67 you need, when you need it.

In 1982—tomorrow, at nuclear medicine's pace—we'll be putting the industry's first linear accelerator into production of these important isotopes... and perhaps some new ones you may come up with and help us develop between now and then.

It takes great commitment to keep pace with you, to meet your needs for today while we're investing so heavily in tomorrow.

If that commitment came easy, our competitors wouldn't always be behind us in meeting your needs. But...
Minitec®
(Technetium Tc 99m)
Generator
Small in size and light in weight, but big in performance. That's Minitec. Designed for minimum amount of exposure to operator, its unique construction (no exposed tubing) and thick shielding (1½" lead) provide high shielding-to-activity ratio. Small-volume, high-concentration eluates give maximum flexibility for varying applications. Wide range of potencies and calibration dates fit the 99mTc needs of every lab.

Minitec (Technetium Tc 99m) Generator — the largest-selling generator in the U.S.

Squibb Technical Associates
When you buy Minitec and Squibb radiopharmaceuticals, you get the back-up service of a Squibb Technical Associate. He’s had extensive training in nuclear medicine, radiopharmaceuticals, RIA and instrumentation. Call him when a new tech needs instruction, a problem develops, you’re planning to expand, or there’s need for special information. You’ll get the prompt, personal attention of an experienced specialist.
NUCLEAR IMAGES ON KODAK FILM: SHARP.
Durable. Both films are coated on a tough 7-mil Estar base. These films resist curling or cracking and can form a convenient and reliable part of a patient's record for years to come.

Kodak NMB and NMC films can be processed in 90 seconds and are available in a variety of sheet film sizes. If you would like to know more about these and other Kodak films for nuclear medicine, ask your Kodak Technical Sales Representative, or write: Eastman Kodak Company, Health Sciences Markets Division, Dept. 740-B, Rochester, New York 14650.

© Eastman Kodak Company, 1979

INFORMATIVE. DURABLE.

Obtaining high-quality images in nuclear medicine requires both skilled personnel and valuable time. Reason enough to record the information you require on Kodak NMB or NMC film.

Sharp. Kodak NMB (blue base) and NMC (clear base) films feature single-coated emulsions to eliminate parallax. Since they are orthochromatic and, therefore, sensitive to both blue and green CRT phosphors, they record all the information on blue or green cathode-ray tubes. The built-in halation control provides for the imaging of crisp sharp dots, resulting in images with clearly defined edges.

Informative. Whether you use a multi- or single-image format, Kodak NMB and NMC films have the "view-box" quality that no other medium can match. The inherent contrast level and excellent resolution of these films enable dot concentration patterns to image both flow and uptake studies effectively.
Small black spheres number one for the table.

Small brown spheres number one for diagnosis.

Human Albumin Millimicrospheres labelled with Tc-99m appears to be an excellent agent for visualization of the Reticulo-Endothelial System and imaging of airways potency.

The answer lies in the particle size of the Millimicrospheres which reflects the strict quality control by Sorin Biomedica.

This ensures a reproducible particle size distribution where not less than 90% of the particles have a diameter between 0.3 and 0.8 μ.

Whether intravenously injected or nebulized, Millimicrospheres unequivocally represent the physiological behaviour.
Raytheon Nuclear makes your choice...
easy as 1...2...3

STEP ONE
Gamma Camera
The giant-field detector with spectacular uniformity, resolution and linearity. Unique Command Module places operator controls in the most advantageous location for all procedures.

STEP TWO
Multiformatter
"Smart" imaging device. Microprocessor-based logic lets you record permanently the diagnostic image, and all pertinent patient examination data.

AND FOR THE THIRD STEP
Raytheon's Clinical Data System
English-speaking computer with the most comprehensive software in the nuclear cardiology field, including 7-pin hole tomography, and extensive function analysis of other organs.

A packaged system—integrated, tested and serviced by one company. Single-source responsibility, backed by....

RAYTHEON NUCLEAR DIAGNOSTICS

70 RYAN STREET, STAMFORD CT. 06907, (203) 324-5803 1-800-243-9058
The Heart—

An advance from Mallinckrodt provides an excellent adjunct in the detection of myocardial infarction and the dynamic assessment of cardiac function.

TechneScan® PYP™ Kit (Stannous Pyrophosphate) for preparation of Technetium Tc–99m Stannous Pyrophosphate.

A consistent agent for skeletal imaging, TechneScan PYP is now available for use as an adjunct in the diagnosis of acute myocardial infarction, and for gated cardiac blood-pool imaging.

Investigators have found the technetium-99m pyrophosphate scintigraphic study to be a highly useful diagnostic technique for evaluating chest pain of uncertain origin.1

"The gated cardiac blood pool scan permits the calculation of both ejection and regional wall motion from a single examination."2

Mallinckrodt's TechneScan PYP...a preferred way to detect acute myocardial infarction...an advanced method to dynamically assess cardiac function.

References:

Mallinckrodt, Inc.
P.O. Box 5840, St. Louis, Missouri 63134
See reverse side for brief summary of complete prescribing information.
An advance from Mallinckrodt provides an excellent adjunct in the detection of myocardial infarction and the dynamic assessment of cardiac function.

TechneScan® PYP™ Kit (Stannous Pyrophosphate) for preparation of Technetium Tc-99m Stannous Pyrophosphate.

BRIEF SUMMARY

CLINICAL PHARMACOLOGY

When injected intravenously TechneScan PYP Tc 99m has a specific affinity for areas of altered osteogenesis. It is also concentrated in the injured myocardium, primarily in areas of irreversibly damaged myocardial cells.

One to two hours after intravenous injection of TechneScan PYP Tc 99m, an estimated 40 to 50 percent of the injected dose has been taken up by the skeleton and approximately 0.01 to 0.02 percent per gram of acutely infarcted myocardium. Within a period of one hour, 10 to 11 percent remains in the vascular system, declining to approximately 2 to 3 percent twenty-four hours post injection. The average urinary excretion was observed to be about 40 percent of the administered dose after 24 hours.

TechneScan PYP also has an affinity for red blood cells. When administered 30 minutes prior to the intravenous administration of sodium pertechnetate Tc-99m approximately 76 percent of the injected activity remains in the blood pool providing excellent images of the cardiac chambers.

INDICATIONS AND USAGE

TechneScan PYP Tc 99m is a skeletal imaging agent used to demonstrate areas of altered osteogenesis, and a cardiac imaging agent used as an adjunct in the diagnosis of acute myocardial infarction. As an adjunct in the diagnosis of confirmed myocardial infarction (ECG and serum enzymes positive), the incidence of false negative images has been found to be 6 percent. False negative images can also occur if made too early in the evolution phase of the infarct or too late in the resolution phase. In a limited study involving 22 patients in whom the ECG was positive and serum enzymes questionable or negative, but in whom the final diagnosis of acute myocardial infarction was made, the incidence of false negative images was 23 percent. The incidence of false positive images has been found to be 7 to 9 percent. False positive images have also been reported following coronary by-pass graft surgery, in unstable angina pectoris, old myocardial infarcts and in cardiac contusions.

TechneScan PYP is a blood pool imaging agent which may be used for gated cardiac blood pool imaging. When administered intravenously 30 minutes prior to the intravenous administration of sodium pertechnetate Tc-99m approximately 76 percent of the injected activity remains in the blood pool.

CONTRAINDICATIONS

None.

WARNINGS

This radiopharmaceutical should not be administered to patients who are pregnant or lactating unless the information to be gained outweighs the potential hazards.

Ideally, examinations using radiopharmaceuticals, especially those electively in nature, of a woman of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses.

Warning: Preliminary reports indicate impairment of brain scans using pertechnetate Tc-99m which have been preceded by bone scan. The impairment may result in false positives or false negatives. It is recommended, where feasible, that brain scans precede bone imaging procedures.

Radiopharmaceuticals should be used only by physicians who are qualified by specific training in the safe use and handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

The TechneScan PYP Kit must be maintained at refrigerator temperature until use.

The contents of the TechneScan PYP reaction vial are intended for use in the preparation of Technetium Tc 99m Stannous Pyrophosphate TechneScan PYP may also be reconstituted with sterile, pyrogen-free normal saline containing no preservatives and injected intravenously prior to the administration of sodium pertechnetate Tc-99m.

Sodium pertechnetate Tc-99m solutions containing an oxidizing agent are not suitable for use with the TechneScan PYP Kit.

The contents of the Kit are not radioactive. However, after the sodium pertechnetate Tc-99m is added, adequate shielding of the final preparation must be maintained.

TechneScan PYP Tc 99m should not be used more than six hours after preparation.

PRECAUTIONS

As in the use of any other radioactive material, care should be taken to insure minimum radiation exposure to the patient, consistent with proper patient management, and to insure minimum radiation exposure to occupational workers.

Bone Imaging

Both prior to and following TechneScan PYP Tc 99m administration, patients should be encouraged to drink fluids. Patients should void as often as possible after the TechneScan PYP Tc 99m injection to minimize background interference from accumulation in the bladder and unnecessary exposure to radiation.

Cardiac Imaging

Patient's cardiac condition should be stable before beginning the cardiac imaging procedure.

If not contraindicated by the cardiac status, patients should be encouraged to ingest fluids and to void frequently in order to reduce unnecessary radiation exposure.

Interference from chest wall lesions such as breast tumors and healing rib fractures can be minimized by employing the three recommended projections.

Blood Pool Imaging

TechneScan PYP should be injected by direct venipuncture. Heparinized catheter systems should be avoided.

ADVERSE REACTIONS

None.

HOW SUPPLIED

Catalog Number — 094 TechneScan PYP Kit

Kit Contains:

5 — Stannous Pyrophosphate Reaction Vials (lyophilized) for the preparation of Technetium Tc-99m Stannous Pyrophosphate.

Reaction Vial Contains:

12.0 mg sodium pyrophosphate and 3.4 mg stannous chloride (lyophilized).

Hydrochloric acid is added for pH adjustment prior to lyophilization.

5 — Radioassay Information String Tags.
The interview excerpted here was conducted with Glen W. Hamilton, M.D., Chief, Nuclear Medicine Section, Veteran's Administration Hospital, Seattle, Washington. Dr. Hamilton is also an Associate Professor of Medicine, University of Washington School of Medicine.

Q. Of the nuclear cardiology studies available in clinical practice today, which are the most difficult to interpret?

A. Thallium images are probably the most difficult to interpret, and pyrophosphate are probably the next. In about 60% of all abnormal studies, the abnormality is quite obvious. The remaining 40% are quite difficult to read. As the physician gains experience, he will be able to read about half of those with confidence, but about 20% of all thallium studies remain difficult to interpret. Experienced observers will have legitimate disagreement as to whether a given study is normal or abnormal.

Q. Which of these tests are generally the best in the assessment of left ventricular function? Is this also the best study for assessing wall motion?

A. The multiple gated blood pool study yields the greatest clinical information compared to the difficulty of performing the test and, therefore, is the one we use in our clinical practice when we wish to assess a patient's ventricular function. The best study for assessing wall motion is probably the multiple gated study. It is not perfect, in that the right ventricle and the left ventricle overlap in all but the LAO view... but for most laboratories it is the most practical way to assess wall motion.

Q. What studies would you recommend to a nuclear physician or cardiologist beginning nuclear cardiology in a community hospital?

A. I would recommend two studies: multiple gated blood pool studies, and thallium imaging. The ventricular function measurements obtained from multiple gated studies are useful not only in patients who have suspected coronary disease, but also in a wide variety of other patients, such as people with lung disease, older patients who have undetected ventricular dysfunction, or presurgical patients. Clearly, this is going to be the largest volume study, and that's the place where they should start. After doing resting ventricular function studies, they should progress to thallium imaging. Six months from now, there should be enough data available on rest/exercise ventricular function studies using multiple gated imaging to indicate whether this technique is of general usefulness.

Q. Which studies are the most difficult to perform?

A. Pyrophosphate studies are obviously the simplest to perform. The multiple gated blood pool study is performed quite simply. However, the equipment required is not present in every laboratory at the present time. Thallium, being a less ideal isotope, is probably the most difficult study, in terms of the technique required to achieve good diagnostic results.

Q. What may be the single most important use of these nuclear cardiology studies in five years?

A. First, I'm confident we will be noninvasively measuring ventricular function in a wide range of patients with various disease states — coronary artery disease, cardiomyopathy, chronic lung disease, valvular heart disease and many others. We will be able to follow these patients, correctly select the optimal time for surgical intervention, and alter medical therapy so that treatment is optimal. There's no question that this will happen. Secondly, if these tests turn out to be quite sensitive for the detection of coronary artery disease in its early presymptomatic stages, it may be possible to alter that disease by various interventions. This could become a very important national endeavor which could have far-reaching effects on health in this country.

Q. How widespread do you see these techniques becoming?

A. The need for studies of ventricular function will be comparable to the need for lung or bone scans. I really expect that most existing nuclear medicine laboratories, and, generally any hospital of two or three hundred beds, will be able to perform ventricular function studies within the next several years.

For the complete transcript of this interview with Dr. Hamilton, write Inner-View, General Electric Company, Medical Systems Division, P.O. Box 414 (Mail Code W-504), Milwaukee, WI 53201.

General Electric Medical Systems, Milwaukee, Toronto, Madrid.
The four points that really matter when buying scintillation detectors.
From the people who really know.

“Scintillation technology that sets industry standards.”
Here at Harshaw, we have complete control of our crystal growth and processing— from careful synthesis and purification of the mother chemicals to patented forging and extrusion techniques. Extensive testing ensures that each detector will function optimally in your application. Our meticulous technical approach consistently results in high-performance detectors that exceed all guaranteed performance specifications. In fact, a record 5.6% resolution was recently published for one of our sodium iodide detectors.

At Harshaw, we make scintillation crystals that set performance standards for the industry.

Mike Mayhugh, Ph.D.

“In-depth design consultation service.”
We take pride in providing in-depth design consultation service. We’ll help you not only by growing uniform, high-performance crystals, but designing the appropriate detector assembly. Tell us what your application and performance requirements are, and we’ll design detector assemblies with any configuration to solve your problem.

All members of our large staff of dedicated scintillation experts have MS degrees or better. Our experience in measuring and guaranteeing detector performance under a variety of field conditions is enhanced by the extensive in-house computer-controlled performance and environmental test equipment.

You can depend on our advice, whether you need standard scintillators or a new, unique detector assembly.

M.R. Farukhi, Ph.D.
Over forty years ago Harshaw began experimenting with crystals. We had no idea how much we'd excel. But here we are. Today we're the leader in sodium iodide scintillation detectors. And we've come up with a dozen other problem-solving crystals, too. We offer experience, in-depth service, and warranties which are second to none in the industry.

We also have a large group of multi-disciplined technical experts. They want to talk with you. But first, listen to what they have to say. They have four good reasons why it makes sense to buy detectors from Harshaw. After you hear them out, call them. And let them hear you out.

Call us at (216) 248-7400. Or write to The Harshaw Chemical Company, Crystal & Electronic Products, 6801 Cochran Road, Solon, Ohio 44139.

"Prompt delivery on standard and specialized detectors?"
We know that there are times when you can't afford to wait for a detector. To satisfy that demand we maintain the largest scintillation detector production facilities in the field, and a comprehensive inventory of standard detectors? We deliver them within one week of receipt of your order.

For detectors not in stock, simply tell us what you want and we'll quote a firm, minimum-time delivery date.

At Harshaw we know you need quality and delivery. We make it our business to give you the best of both.

Philip Parkhurst, Field Sales Manager

"Guaranteed performance and reliability?"
All Harshaw detectors come with two warranties. First, detector resolution and other requirements are mutually agreed upon by you and Harshaw. The detectors are guaranteed to meet or exceed those specifications. Photomultiplier tubes carry the manufacturers' warranty extended from date of shipment by Harshaw.

Secondly, when used in a normal laboratory environment, they carry a two-year warranty against malfunction due to faulty construction or failure of hermetic seal.

At Harshaw we have confidence in our products, and we're proud to back them up.

Elmer Stewart, Vice President
The Harshaw Chemical Company
The UNION CARBIDE Hand-held Console . . .
The Only Keyboard You Need.

- The UNION CARBIDE Large Field Gamma Camera hand-held console eliminates the need for a separate operator console.
- The hand-held console looks and works like a pocket calculator, with all controls for presetting study parameters and detector positioning.
- 15’ flexible cable provides complete freedom of movement for the operator.
- Built-in digital display indicates time, count, or count rate at the touch of a button.
- Eliminates need for a second technologist.
- The hand control isn’t the only thing we’ve done just right: even the feet of the camera are specially designed to accommodate wheelchairs, hospital beds and stretchers.

Ask UNION CARBIDE for the facts.
Union Carbide Medical Products are designed to enhance diagnosis and research, produce a return on investment, and create better health care at lower patient costs. Send today for descriptive literature. Or call for fast action.

Look Into Life . . .

Imaging Systems, Inc.
Medical Products Division
333 Providence Highway
Norwood, Massachusetts 02062
Within area 617, call 769-5400.
Outside, call 1-800-225-9887.
TELEX 924-494

Top – Hepatoma in 31-year-old female with 3.5 mCi Tc99m Sulfur Colloid.
Bottom – Subdural hematoma on left, seen in 76-year-old male with 20 mCi D.T.P.A.

Above – Diffuse metastatic disease throughout torso and limbs.
The Damon Diagnostics LiquiSol™ Cortisol I^*RI A Test System is the first to combine the benefits of liquid and solid phase technology in a single tube radioimmunoassay procedure. Precise amounts of anti-Cortisol specific antibody in solution are encapsulated within a semi-permeable nylon membrane. Hundreds of thousands of microcapsules per test produce the following results:

A Liquid Phase Reaction
- Low molecular weight Cortisol antigen moves freely through the microcapsule membrane and reacts with anti-Cortisol antibody which is in liquid medium. This procedure is both rapid and sensitive.

A Solid Phase Separation
- At completion of incubation, a simple centrifugation step separates bound from unbound antigen. Because of their density, the microcapsules can easily be separated from the supernatant.

Plus...Exclusion of Interference from Non-Specific Proteins.
- The pores of the microcapsule membrane are so formulated to exclude entrance of molecules larger than 20,000 Daltons. As a result, interfering serum proteins are excluded and do not enter into—or affect—the reaction; hence, no interference from non-specific plasma proteins. Only Cortisol is available to compete for antibody binding sites.

Cortisol
- **Stat Procedure**—Incubation time only 15 minutes (six-point curve).
- No plasma or serum extraction step.
- No dilution of patient samples, standards or controls.
- Correlates with the classic ^3H Cortisol extraction procedure.
- Normal and elevated serum controls included. Values also listed in commercial sera package inserts.
- Offers a simplified procedure for Urinary Free Cortisol.
- Sensitive and accurate.
- Test results unaffected by drugs.
- Available in 50-, 100-, 250- and 500-assay Pak sizes.

Three major advantages.

LiquiSol™ The third phase in RIA.
First-Pass Radionuclide Angiocardiography

In 8 to 10 heartbeats...

- Ejection fraction, global and regional.
- Ventricular wall motion.
- Right and left ventriculograms in any view.
- End-diastolic volume in milliliters.
- Cardiac output in liters per minute.
- Pulmonary transit time and blood volume.
- Detection of aneurysms in RAO and LAO.

The Cordis-Baird System Seventy-Seven® Gamma Camera

Telephone, toll-free 1-800-327-7820
or write, Cordis Nuclear Medical Systems
P.O. Box 370428, Miami, Florida 33137
The first true direct one-tube assay New GammaCoat™ [125I] Free/Total T4 RIA Kit

- No Total T4 necessary
- No math required
- No additional reagents
- Bench time less than 30 minutes
- Kit can assay either Free or Total T4

- GammaCoat™ coated tube simplicity—only four steps
- No centrifugation
- Minimal manipulations
- Easily automated

Send for data sheet today.

CLINICAL ASSAYS
DIVISION OF TRAVENOL LABORATORIES, INC
620 Memorial Drive, Cambridge, Mass. 02139
(617) 492-2525 • TWX: (710) 328-6460
Toll free: (800) 225-1241
In Mass. (617) 492-2526

For other worldwide locations, please contact your local Clinical Assays/Travenol representative or the International Sales Department, Clinical Assays, Cambridge, Mass. 02139 U.S.A.

Complete directions are provided with each product. These directions, should be read and understood before use. Particular attention should be paid to all warnings and precautions. Additional performance data are available. Should you have any questions, contact your Clinical Assays/Travenol representative.
A NEW DOSE CALIBRATOR WITH A MEMORY BETTER THAN YOURS.

New Micro Cal, from Picker, does everything your present isotope calibrator does — and everything you wish it did.

Micro Cal automates dose calibration. A keyboard operated microprocessor memory stores calibration factors for up to 96 radioisotopes. And an exclusive prompting panel lights up to provide the technologist with easy step-by-step instructions for each setup. Micro Cal calculates dosage, correcting for isotope decay and the time the dose is to be administered, while its printout accessory gives you a hard copy record. Micro Cal figures dosage fast and makes error virtually impossible.

Since every phase of a nuclear medicine diagnostic process begins with correct dosage, Micro Cal is the beginning of a better diagnosis. For more information, call your Picker representative or write: Picker Corporation, 12 Clintonville Rd., Northford, CT 06472, or Picker International, 595 Miner Rd., Highland Hts., OH 44143.
Protection, Visibility and Convenience…
Hi-D* lead glass syringe and vial shields.

The Nuclear Regulatory Commission now requires their Medical Licensees to use protective syringe and vial shields.

Nuclear Pacific products give you more than safe protection; they give you 360 degrees of visibility. The optical clarity and lead content of Hi-D® glass is unsurpassed in the industry. The importance of shielding has recently been re-emphasized by NRC studies that find failure to use protective shields can result in radiation dose rates to fingers and hands of 100 mrad to one rad per minute, or a projected lifetime dose of 4,000 to 100,000 rads.

Visibility allows efficient handling of radiopharmaceuticals, reducing exposure time. For 99mTc exposure, radiation protection from 10 to 40 HVL is offered in eight different models of the vial shield. Shields are available for all leading generator brands. Each shield loads with a twist and centers the vial for easy needle access to the rubber septum. Removable twist lock caps enable ease of cleaning and needle insertion.

Remember, for 30 years Nuclear Pacific, Inc., has set the standard for visibility and protection in the radiation shielding industry.

Nuclear Pacific, Inc.
6701 Sixth Ave. S., Seattle, WA 98108
(206) 763-2170

OSTEOLITE bone imaging in oncology

"Perhaps the greatest contribution of bone imaging is its superiority over conventional radiography in the detection of metastatic bone tumors."

The superior agent: OSTEOLITE™

Technetium Tc 99m Medronate Sodium Kit (MDP)

New England Nuclear®
In oncology...
for reliable early detection of bone metastases:

Most rapid blood clearance

- At 90 minutes postinjection, blood clearance of MDP pharmacologically identical to OSTEOLITE was approximately equal to that of tested pyrophosphate agents at 6 hours postinjection.
- At 3 hours, MDP blood levels were considerably less than those of tested EHDP and pyrophosphate.

Result: low-background studies, whether you must scan early to meet patient-flow demands, or at 3 hours for more optimal image detail.

Lowest soft tissue activity

The "difference in soft tissue activity (highest with polyphosphate and lowest with MDP) is discernible in clinical images."² A University of Minnesota study found that only 4% of 175 MDP images showed moderate to marked soft tissue activity, compared to 17% of EHDP images.³

Result: highest assurance of visualizing all skeletal structures.

Highest target-to-background differential

OSTEOLITE's rapid blood clearance and lower soft tissue uptake usually enable current gamma cameras to resolve peripheral skeletal structures and phalanges.

Result: confidence of detecting resolution-challenging alterations in osteogenesis...even roentgenographically "invisible" fractures and small metastases.

Convenient storage and preparation

Available in 5-vial or 30-vial "Convenience Packs;" OSTEOLITE can be stored and used at room temperature (15–30°C).

REFERENCES

3. Forstrom L et al. Data on file at New England Nuclear, Medical Diagnostics Division, North Billerica, MA
A 19-year-old male with known eosinophilic granuloma involving the mandible bilaterally was referred for a bone scan to rule out occult sites of involvement. Bone imaging with OSTEOLITE showed increased uptake in the rami of the mandible on both sides. The medial portion of the mandible anteriorly and the remainder of the skull, the spine, ribs, pelvis and long bones show no abnormalities suggestive of multiple foci of disease. The increased area of uptake around the left ankle was attributed to soft tissue swelling due to a recent ankle sprain.

Please see following page for full prescribing information.
Osteolite
Technetium Tc 99m Medronate Sodium Kit (Formerly Known as MDP)

Description: New England Nuclear's OSTEOLITE* Technetium Tc 99m Medronate Sodium Kit (formerly known as MDP) is supplied sterile and non-pyrogenic in lyophilized kit form suitable for reconstitution with sodium pertechnetate Tc 99m to form a diagnostic skeletal imaging agent for intravenous administration. Each vial contains 10mg medronate disodium, and 0.85mg sodium chloride dihydrate; pH is adjusted to between 7.0-7.5 with hydrochloric acid and/or sodium hydroxide solution. The contents of the vials are lyophilized and stored under nitrogen.

Physical Characteristics: Technetium Tc 99m decays by isomeric transition with a physical half-life of 6.02 hours. (Source: Martin, M. J. Nuclear Data Project, Oak Ridge National Laboratory, March, 1976.) Photos that are useful for imaging studies are listed in Table 1.

Table 1. Principal Radiation Emission Data—Technetium Tc 99m

<table>
<thead>
<tr>
<th>Mean %</th>
<th>Mean Disintegration Energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>88.96</td>
</tr>
</tbody>
</table>

To facilitate correction for physical decay of Technetium Tc 99m, the fractions of initial activity that remain at selected intervals after the time of calibration are shown in Table 2.

Table 2. Physical Decay Chart:

<table>
<thead>
<tr>
<th>Fraction Remaining Hours</th>
<th>Fraction Remaining Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>1</td>
<td>891.00</td>
</tr>
<tr>
<td>2</td>
<td>794.00</td>
</tr>
<tr>
<td>3</td>
<td>708.00</td>
</tr>
<tr>
<td>4</td>
<td>631.00</td>
</tr>
<tr>
<td>5</td>
<td>562.00</td>
</tr>
<tr>
<td>6</td>
<td>501.00</td>
</tr>
<tr>
<td>7</td>
<td>447.00</td>
</tr>
</tbody>
</table>

*Calibration Time

External Radiation: The specific gamma ray constant for Technetium Tc 99m is 0.8Kr/mC-hr at 1cm. The half-value layer is 0.2mm of Pb. To facilitate control of radiation exposure from millicurie amounts of Technetium Tc 99m, the use of a 6.35mm thick standard radiation shield lead shield will attenuate the radiation emitted by a factor greater than 10.

Table 3. Radiation Attenuation By Lead Shielding

<table>
<thead>
<tr>
<th>Shield Thickness (mm)</th>
<th>Coefficient of Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>0.95</td>
<td>1.0</td>
</tr>
<tr>
<td>1.8</td>
<td>1.0</td>
</tr>
<tr>
<td>2.7</td>
<td>1.0</td>
</tr>
<tr>
<td>3.6</td>
<td>1.0</td>
</tr>
<tr>
<td>4.5</td>
<td>1.0</td>
</tr>
<tr>
<td>5.4</td>
<td>1.0</td>
</tr>
<tr>
<td>6.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Clinical Pharmacology: Upon intravenous injection, Technetium Tc 99m OSTEOLITE exhibits a specific affinity for areas of altered osteogenesis. In humans, blood levels fall to 10% of the injected dose by two hours post-injection and to 3.5% by three hours. During the first 24 hours following its administration in patients with normal renal function, 50-75% of the radioactivity is excreted into the urine and less than 2% of the injected dose remains in the vascular system.

Table 4. Absorbed Radiation Dose

Technetium Tc 99m Medronate Sodium

<table>
<thead>
<tr>
<th>Total Body</th>
<th>Bone Total</th>
<th>Red Marrow</th>
<th>Kidneys</th>
<th>Liver</th>
<th>Bladder Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.70</td>
<td>0.56</td>
<td>0.62</td>
<td>0.16</td>
<td>2.60</td>
</tr>
<tr>
<td>4.8 hr void</td>
<td>5.20</td>
<td>0.24</td>
<td>0.34</td>
<td>0.16</td>
<td>0.22</td>
</tr>
</tbody>
</table>

How Supplied: NEN's OSTEOLITE* Technetium Tc 99m Medronate Sodium Kit is supplied as a set of five or thirty vials, sterile and non-pyrogenic. Each nitrogen-flushed vial contains in lyophilized form: Medronate Disodium—10mg Stannous Chloride Dihydrate—0.85mg. The pH is adjusted to between 7.0-7.5 with hydrochloric acid and/or sodium hydroxide solution. The contents of the vials were lyophilized under nitrogen. Store at room temperature (15°-30°C). Included in each five (5) vial kit is one (1) package insert and six (6) radiation labels. Included in each thirty (30) vial kit is one (1) package insert and thirty-six (36) radiation labels.

Instructions for Preparation of Technetium Tc 99m OSTEOLITE: Aspexically inject into 2-8ml of sodium pertechnetate Tc 99m (pertechnetate in isotonic saline without a bacteriostat) into the supplied vial of OSTEOLITE enclosed by a radiation shield. Swirl for at least ten seconds to dissolve completely. Label appropriately. Suitable labels have been supplied with each OSTEOLITE Kit. Use within six hours after reconstitution. For optimum results, this time should be minimized. Using proper shielding, the vial containing the reconstituted solution should be visually inspected to ensure that it is clear and free of particulate matter.

The contents of the vials are not radioactive, however, after reconstitution with sodium pertechnetate Tc 99m the contents are radioactive and adequate shielding and handling precautions must be maintained.

Do not use if there is a vacuum in the immediate drug container or if air is injected into the container when the dose is withdrawn.

Catalog Number NRP-420 (5 vial kit) NRP-420C (30 vial kit)
Everything medical imaging cameras should do, that is. Effortlessly. Automatically. Excellently, in over 1,000 new installations a year. Matrix video cameras embody the latest in video, optical and microprocessor technology. They handle the relatively diverse demands of ultrasound and nuclear computers as well as the special, high line rate requirements of CT or fluoroscopy reproduction. They give you quality images, from which you can diagnose confidently.

The video cameras that do everything are the only ones which automatically adjust exposure time. Other camera systems make you do it manually. We think you have enough to do. Matrix cameras have a photometer which measures a calibration pattern. Before each exposure, it reads light levels, compares them with optimum values and adjusts accordingly. Automatically. All in a quarter of a second. You can be confident the scans you do at the end of the day will have the same gray scale content as the ones you do at the beginning of the day.

The “do-everything” cameras have the widest selection of image size formats to meet the needs of your lab or service. With the Multi-Imager 7 as many as 8 different ones. With the Video Imager, as few as one. Flexibility from a single large image to 25 slide size images. Film sizes of 8”x10” and 11”x14”. All from one camera!

Most of all, you get excellent, effortless diagnostic images, automatically. Nothing less than you’d expect from the camera that does everything but develop the film... AND THAT'S NEXT, FROM MATRIX.

8 MATRIX INSTRUMENTS
230 Pegasus Ave., Northvale, N.J. 07647
(201) 767-1750 Toll Free: (800) 526-0274
Telex: 135131
Worldwide sales and service.
Contact international department.

Please send more Information and sample studies.

☐ Ultrasound ☐ Nuclear Medicine
☐ CT ☐ Computer
☐ Nuclear Medicine Gamma Camera ☐ Fluoroscopy

Name__________________ Title__________________
Hospital________________ Doctrine__________________
Address__________________
City__________________ State__________ Zip______
thrombosis
detection of DVT using I-125 fibrinogen

Direct digital percent readout
Printout saves time
Bedside operation
Right angle probe minimizes
patient disturbance
Controls are on probe
Operator error protection
Versatile — settable for other isotopes

TECHNICAL ASSOCIATES
7051 ETON AVE. • CANOGA PARK, CA. 91303 (213) 883-7043
Total and Unconjugated Estriol RIA Kits
for fetal monitoring in late pregnancy
HPL RIA Kit
for placental function throughout pregnancy
FSH and LH RIA Kits
for hormone assays in fertility testing

The Amersham advantage in OB-Gyn RIA testing
Simplicity

- Fast
- Reproducible
- Accurate
- Clinically validated

In fertility studies and assessment of fetal-placental function, you can depend on the Amersham RIA Kits for rapid, reproducible and precise answers, test after test after test.

Clinically Documented
All the kits are supported by Amersham's clinical investigations. The data obtained in these investigations is published in the package insert and underlines the Amersham advantages of these kits performing optimally in the clinical environment.

Amersham

2636 S. Clearbrook Dr., Arlington Heights, IL 60005
312/364-7100 or 800/323-0668 (toll free)

In Canada
505 Iroquois Shore Rd., Oakville, ONT L6H 2R3
416/842-2720 or 800/268-5061 (toll free)
instant kits for complete quality control of radiopharmaceuticals

QUICK - 3 to 5 minutes to complete
EFFICIENT - same technique for all products
ECONOMICAL - more tests for more products
EASY - all solvents, strips and vials color coded

*CHROMATOGRAPHY KIT A 202 For the radiochemical determination of Tc-99m labeled MAA, microspheres, sulfur colloid, polyphosphate, diphosphonate, pyrophosphate, DTPA, and glucoheptonate, phytate, methylene diphosphonate.

*CHROMATOGRAPHY KIT B 303 For the radiochemical determination of Tc-99m labeled DMSA and DHTA.

*CHROMATOGRAPHY KIT B 313 For the radiochemical determination of Tc-99m labeled H.S.A. (double chromatography system).

*ALUMINUM BREAKTHRU KIT C 404 For the determination of aluminum ion concentration in Tc-99m pertechnetate eluate.

*CHROMATOGRAPHY KIT D 505 For the radiochemical determination of I-131, I-125, and I-123 labeled sodium iodide, RISA, iodocholesterol, iodohippurate, and rose bengal.

*CHROMATOGRAPHY KIT E 606 For the radiochemical determination of In-111 DTPA and Y6-169 DTPA.

Representative inquiries invited.

Please send me information on the above kits.

Name ____________________
Title ____________________
Institution ____________________
Address ____________________
City ____________________ Zip ________

Patent applied for.
Medi-Ray announces . . .

SURVEY METER
CALIBRATION and REPAIR SERVICE

The Medi-Ray Survey Meter Calibration and Repair Service is designed to provide reliable, competent calibration and repair for the areas of Nuclear Medicine, Radiology, Research and Industry. Our service incorporates the latest techniques and facilities, as well as a staff of highly qualified personnel functioning in the latest and most modern of environments. The result is the highest quality service at a reasonable cost to the customer.

Types of Meters:
- Ionization Chamber
- Geiger — Mueller
- Scintillation

Features:
- New York State Licensed Laboratory
- Three calibration points on each range
- Accuracy ± 10% of indicated reading
- Low cost — $50.00 meter calibration
 $50.00 repair service (excluding GM tube replacement)
- Rapid turnaround

For information, write or call collect:
Medi-Ray, Inc. / 150 Marbledale Rd. / Tuckahoe, N.Y. 10707
(914) 961-8484

Medi-Ray, Inc.
NEW
THE XenaCon FROM RADX

A spirometer xenon rebreathing device for less than $2500!!! Impossible? Almost, but we did it! We used the technology and know-how gained from 5 years of experience with the Ventil-Con and created the first low-cost spirometer xenon unit.

XenaCon I basic spirometer unit
XenaCon II spirometer unit with built-in Xenon Trap
XenaCon III spirometer unit with Xenon Trap and Xenon Trap Exhaust Port Monitor detector/alarm system

PERTINENT SPECIFICATIONS

Mobility: all units are highly mobile, making bedside studies practical
Unit dead space: less than 25 ml in both washout and rebreathing
Spirometer volume: 0-10 liters
Breathing resistance: less than 0.1 inch of water to normal breathing
Shielding: spirometer area — 1/8 inch lead trap area — ¼ inch lead
Oxygen replenishment: manual pushbutton valve
Xenon injection port: located in head valve for either direct bolus or homogeneous mixture patient administration

Bacteriological filter: inline autoclavable bacteriological filter
CO₂ trap: high capacity, easy access CO₂ trap
Xenon trap cartridge pack: New vertical activated Charcoal cartridge pack eliminates channeling

For more information, call or write Radx today.

RADX
P.O. Box 19164 • Houston, Texas 77024
713-468-9628
Decrease the amount of oxygen you add daily and reduce the effect of one more variable from your radiopharmacy. Use Low Dissolved Oxygen saline when preparing kits containing any stannous tin products.

*less than 5 ppm
The applications for high quality, single frame photographs from your multi-image camera are many: therapy planning, teaching files, surgical reference, group viewing and display. The ways to get this added capability are two. The complicated way is to try to make a single-film camera do double duty. Then you have to change films when you want to change formats, losing your place in mid-sequence, coping with dark slides and cassettes, upsetting video calibration...

The elegant way is to combine two cameras in one. Like the Model 414 Dual Format Camera, which provides uninterrupted four-image and single-image operation. Two sheets of film in tandem cassettes. Two fine, on-axis Schneider lenses. Both photographing from the extraordinary new flat-faced Tektronix 634 video monitor with 1400 lines resolution. All fully automated by microprocessor control electronics.

Superb simplicity. From the originators of multi-image camera design. Dunn Instruments, Inc., 544 Second Street, San Francisco, California 94107. (415) 957-1600.

The Model 414 Dual Format Camera by Dunn Instruments
From 1 km the earth is flat.
From 10 km the earth is flat.
From 100 km the earth is round...
...at last.

TCK-15-S has the widest diagnostic spectrum...
at last.

Many hepatobiliary agents are fine for bilirubin levels up to 10 mg/100 ml. But only TCK-15-S allows diagnosis in icteric patients where the bilirubin level may be as high as 25 mg/100 ml.

SORIN allows "the earth to be seen as round". TCK-15-S is a kit for labelling p-butyl Iminodiacetic Acid (IDA) with Tc-99m and is characterised by very low renal excretion and negligible bilirubin dependency.
INTRODUCING...

Our latest Evolutionary Technetium delivery system.

As nuclear medicine has matured and progressed so has the development of the Ultra-Technekow® FM Tc99m Generator. In keeping pace with the changing needs of the nuclear medicine community, we have redesigned the Ultra-Technekow system and further refined those features that have, through the years, made the Ultra-Technekow Generators among the safest, easiest-to-operate, and most reliable performing technetium delivery systems in the world.

An important part of the total system is our commitment to provide the best overall, on-time-delivery record in the industry. The Customer Service people have established a reputation for solving some of the most difficult routing problems imaginable.

We invite you to evaluate our evolutionary system and challenge the people in Customer Service to demonstrate why they're the best, at what they do, in the industry. Contact your local Mallinckrodt representative or call Don Burkhead at 314-895-0247.

Mallinckrodt's Ultra-Technekow® FM (TECHNETIUM Tc 99m) Generator.

Here are a few of the changes that make the latest Ultra-Technekow easier to use and more reliable than ever:

- **Redesigned canister:**
 For easier lifting and maneuverability, the canister has a large firm top handle. Change in design simplifies engaging and removing the Luer-lock needle on a daily basis; an important feature in maintaining sterile elution technique.

- **New valve system:**
 Provides positive protection against accidental elution or leakage.

- **Better shielding:**
 To reduce radiation levels during elution, an additional lead plate has been inserted inside between the tubing and the canister.
 A redesigned auxiliary shield is available that provides added reduction in surface radiation levels on all sides and the top.

- **Reduced weight (smaller units):**
 A change in the configuration of the internal column shield allows weight reduction of our smaller generators.

See following page for brief summary.
INTRODUCING...

Our latest Evolutionary Technetium delivery system.

Ultra-TechneKow® FM
(Technetium Tc-99m Generator)
For the Production of Sodium Pertechnetate Tc 99m

DESCRIPTION

The Ultra-TechneKow FM Generator is prepared with fission-produced molybdenum-99. This generator provides a closed system for the production of sterile metastable technetium-99m, which is produced by the decay of molybdenum-99. Sterile, pyrogen-free isotonic solutions of Sodium Pertechnetate Tc 99m can be obtained conveniently by periodic aseptic elution of the generators. These solutions should be crystal clear.

The generator consists of a sealed glass chamber containing specially processed alumina. This treated alumina has a high absorption capacity for molybdenum-99 and a low affinity for technetium-99m. As a result, elution of the generator yields a solution of technetium-99m containing negligible amounts of molybdenum-99.

ACTIONS

The pertechnetate ion distributes in the body similarly to the iodide ion but is not organified when trapped in the thyroid gland. Pertechnetate tends to accumulate in intracranial lesions with excessive neovascularity or an altered blood-brain barrier. It also concentrates in thyroid gland, salivary glands, stomach and choroid plexus. After intravascular administration it remains in the circulatory system for sufficient time to permit blood pool, organ perfusions, and major vessel studies. It gradually equilibrates with the extracellular space. A fraction is promptly excreted via the kidneys.

INDICATIONS

Sodium pertechnetate Tc-99m is used for brain imaging, thyroid imaging, salivary gland imaging, placenta localization and blood pool imaging.

CONTRAINdications

None.

WARNINGS

This radiopharmaceutical should not be administered to patients who are pregnant or during lactation unless the information to be gained outweighs the potential hazards.

Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of a woman of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses.

Radiopharmaceuticals should be used only by physicians who are qualified by specific training in the safe use and handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

PRECAUTIONS

As in the use of any other radioactive material, care should be taken to ensure minimum radiation exposure to the patient, consistent with proper patient management, and to insure minimum radiation exposure to occupational workers.

At the time of administration the solution should be crystal clear.

ADVERSE REACTIONS

None.

DOSAGE AND ADMINISTRATION

Sodium pertechnetate Tc-99m is usually administered by intravascular injection but can be given orally. The dosage employed varies with each diagnostic procedure.

The suggested dose range employed for various diagnostic indications in the average patient (70 kg) is:

- Brain imaging: 10 to 20 mCi
- Thyroid gland imaging: 1 to 10 mCi
- Salivary gland imaging: 1 to 5 mCi
- Placenta localization: 1 to 3 mCi
- Blood pool imaging: 10 to 20 mCi

NOTE: Up to 1 gram of reagent grade potassium perchlorate in a suitable base or capsule may be given orally prior to administration of sodium pertechnetate Tc-99m injection for brain imaging, placenta localization and blood pool imaging.

The patient dose should be measured by a suitable radioactivity calibration system immediately prior to administration.

HOW SUPPLIED

The Ultra-TechneKow FM (Technetium Tc 99m) Generators contain the following amount of molybdenum-99 at the time of calibration stated on the label.

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Curies</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.25</td>
</tr>
<tr>
<td>101</td>
<td>0.50</td>
</tr>
<tr>
<td>106</td>
<td>0.75</td>
</tr>
<tr>
<td>102</td>
<td>1.0</td>
</tr>
<tr>
<td>103</td>
<td>1.5</td>
</tr>
<tr>
<td>104</td>
<td>2.0</td>
</tr>
<tr>
<td>105</td>
<td>2.5</td>
</tr>
<tr>
<td>107</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Each generator is supplied with the following components for the elution of the generator:

6—Sterile, graduated, evacuated collecting vials
6—Sterile Luer-Lock needles with plastic covers
6—Pressure-sensitive “Caution—Radioactive Material” collecting vial labels
6—Pressure-sensitive radioassay data labels for lead dispensing shield

EVACUATED COLLECTING VIALS. Collecting vials are available on request in 5, 10 and 30 milliliter sizes.

Malinckrodt, Inc.
P.O. Box 5840
St. Louis, MO 63134
Results obtained using the Dymax-MB Mobile Camera with its powerful minicomputer data processor, clearly demonstrate the advantages of radiocardiology as a diagnostic technique. Dymax-MB is compact, fully mobile and simple to operate. The camera produces studies with excellent resolution and uniformity at both low and high countrates, while the self-contained processor provides instant clinical analysis of the data. Among the heart functions which can be studied "live" are wall motion, ejection fraction, cardiac output, interventricular shunts and other parameters of major importance.

Analytical procedures are speeded by automatic repeat of previously established protocols. On-the-spot analysis enables the attending physician to immediately evaluate results, eliminating the delays of batch processing at a central installation, thus maximising the efficacy of the Dymax-MB.

Check for yourself the significant advantages of this highly efficient clinical tool.

You can:
- Spare your patient the trauma of catheterization.
- Complete the diagnosis at the patient's bed-side, sparing him exhausting movement to overburdened laboratories.
- Receive pre-processed data for more rapid and detailed interpretation than was possible with earlier techniques.

Until you examine the performance of this outstanding unit, you haven't heard the last word. Call us or write for more information or demonstration.

The elscint commitment to excellence
DTPA KIT
TECHNETIUM TC 99m PENTETATE KIT

Brief summary of package insert. Before using, please consult the full package insert included in every kit.

DESCRIPTION
The kit contains 10 vials, each vial containing 5 mg sterile, pyrogen-free Sodium salt of Diethylenetriamine-pentaacetic Acid (DTPA) and 0.25 mg Stannous Chloride.

Administration is by intravenous injection for diagnostic use. The product supplied is sterile and pyrogen-free.

When sterile, pyrogen-free Sodium Pertechnetate Tc 99m is added to the vial, a chelate, Technetium Tc 99m DTPA is formed.

HOW SUPPLIED
Diagnostic Isotopes' DTPA Kit is supplied as a sterile, pyrogen-free kit containing 10 vials. Each vial contains 5 mg of Sodium salt of DTPA and 0.25 mg of SnCl2. The pH is adjusted with HCl or NaOH prior to lyophilization. Following lyophilization the vials are sealed under a nitrogen atmosphere.

CLINICAL PHARMACOLOGY
Following its intravenous administration, technetium Tc 99m DTPA rapidly distributes itself throughout the extracellular fluid space from where it is (promptly) cleared from the body by glomerular filtration.

There should be little or no binding of the chelate by the renal parenchyma. A variable percentage of the Technetium Tc 99m DTPA binds to serum proteins; this ranges from 3.7% following the single injection to approximately 10% if the material is continuously infused. Although the chelate gives useful information on the glomerular filtration rate, the variable percent which is protein bound leads to a measured glomerular filtration rate which is lower than the glomerular filtration rate as determined by inulin clearances.

Technetium Tc 99m DTPA tends to accumulate in intracranial lesions with excessive neoangiogenesis or an altered blood-brain barrier. The chelate does not accumulate in the choroid plexus.

Since Technetium Tc 99m DTPA is excreted by glomerular filtration, the images of the kidneys obtained in the first few minutes after injection represent the vascular pool within the kidney. Subsequent images of the kidneys represent radioactivity which is in the urine of both the collecting system and the renal pelvis.

INDICATIONS AND USAGE
Technetium Tc 99m DTPA may be used to perform kidney imaging, brain imaging, to assess renal perfusion, and to estimate glomerular filtration rate.

CONTRAINDICATIONS
None known.

WARNINGS
Technetium Tc 99m DTPA should not be administered to children or to patients who are pregnant, or to nursing mothers unless the benefits to be gained outweigh the potential hazards.

Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of a woman of child-bearing capability should be performed during the first few (approximately 10) days following the onset of menses.

PRECAUTIONS
Technetium Tc 99m DTPA as well as other radioactive drugs must be handled with care and appropriate safety measures should be used to minimize external radiation exposure to clinical personnel. Also, care should be taken to minimize radiation exposure to patients consistent with proper patient management.

To minimize radiation dose to the bladder, the patient should be encouraged to void when the examination is completed and as often thereafter as possible for the next 4-6 hours.

ADVERSE REACTIONS
No adverse reactions specifically attributable to the use of Technetium Tc 99m DTPA have been reported.

DOSEAGE AND ADMINISTRATION
The suggested dose range for IV administration to be employed in the average patient (70 kg) is:

Kidney imaging and glomerular filtration rate estimation: 3 to 5 mCi.

Brain imaging or renal perfusion: 10 to 20 mCi.
By the time some people can say:

"DIETHYLENETRIAMINEPENTACETIC ACID AND STANNOUS CHLORIDE IN A LYOPHILIZED STATE UNDER NITROGEN"

You've got it mixed and ready to use!

Unless you're in the business, this tongue-twister may tie you up for some time. However, it only takes one minute of mixing time to prepare Diagnostic Isotopes' one-step Technetium Tc 99m DTPA agent for injection.

DTPA becomes Technetium Tc 99m DTPA after adding sodium pertechnetate Tc 99m. Technetium Tc 99m DTPA may be used to perform kidney imaging, brain imaging, to assess renal perfusion and to estimate glomerular filtration rate.

Each DTPA kit contains 10 vials. The product is sterile, pyrogen-free, has a labeling efficiency of over 90% and a shelf life of one year... all good reasons for ordering now.

See opposite page for a brief summary of the package insert.

Our quality helps your image

diagnostic isotopes incorporated
225 Belleville Avenue, Bloomfield, NJ 07003
in N.J. (201) 429-7590 Toll Free: (800) 631-1260 Telex: 133393
Kits Available: Polyphosphate, Diphosphonate, DTPA, MAA, HSA, MDP.
Prepared Radiopharmaceuticals Available: Gallium Citrate Ga 67,
Selenomethionine Se 75, Xenon-133 (solution or gas)
Diagnostic Products Corporation has eliminated the possibility of false negatives in vitamin B-12 testing. We've done it by purifying the intrinsic factor in our ^{57}Co Vitamin B-12 kit. So nonspecific R-proteins are removed. The result is extremely high specificity for cobalamin (B-12). And our new purified binder has no cross-reactivity with cobalamin analogues.

That's why we've seen such excellent correlation of patient samples with the microbiological technique of testing. Our new B-12 kit has a lot of other things going for it. For example: It discriminates the crucial range below 200-pico grams for anemic patients. • It has the same normal range as our analogue-blocked kit • Kit includes a 50-pico gram calibrator for clear delineation of subnormal patient samples • Choice of charcoal tablet or charcoal slurry. And our new purified binder is available in our ^{57}Co Vitamin B-12 and Dualcount® kit, too. If you'd like to put our new purified binder to the test, write:

Diagnostic Products Corporation
12306 Exposition Boulevard, Los Angeles, CA 90064. Call toll-free (800) 421-7171 or collect in California (213) 826-0831. In Canada, call Intermedico collect (416) 444-0732.

*For the simultaneous measurement of vitamin B-12 and folate.
THE RIGHT PATIENT,
THE RIGHT ACTIVITY,
THE RIGHT DOSE.
THAT'S THE TICKET.

Wherever your mobile camera goes — ICU, CCU, Cath Lab, Surgery, Orthopedics — throughout the hospital — our CRC®-30’s data ticket goes right along.

The CRC-30 Radioisotope Calibrator/Computer/Printer/Radiochemical Purity Analyzer System provides for patient ID, dose information, activity data, and more. All to keep you in compliance with Federal Regulations.

Best of all, the CRC-30 prints these tickets in triplicate, one for Nuclear Medicine, one accompanies the dose and one for accountability.

If you’re on the move with mobile imaging, get the ticket (and calibrator system) that lets you go first class.

The CRC-30 from Capintec.

YOUR CRC-30 TICKET...DON'T LEAVE NUCLEAR MEDICINE WITHOUT IT.
If you ordered only a perfusion lung scan on this patient...
...you could have missed the diagnosis.
The new definition of "lung scan"

Ventilation + Perfusion

SPECIFICITY

Xenon-133 ventilation lung imaging reliably increases the specificity of the perfusion study by demonstrating regions of abnormal perfusion—normal ventilation (strongly suggesting PE) or of abnormal perfusion—abnormal ventilation (COPD, effusion or infiltrate).

SENSITIVITY

Perfusion lung imaging is recognized as the most sensitive noninvasive means of detecting pulmonary embolism (PE). Almost every patient with PE will have an abnormal study—while a normal study virtually rules out PE. But perfusion defects are nonspecific, since both vascular disorders, such as PE, and parenchymal disease or effusion alter pulmonary perfusion.

30-year-old female, 7 years oral contraceptive use, presented with 10-day history of increasing shortness of breath, dyspnea and nonproductive cough. No history of hemoptysis, fever or thrombophlebitis. Bilateral wheezes and rhonchi. Chest X-ray normal. Sent to nuclear medicine with suspected pulmonary embolism. Perfusion lung images showed multiple peripheral defects, many concave and wedge-shaped. The ventilation study showed severe bilateral air trapping, particularly lower lobes, corresponding in distribution to perfusion defects. Studies compatible with alpha-1-antitrypsin deficiency, confirmed by laboratory tests.

For convenient, safe ventilation imaging

Xenon Xe 133 Gas

(CALIDOSE) Dispensing System

For high-quality perfusion lung imaging

PULMOLITE™

Technetium Tc 99m Aggregated Albumin Kit

Please see following page for full prescribing information.
Xenon Xe 133 Gas

DESCRIPTION: Xenon Xe 133 for diagnostic use is available at 5% gas in carbon dioxide base 85%. ACTIONS: Xenon Xe 133 is a radioisotopic gas which is a neutral uncharged molecule produced by neutron activation of xenon 132 followed by 13 nuclear disintegration and product. It tends to concentrate more in a body than in blood, plasma, water or protein tissues. In the concentration for diagnostic isotope xebra Xe 133 gas enters the alveolar wall and enters the pulmonary venous system as capillaries. The alveolar Xe 133 washout from the single breath is returned to the lungs and alveoli after a single pass through the pulmonary circulation.

CONTRAINDICATIONS: Xenon Xe 133 gas has not been proved valuable for the evaluation of pulmonary function and for measuring the lungs. It may also be applied to assessment of cardiac function.

PRECAUTIONS: To date, no known contraindications to the use of xenon Xe 133 gas has been reported.

BIBLIOGRAPHY: There has been no discussion on the need to administer to pregnant or lactating women because the safety of xenon 133 gas to these groups has not been evaluated.

PULMOTM

Technetium Tc 99m Aggregated Albumin Kit

AUGUST 1976

DIAGNOSTIC FOR INTRAVENOUS USE

DESCRIPTION: Each vial of PULMOTM is Tc 99m Aggregated Albumin Kit contains a preservative-free solution of high purity technetium Tc 99m aggregated albumin. Each vial contains 3.48 x 10E6, 1.3 x 10E7, 6.8 x 10E7, and 3.4 x 10E8 99mTc aggregated albumin particles to a maximum of 15.0 picograms of technetium Tc 99m per vial. The radiopharmaceutical is intended for intravenous injection. The specific activity of technetium Tc 99m aggregated albumin is greater than 5 x 10E6 99mTc particles per microliter of solution.

PHYSICAL CHARACTERISTICS: Technetium Tc 99m decays by electron capture with a physical half life of 6.03 hours. (1) Please refer to the label for storage and expiration dates.

Table 1. Principle Radiation Emission Data

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Mean %</th>
<th>Energy</th>
<th>Energy</th>
<th>Mean</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc 99m</td>
<td>100</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Tc 99m</td>
<td>100</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Tc 99m</td>
<td>100</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Tc 99m</td>
<td>100</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Table 2. Radiation Attenuation by Light Scattering

<table>
<thead>
<tr>
<th>Scattered Light (mm)</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.000</td>
</tr>
<tr>
<td>0.05</td>
<td>0.005</td>
</tr>
<tr>
<td>0.10</td>
<td>0.010</td>
</tr>
<tr>
<td>0.20</td>
<td>0.020</td>
</tr>
<tr>
<td>0.40</td>
<td>0.040</td>
</tr>
<tr>
<td>0.60</td>
<td>0.060</td>
</tr>
<tr>
<td>1.00</td>
<td>0.100</td>
</tr>
</tbody>
</table>

For correction of photoelectric and Compton scatter, the fractions that remain at selected areas are shown in Table 3.

Table 3. Pulmonary Decay Chart: Tc 99m Half-Life 6.03 Hours

<table>
<thead>
<tr>
<th>Hour</th>
<th>Fraction Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>861</td>
</tr>
<tr>
<td>2</td>
<td>788</td>
</tr>
<tr>
<td>3</td>
<td>712</td>
</tr>
<tr>
<td>5</td>
<td>685</td>
</tr>
<tr>
<td>7</td>
<td>652</td>
</tr>
<tr>
<td>9</td>
<td>621</td>
</tr>
</tbody>
</table>

The recommended number of aggregated albumin particles to be administered per day is 200 x 10E6 (200 million). The maximum number of aggregated particles is 200 x 10E6.

For ease and accuracy in preparing the agent, it is recommended that the suspension be diluted with a radioactive solution of 500 x 10E6 aggregated particles to further dilute to a volume of 1% of each treatment, for the dose required for each treatment.

Table 4. Table of Percentages of Patients who have been Treated

<table>
<thead>
<tr>
<th>Recombination Activity (mCi)</th>
<th>1 mCi</th>
<th>3 mCi</th>
<th>6 mCi</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
</tr>
<tr>
<td>50</td>
<td>0.15</td>
<td>0.35</td>
<td>0.50</td>
</tr>
<tr>
<td>100</td>
<td>0.08</td>
<td>0.25</td>
<td>0.30</td>
</tr>
</tbody>
</table>

The number of particles per milliliter is 1 x 10E7, the number of particles per 0.25 x 10E6, and the number of particles per 0.50 x 10E6.

DOSIMETRY

The absorbed radiation dose (D) to an average person (107g) from a source of 1 x 10E7 particles is 0.025 mSv.

Table 5. Radiation Dose

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Whole Body Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>0.02</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.003</td>
</tr>
<tr>
<td>Dose</td>
<td>0.003</td>
</tr>
</tbody>
</table>

(1) (Method of Calculation: A Scheme for Absorbed Dose Calculations for Biologically Relevant Radionuclides, Supplement 1, N. M. P. No. 1, 17, 1976)

BIBLIOGRAPHY: Tc 99m aggregated albumin is a system that contains 3.4 x 10E6 to 6.8 x 10E7 particles in a volume of 1% of 10E6 particles.

Table 6. Summary of the Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.025</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.003</td>
</tr>
</tbody>
</table>

PULMOTM contains no preservatives, after reconstitution the solution should be stored at room temperature and used immediately.

DIRECTIONS

Aspirate approximately equal amounts of aggregated albumin Tc 99m, containing about 20 to 50 million particles per ml, into a sterile syringe and use the solution without delay.

(1) (Method of Calculation: A Scheme for Absorbed Dose Calculations for Biologically Relevant Radionuclides, Supplement 1, N. M. P. No. 1, 17, 1976)

BIBLIOGRAPHY: Tc 99m aggregated albumin is a system that contains 3.4 x 10E6 to 6.8 x 10E7 particles in a volume of 1% of 10E6 particles.

Table 7. Summary of the Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.025</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.003</td>
</tr>
</tbody>
</table>

PULMOTM contains no preservatives, after reconstitution the solution should be stored at room temperature and used immediately.

DIRECTIONS

Aspirate approximately equal amounts of aggregated albumin Tc 99m, containing about 20 to 50 million particles per ml, into a sterile syringe and use the solution without delay.

(1) (Method of Calculation: A Scheme for Absorbed Dose Calculations for Biologically Relevant Radionuclides, Supplement 1, N. M. P. No. 1, 17, 1976)

BIBLIOGRAPHY: Tc 99m aggregated albumin is a system that contains 3.4 x 10E6 to 6.8 x 10E7 particles in a volume of 1% of 10E6 particles.

Table 8. Summary of the Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.025</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.003</td>
</tr>
</tbody>
</table>

PULMOTM contains no preservatives, after reconstitution the solution should be stored at room temperature and used immediately.

DIRECTIONS

Aspirate approximately equal amounts of aggregated albumin Tc 99m, containing about 20 to 50 million particles per ml, into a sterile syringe and use the solution without delay.
GALLIUM CITRATE Ga 67
Injection
Diagnostic Sterile Solution
ADDs A NEW INDICATION

Lymphoma
Hodgkin’s Disease
Bronchogenic Carcinoma
Focal Inflammatory Lesions

Abdominal (retroperitoneal, subphrenic) and thoracic abscesses
Osteomyelitis
Surgical or trauma wounds
Peritonitis
Cystitis
Active tuberculosis
Pyelonephritis

Now, the precise indications for gallium-67 imaging have been expanded by Mallinckrodt to include focal inflammatory lesions.

Gallium-67 has been shown to be useful as an adjunct in the diagnosis of focal areas of infection, such as abdominal (retroperitoneal, subphrenic) and thoracic abscesses, osteomyelitis, and surgical wounds.

A positive gallium-67 study usually indicates the presence of pathology. However, care must be taken to distinguish malignant from benign lesions. A negative study cannot be definitely interpreted as ruling out the presence of disease; therefore, a negative finding should always be supported by negative clinical findings and other diagnostic procedures.

Put Mallinckrodt Gallium Citrate Ga 67 in your active file... a good resource for diagnostic imaging.
GALLIUM CITRATE Ga 67
Injection
Diagnostic
Sterile Solution
ADDS A NEW INDICATION

Brief Summary:

INDICATIONS AND USAGE
Gallium Citrate Ga 67 may be useful to demonstrate the presence and extent of Hodgkin's Disease, lymphoma, bronchogenic carcinoma, and focal inflammatory lesions. Positive Gallium Ga-67 uptake in the absence of prior symptoms warrants follow-up as an indication of a potential disease state.

CONTRAINDICATIONS
None known.

WARNINGS
Gallium Citrate Ga 67 should not be administered to children or to patients who are pregnant or to nursing mothers unless the information to be gained outweighs the potential hazards. If this drug is administered to nursing mothers, artificial feeding should be temporarily substituted for the mother's milk. Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of women of childbearing capability, should be performed during the first few (approximately ten) days following the onset of menses.

PRECAUTIONS
A thorough knowledge of the normal distribution of intravenous administered Gallium Citrate Ga 67 is essential in order to accurately interpret pathologic states. The finding of an abnormal Gallium Ga-67 concentration usually implies the existence of underlying pathology, but further diagnostic studies should be done to distinguish benign from malignant lesions. Gallium Citrate Ga 67 is intended for use as an adjunct in the diagnosis of certain neoplasms as well as focal areas of infection. Certain pathologic conditions may yield up to 40 percent false negative Gallium Ga-67 studies. Therefore, a negative study cannot be definitely interpreted as ruling out the presence of disease.

Adequate reproduction studies have not been performed in animals to determine whether the drug affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Gallium Citrate Ga 67 should be used in pregnant women only when clearly needed.

Safety and effectiveness in children have not been established. As in the use of any radioactive material, care should be taken to minimize radiation exposure to the patient consistent with proper management and to insure minimum radiation exposure to occupational workers.

Radiopharmaceuticals should be used only by physicians who are qualified by training and experience in the safe use and handling of radionuclides and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.

ADVERSE REACTIONS
None have been reported.

DOSE AND ADMINISTRATION
The recommended adult (70 kg) dose of Gallium Citrate Ga 67 is 2-5 mCi. Gallium Citrate Ga 67 is intended for intravenous administration only.

The patient dose should be measured by a suitable radioactivity calibration system immediately prior to administration.

HOW SUPPLIED
Gallium Citrate Ga 67 sterile solution is available in 3 mCi, 6 mCi and 12 mCi vials on calibration date. Each ml contains 2 mCi of Gallium Ga-67 on the calibration date, as a complex formed from 8.3 mg gallium chloride Ga-67, 1.9 mg of sodium citrate, 7.6 mg of sodium chloride, 0.9% benzyl alcohol v/v as preservative. The pH is adjusted to between 5.5-8.0 with hydrochloric acid and/or sodium hydroxide solution.
The never ending struggle for product popularity often leads a manufacturer to add gadgets. It's called "one-upmanship." We sometimes lose sight of what YOU, the user, wants.

By customer demand, Radx has gone "Back to Basics" and developed the Assayer 1, a simple dosecalibrator, a reliable dose-calibrator, an economical dosecalibrator.

The return to basics does not require a return to the 1960's technology. The Assayer 1 is microprocessor controlled, totally solid state, with a method of isotope selection way ahead of its time (an optical scanner) which is so precise, reproducible, and reliable that it will soon be copied.

It is not a gadget, it calibrates doses accurately, with precision and unprecedented reliability. It's the Assayer 1—$2950.

Call today for the last dosecalibrator you'll ever own.

RADX

P.O. Box 19164 • Houston, Texas 77024 • (713) 468-9628
PLACEMENT

POSITIONS OPEN

NUCLEAR MEDICINE TECHNOLOGIST
Immediate openings in expanding 167 bed hospital for experienced tech or recent grad registry eligible. Salary commensurate with experience. Excellent benefits package. Submit resume to: Personnel Director, Box 340, Cookeville, Tennessee 38501, or call Allison (collect) (615) 528-2541. An equal opportunity employer.

NUCLEAR MEDICINE PHYSICIAN, THE Division of Nuclear Medicine at the Hospital of the Univ. of Pennsylvania has as opening at the Asst. Prof. level. Strong background in both clinical and research nuclear medicine desirable. Well equipped Division with modern imaging instruments, computers and a cardiovascular Nuclear Medicine facility in ICU area. PETT scanner will be installed shortly. Excellent research opportunities. Contact Abass Alavi, M.D., Chief, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104.

REGISTERED NUCLER MEDICINE Technologist. Enjoy year-round, outdoor living in sunny Florida and have the chance of being with an unusually progressive department in a modern 550 plus bed Hospital. This is a permanent, full-time position and will provide excellent experience and opportunity for continued learning in all phases of in vivo and in vitro procedures-including computer applications. Requests for further information should be directed to: Virginia Paine (or call her collect at) Holy Cross Hospital, 4725 North Federal Highway, Fort Lauderdale, Florida 33308. (305) 771-8000 Ex. 7592.

NUCLEAR MEDICINE TECHNOLOGIST Immediate opening in active GM&M Hospital with Medical School and Community College affiliations. Complete Service includes, imagers, radioimmunoassay, therapy, etc. Registry essential. Salary depending upon experience. Cosmopolitan living, close to mountains, ski resorts with 4 seasons recreation. No state income tax. All Federal Benefits, non-discrimination in employment. Contact Personnel Officer, VA Med. Ctr. Reno, NV 89520, tel (702) 786-2700.

RADIOLOGIST, NUCLEAR MEDICINE, board certified eligible, university trained, with nuclear cardiology experience, to join 12-man private diagnostic radiology group in South-eastern United States. Prefer physician knowledgeable in general diagnostic radiology, including computed tomography and ultrasound. Contact D. Mills, M.D., Suite 100 Memorial Medical Bldg., Chattanooga, TN 37404, phone (615) 698-8751 ext 731.

CHIEF OF NUCLEAR MEDICINE
Wanted. Nuclear scientist to act as Chief of Nuclear Medicine Division at the University of Florida College of Medicine. A minimum of one year's training in nuclear medicine is required. Board certification in Radiology preferred but will consider candidates with training in Internal Medicine. Experience in nuclear cardiology is desirable. Rank and salary depending on qualifications and experience. Application deadline is August 24, 1979, Position available after July 1, 1979. Send curriculum vitae to Clyde M. Williams, Chairman, Department of Radiology, University of Florida College of Medicine, J. Hills Millen Health Center, Gainesville, Florida, 32610. An Equal Employment Opportunity Affirmative Action Employer.

AS OF JULY 1, 1979 LOS ANGELES County Harbor-UCLA Medical Center, Division of Nuclear Medicine, in Torrance, Ca. will have the following openings: 1 Nuclear Medicine Technologist I, 2 Nuclear Medicine Technologist II. Please contact: Tony Olguin (213) 533-2842 or write to Tony at Harbor-UCLA Medical Center, Nuclear Medicine Division, 1000 W. Carson Street, Torrance, CA 90609.

NUCLEAR MEDICINE RESIDENCY 830-bed VA general hospital offers AMA approved two year program. Two positions available July 1980. Located in San Fernando Valley 15 minutes from affiliated hospitals (UCLA and Wadsorth VA). Program covers isotope and ultrasound imaging, in vivo and in vitro procedures, including RIA, and all recent cardiology procedures. Prerequisite: one-two years post graduate training in medicine, radiology, or pathology. Minimum stipend: $20,000. Contact: Marvin B. Cohen, M.D., Chief, Nuclear Medicine Service, Non-discrimination in employment. VA Medical Center, 16111 Plummer Street, Sepulveda, CA 91343.

NUCLEAR MEDICINE TECHNOLOGIST Immediate opening for technologist in fully accredited 370-bed community and university affiliated hospital, situated in scenic northen Pennsylvania. Proficiency required in radioimmunoassay work, imaging, dynamic studies and computer applications. Department is equipped with cameras, rectilinear scanners, auto-mated wash counters, pipetter and a computer. Good salary and full benefits. Contact Ruth R. Hargrave, Assoc. Director of Personnel, The Williamsport Hospital, 777 Rural Avenue, Williamsport, PA, 17701, Equal Opportunity Employer.

NUCLEAR MEDICINE TECHNOLOGIST 500-bed New Haven area hospital seeking a registered nuclear medicine technologist interested in active participation in varied diagnostic imaging studies and research. Very active cardiac section. Opportunities for personal and professional growth. This position offers excellent starting salary plus a full range of benefits including hospital, medical and life insurance, tax-sheltered annuities and retirement plan. Submit resume to Personnel Department, The Hospital of St. Raphael, 1450 Chapel Street, New Haven, Conn. 06511.

CONFIDENTIAL SERVICE NATIONWIDE We are a search firm dealing nationwide in the Health Care Industry. All Fees Paid By Employer. Forward resume with salary requirements and location preferences to BMI, Health Care Division, P.O. Box 6457, Columbia, SC 29260, (803) 787-8710.

RADIOPHARMACEUTICAL CHEMIST: The University of Maryland is soliciting applicants for a joint appointment in the departments of Medicinal Chemistry/Pharmacognosy, and Medicine. Applicants must be experienced in the development of new radiotherapeutics. Salary and academic rank dependent on background and experience. Please send curriculum vitae to Dr. Ralph Blomster, Chairman, Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy, University of Maryland at Baltimore, 636 W. Lombard Street, Baltimore, Maryland 21201.

POSITIONS WANTED

NUCLEAR RADIOLOGIST, ABR CERTIFIED Diagnostic Nuclear, University trained. Early 30's. Computer, Nuclear Cardiology, Angiography, CT, and Ultrasound experience. Reply Box 800. Society of Nuclear Medicine, 475 Park Avenue So., New York, NY 10016.

NUCLEAR PHYSICIAN Ph.D. M.D. ABNM certified. Over 60 publications considerable Administrative experience. Seeks position as Dept. Chairman. Academic or Clinical. East or West coast. Reply Box 801. Society of Nuclear Medicine, 475 Park Avenue So., New York, NY 10016

REGISTERED NUCLEAR MEDICINE Technician (ART) with B.S. Degree and 15 yrs. experience, includes setting up a department. Desires position as an instructor, preferably clinical also would consider research. Desire employer to pay moving expenses from New York State. Available in August. Reply: Box 802, Society of Nuclear Medicine, 475 Park Avenue South, New York, NY 10016.

FOR SALE

RAYTHEON MODEL 625 NUCLEAR SCANNER. Dual 5 inch detector with two black and white tappers, two photo recorders, and add/center unit, and whole body minification system (motorized couch). Collimators: two FC100/128, two FC100/128, one FC70/7B Good Condition - 35 years old. Please contact Allen Pendergrass, Purchasing Agent, or Cary Brown, Purchasing Director, by calling (803) 573-6486 at Spartanburg General Hospital.

54A THE JOURNAL OF NUCLEAR MEDICINE
Tech It!

Because quality is important to your image ... Check your Products with a Tech Kit! It's the only move to make.

Tech is a quality control testing system which provides a quick, convenient and inexpensive means for determining unbound and free Technetium 99m in the following products:

- PYROPHOSPHATE
- DIPHOSPHONATE
- POLYPHOSPHATE
- MDP
- PHYTATE
- DTPA
- MICROSHERES
- HUMAN SERUM ALBUMIN
- GLUCOHEPTONATE
- SULFUR COLLOID
- MACROAGGREGATED ALBUMIN

For more detailed information, contact:

ACKERMAN NUCLEAR, INC.
Pharmaceuticals for Nuclear Medicine
445 West Garfield Avenue
Glendale, California 91204, U.S.A.
(213) 246-2555
WITH THE EDC CARDIAC STRESS SYSTEM

The EDC Cardiac Stress System allows you to get the most significant visualization and measurement of wall motion and ventricular ejection fraction by allowing you to:
• Control and vary patient stress load
• Automatically maintain or vary patient heart rate
• Get immediate and continuous imaging during and after injection

The EDC Cardiac Stress System combines an electronically controlled pedal ergometer unit with a stable imaging table. The electronic unit lets you automatically control workload and patient heart rate during imaging. The control unit features digital displays of heart rate, workload, elapsed time, and pedal RPM. The EDC system is preferred over upright exercise machines and treadmills because the patient is immobilized and supine, permitting clear continuous imaging of the heart during stress protocol.

The EDC Cardiac Stress System is completely mobile and the imaging table can be quickly released from the pedal ergometer to permit its use with the whole body imaging cameras. The table’s rigid, cantilevered design includes a radiotransparent top for posterior imaging, making it preferred for all imaging applications.

EDC, the imaging experts, also offer:
• Custom and general collimators
• Ultrasonic stress unit with tilt table
• Bifocal Diverging Collimator

VETERANS ADMINISTRATION MEDICAL CENTER
Long Beach, California affiliated with University of California at Irvine
Nuclear Medicine Residencies

Position available July 1979 for first year resident in AMA approved program. Second position available July 1980. Professional staff includes radiopharmacist and physicist offering broad opportunity for clinical and research experience. Equal Opportunity Employer. English language proficiency required (PL 95-201). Contact:

Kenneth P. Lyons, M.D., Chief
Nuclear Medicine Service (115)
V.A. Medical Center
Long Beach, CA 90822
(213) 498-6237

STANFORD UNIVERSITY

Fulltime position in Nuclear Medicine at Assistant Professor level at affiliated teaching Veterans Administration Med. Ctr. (Palo Alto).

Desired qualifications: Proven excellence in teaching and in all aspects of clinical Nuclear Medicine, plus research experience. Excellent opportunity for advancement. Stanford University is an equal opportunity employer and welcomes nominations from women and minority group members and applications from them.

Interested persons please send complete curriculum vitae including names and addresses of 5 referees to:

Joseph P. Krisa, M.D.
Nuclear Medicine - Rm. C022
Stanford University Medical Ctr.
Stanford, CA 94305
PEDIATRIC NUCLEAR MEDICINE

COPELY PLAZA HOTEL
BOSTON, MA.
SEPT. 10-12, 1979

This two and one half day postgraduate course, sponsored by the Harvard Medical School and the Children's Hospital Medical Center, will cover the fundamental aspects of pediatric nuclear medicine, including radiopharmaceuticals, instrumentation, dosimetry, technology, as well as established and newer clinical applications. It is desirable to specialists in nuclear medicine, pediatrics, pediatric surgery, or pediatric radiology.

The program will be approved for credit toward the AMA Physicians' Recognition Award under Continuing Medical Education Category I.

For further information, contact: S. Treves, M.D., Chief, Division of Nuclear Medicine, Children's Hospital Medical Center, 300 Longwood Avenue, Boston, MA 02115 - Telephone: (617) 734-6000, extension 3366.

Baylor College of Medicine
TEXAS MEDICAL CENTER HOUSTON, TEXAS 77030

NUCLEAR MEDICINE: MAJOR EXPANSION OF ESTABLISHED PROGRAM

OPPORTUNITIES FOR NM PHYSICIANS, MEDICAL SCIENTISTS, SUPERVISORY AND STAFF TECHNOLOGISTS, MEDICAL WRITER

A major expansion of an established program in NM is being developed in conjunction with the opening of a total health care center. The new program has created the need for qualified physicians, medical scientists and technologists to provide NM services for a 2500-bed hospital complex that includes 2 large cardiovascular centers.

Positions are immediately available for:
(1) 3 NM physicians with clinical expertise in all aspects of nuclear medicine and interest in clinical research
(2) 2 medical scientists with interest in instrumentation, computer science, and radiation physics
(3) Several technologists, both staff and supervisory levels, for the imaging and RIA sections
(4) Medical writer

For information contact John A. Burdine, M.D., Chief, Nuclear Medicine Section, Departments of Internal Medicine and Radiology, 6720 Bertner Avenue, Houston, TX 77030; phone 713-521-2272.

Volume 20, Number 8
Sr. Research Investigator
Radiopharmaceuticals

A world leader in radiopharmaceutical development, E.R. Squibb & Sons, Inc. is currently secking scientific professionals to staff a newly created basic radiopharmaceutical research group.

Opportunities are available for individuals who have Ph. D. degrees in Chemistry or the Biomedical Sciences with experience in radiopharmaceutical research, synthetic technetium chemistry, biomedical pharmacology, or synthetic medicinal chemistry.

We offer an excellent salary and benefits package. Interested candidates are invited to submit their resume, in strict confidence, to:

Recruitment and Selection Manager
E.R. SQUIBB & SONS, INC.
DEPARTMENT ML
P.O. BOX 4000
PRINCETON NEW JERSEY 08540

An Equal Opportunity Employer M/F

EXPERIENCED NUCLEAR PHYSICIAN
Massachusetts General Hospital
Harvard Medical School
Nuclear Medicine Division
Department of Radiology
ABNM Certification Required. Clinical and Research Competency Emphasized.

CONTACT: Juan M. Taveras, M.D., Radiologist-in-Chief or H. William Strauss, M.D., Nuclear Medicine Division, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, EQUAL OPPORTUNITY EMPLOYER

NUCLEAR MEDICINE PHYSICIAN
Challenging opportunity available for a nuclear medicine physician with experience in computerized studies and interest in pediatric nuclear medicine. Position would be as chief of the division with clinical, research, and teaching responsibilities in a 300 bed pediatric and teaching facility for the Ohio State University. The laboratory, fully equipped, has developed and applied computerized programs in every aspect of pediatric nuclear medicine. Salary commensurate with experience. Please send complete resume in confidence to:

Grant Morrow III, M.D., Medical Director
Children's Hospital
700 Children's Drive
Columbus, Ohio 43205

THE JOURNAL OF NUCLEAR MEDICINE
R WAVE GENERATOR
FOR
NUCLEAR CARDIOLOGY

BEHIND EVERY SQUARE WAVE THERE IS AN R WAVE

If all you need is a square wave to trigger the computer every time an R wave occurs then talk to us before you make a decision. We can provide you with a reliable system and save you money. Why buy unnecessary features that cost you extra? Our R wave generator provides only the features that you need.

INSTRUMENT HIGHLIGHTS

- Compact and inexpensive unit which records ECG on strip chart for permanent record.
- Four digit LED display to indicate R-R interval in seconds or heart rate in beats per minute. The R-R interval display is used to decide the gate tolerance. The heart rate display is helpful during stress testing.
- Produces sharp square wave output for R wave which can be used as a trigger for nuclear cardiology applications.

Delivery is 90 Days or less depending upon stock.
For price information call: (203) 877-1610 or write to:

Customer Service, AMR CORP., P. O. Box 3094 PPS, Milford, Conn. 06460

STANFORD UNIVERSITY
SCHOOL OF MEDICINE

Nuclear Medicine Residency Program. Resident positions are available beginning September 1, 1980, for a 2-year program at Stanford University Medical Center and affiliated Veteran’s Adm. Medical Center. Patients from the Children’s Hospital at Stanford are also studied or treated at the University Hospital.

The program, approved by the AMA and satisfying the requirements of the American Board of Nuclear Medicine, includes didactic instruction in radiologic mathematics and physics, radiation safety, dosimetry, electronics, and nuclear medicine instrumentation. A major portion provides practical experience in dynamic and static imaging, computer-assisted manipulation, radioimmunoassay methodology, other in vitro test procedures, and radiopharmacy as part of an integrated patient care program, both diagnostic and therapeutic.

Prerequisite for entry into program: 2 years prior training in AMA-approved program in internal medicine, radiology, pathology or pediatrics.

Stanford is an equal opportunity affirmative action employer.

Requests for further information (include C.V. and reference list) should be directed to:

Joseph P. Kriss, M.D.
Director, Div of Nuclear Medicine
Stanford University Medical Center
Stanford, CA 94305

RADIO PHARMACIST

The Toronto General Hospital (a teaching hospital of the University of Toronto) has an opening for a suitably qualified Radio Pharmacist in the departments of Pharmaceutical Services and Nuclear Medicine. The position is supervisory in nature and calls for experience in all aspects of radio pharmacy, including quality control, assay and calibration, chromatography, record-keeping and research.

Please forward a resume outlining qualifications and work experience to:

Toronto General Hospital
Hilja Ruun (Mrs.)
Employee Relations
101 College Street
Toronto, Ontario
M5G 1L7
Radioiodine is trapped by the thyroid and organified in the synthesis of thyroxine. 99mTcO$_4^-$ is also trapped by the thyroid but is not organified. Consequently, Tc99m activity does not always indicate the physiologic condition of the thyroid.¹

Radioiodine clearly demonstrates the “cold,” non-functioning nodules that may be associated with malignant thyroid tumors. Such nonfunctioning nodules have appeared “hot” or “cold” on images obtained with Tc99m, necessitating a confirmatory radioiodine scan.²³

Radioiodine thyroid imaging is preferred to Tc99m in such instances as investigation of patients with possible retrosternal thyroid tissue or with unsatisfactory Tc99m images due to poor radionuclide concentration.³

²Information for Physicians—Irradiation-Related Thyroid Cancer” prepared by the Division of Cancer Control and Rehabilitation, National Cancer Institute, DHEW Publication No. (NIH) 77-1120, p.13.
Organisation is Imperative to Thyroid Studies

A palpable nodule in the left lower lobe present for at least six years considered to be "functioning" on the "technetium-99m" image.

Medi-Physics Sodium Iodide I 123 is important for informative thyroid studies. The principal gamma emission of I 123 is 159 keV which is well suited for gamma camera imaging. The 13.2 hours half-life and lack of non-penetrating radiations minimize the absorbed radiation dose. Thyroid uptake studies may be performed at 2, 4, 6, and 24 hours. If desired, a thyroid scan and a quantitative radioiodine uptake measurement may be performed simultaneously. Sodium Iodide I 123 is available in capsules or solution for next day delivery almost anywhere in the United States. Call Toll Free (in Calif.) (800) 772-2446; (outside Calif.) (800) 227-0483 for further information.

For complete prescribing information consult package insert, a summary of which follows:

SODIUM IODIDE I 123

CAPSULES AND SOLUTION FOR ORAL ADMINISTRATION

DESCRIPTION: Sodium iodide I 123 for diagnostic use is supplied as capsules and in vials as an aqueous solution for oral administration. At calibration time each capsule has an activity of 100 microcuries and each vial contains solution with a total specific concentration of two millicuries per ml.

INDICATIONS: Sodium iodide I 123 is indicated for use in the diagnosis of thyroid function and imaging.

CONTRAINDICATIONS: None known.

WARNINGS: This radiopharmaceutical should not be administered to children or to patients who are pregnant or to nursing mothers unless the information to be gained outweighs the potential hazards. Ideally, examinations using radiopharmaceuticals, especially those effective in nature, in women of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses. However, when studies of thyroid function are clinically indicated for members of these special population groups, use of I 123 would be preferable to the use of I 131 in order to minimize radiation dosage.

PRECAUTIONS: Sodium iodide I 123 as well as other radioactive drugs must be handled with care. Appropriate safety measures should be used to minimize radiation exposure to clinical personnel. Care should also be taken to minimize radiation exposure to the patient consistent with proper patient management. The prescribed Sodium iodide I 123 dose should be administered as soon as practicable in order to minimize the fraction of radiation exposure due to relative increase of radionuclidic contaminants with time. The uptake of I 123 may be decreased by recent administration of iodinated contrast materials, by intake of stable iodine in any form, or by thyroid, anti-thyroid and certain other drugs. Accordingly, the patient should be questioned carefully regarding diet, previous medication, and procedures involving radiographic contrast media.

ADVERSE REACTIONS: There were nine adverse reactions reported in a series of 1,393 administrations. None of these were attributed to I 123. Five adverse reactions, consisting of gastric upset and vomiting, were attributed to a filler in the capsule. Two cases of headache and one case of nausea and weakness were attributed to the fasting state. One case of gastric odor on the breath was presumed to be attributable to the presence of telluron.

DOSE AND ADMINISTRATION: The recommended oral dose range for diagnostic studies of thyroid function in the average adult patient (70 kg) is from 100 to 400 microcuries. The patient dose should be measured by a suitable radioactivity calibration system immediately prior to administration. Concentration of I 123 in the thyroid gland should be measured in accordance with standardized procedures.

SPECIAL CONSIDERATION: Radiopharmaceuticals should be used only by physicians who are qualified by training and experience in the safe use and handling of radionuclides and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

HOW SUPPLIED: Sodium iodide I 123 for oral administration is supplied in aqueous solution in glass vials and in capsules.
Brief summary of Package Insert. Before using, please consult the full Package Insert included in each kit.

Description: Each vial of OSTEOSCAN contains 5.9 mg etidronate disodium, 0.16 mg stannous chloride and 0.56 mg sodium ascorbate as active ingredients. Upon addition of ADJUVANT-FREE sodium pertechnetate Tc99m the etidronate disodium and stannous chloride combine with Tc99m to form a stable soluble complex.

Clinical pharmacology: When injected intravenously, Tc99m-labeled OSTEOSCAN has a specific affinity for areas of altered osteogenesis. Areas of bone which are undergoing neoplastic invasion often have an unusually high turnover rate which may be imaged with Tc99m-labeled OSTEOSCAN. Three hours after intravenous injection of Tc99m-labeled OSTEOSCAN, an estimated 40-50% of the injected dose has been taken up by the skeleton. At this time approximately 50% has been excreted in the urine and 5% remains in the blood. A small amount is retained by the soft tissue. The level of Tc99m-labeled OSTEOSCAN excreted in the feces is below the level detectable by routine laboratory techniques. Tc99m-labeled OSTEOSCAN is also taken up in areas of necrosis and severely injured myocardial cells. Approximately 1.5 hours following intravenous injection 0.01-0.02 percent of the administered dose per gram of tissue is taken up by an acutely infarcted myocardium.

Indications: OSTEOSCAN is a skeletal imaging agent used to demonstrate areas of altered osteogenesis and to a cardiac imaging agent used as an adjunct in the diagnosis of acute myocardial infarction. When used as an adjunct in the diagnosis of myocardial infarction the incidence of false negatives has been found to be approximately 14% and false positives about 10%. False negatives may result from failure to observe temporal requirements for good myocardial imaging; false positives may be related to coronary heart disease, left ventricular aneurysms, trauma, repeated cardioversion following coronary by-pass surgery or old myocardial infarcts.

Contraindications: None known.

Warnings: This radiopharmaceutical should not be administered to patients who are pregnant or lactating unless the information to be gained outweighs the potential hazards. Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of a woman of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses. The technetium used to tag the product should be routinely tested for molybdenum and aluminum. If an unacceptable level of either is found, the technetium should not be used. Radiopharmaceuticals should be used only by physicians who are qualified by specific training in the safe use handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

Precautions: As in the use of any other radioactive material, care should be taken to insure minimum radiation exposure to the patient, consistent with proper patient management, and to insure minimum radiation exposure to occupational workers. Cardiac Imaging: Both prior to and following Tc99m-labeled OSTEOSCAN administration, patients should be encouraged to drink fluids. Patients should void as often as possible after the Tc99m-labeled OSTEOSCAN injection to minimize background interference from accumulation in the bladder and unnecessary exposure to radiation. Cardiac Imaging: Patient’s cardiac condition should be stable before beginning the cardiac imaging procedure. If not contraindicated by the cardiac status patients should be encouraged to ingest fluids and to void frequently in order to reduce unnecessary radiation exposure. Interference from chest wall lesions such as breast tumors and healing rib fractures can be minimized by employing the three recommended projections.

Adverse reactions: None known.

Dosage and administration: The recommended adult dose of Tc99m-labeled OSTEOSCAN is 10-15 mCi. The activity of each dose should be measured by a suitable radiation calibration system just prior to administration. The dose should be given intravenously by slow injection. For optimal results bone imaging should be done 2-4 hours post injection and cardiac imaging 1-1½ hours post injection. The acute myocardial infarct can be visualized from 1-9 days following onset of symptoms with maximum uptake at 2-3 days. It is recommended that three projections of the heart be made (antero, left anterior oblique and left lateral).

References:
Surgeons ask... Nuclear Medicine answers.

The IBRIN System

Certain Excellent correlation with venography
Safe Non-invasive
Simple Single I.V. injection plus convenient monitoring procedure

IBRIN® Fibrinogen I 125
- New one and five dose kits shipped from stock, Monday through Friday
- Vigorously screened single-donor product
- Lyophilized for convenient storage and stability
- Initial monitoring can be performed from 1-3 hours after injection of IBRIN
- Serial monitoring for up to 7 days after one injection

IBRINITOR™ Portable Radiosotope Monitor
- Delivers statistically valid data
- Engineered to help eliminate procedural errors
- LED display plus hard copy printout
- Pushbutton controls for speed and convenience
- Portable, NiCad Battery operation
- Variable time mode speeds monitoring
- Angled Probe for monitoring convenience and patient comfort

Procedural and clinical utility educational programs available. For more information, write or call:

Amersham
AMERSHAM CORPORATION
A SUBSIDIARY OF THE RADIOCHEMICAL CENTRE
2636 S. Clearbrook Dr., Arlington Heights, IL 60005
312/593-6300 or 800/323-0668 (Toll free)
In Canada
505 Iroquois Shore Rd., Oakville, ONT L6H 2R3
1-866-842-2720 or 800/268-5061 (Toll free)

See following page for brief summary of package insert
INDICATIONS
IBRIN is indicated for use in prospective studies for the early detection and
subsequent monitoring of developing deep-vein thrombosis in patients with
symptoms suggestive of deep-vein thrombosis with or without associ-
at ed pulmonary embolism or in patients with pulmonary embolism,
with or without evidence of peripheral deep-vein thrombosis. In patients
with established, old or “inactive” thrombus, the test will be positive only if
radioactive-labeled fibrin deposition occurs in a sufficient quantity to
allow detection. Its use is not contraindicated in patients on anticoagu-
lants.

CONTRAINDICATIONS
There are no known contraindications to the use of IBRIN. However, it
should be noted that the iodides given to block the uptake of I by the
thyroid gland are contraindicated in patients with a known sensitivity to the
iodides.

WARNINGS
This radiopharmaceutical should not be administered to patients under
18 years of age, to patients who are pregnant, or to patients who are lactat-
ing, unless the information to be gained outweighs the potential risk.
Ideal conditions for examination and laboratory testing include
 withhold the administration of IBRIN. Extraordinary precautions have been taken in the preparation of IBRIN
Fibrinogen 125 to eliminate the possible transmission of hepatitis.
Nonetheless, the remote risk of hepatitis associated with the administra-
tion of Fibrinogen 125 cannot be entirely eliminated. The finding of viral
hepatitis is highly unlikely.

PRECAUTIONS
Care should be taken to insure minimum radiation exposure to the patient,
consistent with proper patient management, and to insure minimum radia-
tion exposure to occupational workers.

Iodine-131 has been reported to be highly toxic to the thyroid gland
and to cause thyroiditis. Thorough medical examination and treatment
of patients with established, old or “inactive” thrombus, the test will be
positive only if radioactive-labeled fibrin deposition occurs in a sufficient
quantity to allow detection. Its use is not contraindicated in patients on anticoagu-
lants.

ADVERSE REACTIONS
There have been no reported incidence of allergic or anaphylactic reactions
following the intravenous administration of IBRIN.

Preserve your copies of The Journal of NUCLEAR MEDICINE for years of reference
in a durable, custom-designed Library Case or Binder. These storage units will hold an
entire 12 issue volume. The case supplied is an attractive blue with a gold-embossed
spine. Each unit also includes a gold transfer so that the volume and year can be
recorded.

CASE: Holds 12 issues/$4.95 each
three for $14.00; six for $24.00
BINDER: Holds 12 issue/$6.50 each
four for $25.00

TO: Jesse Jones Box Corp.
P.O. Box 5120 Dept. JNM
Philadelphia, PA 19141

I enclose my check or money order for $_____
(Orders outside the U.S. add $1.00 per file for
postage and handling).

Please send me ______ JOURNAL OF
NUCLEAR MEDICINE
Files Binders

Name
Address
City State Zip

Note: Satisfaction guaranteed or money re-

fund. Allow 5 weeks for delivery.
GE Medical Education Programs are comprehensive, yet concise courses for physicians and technologists. These concentrated programs are offered all year around to accommodate busy schedules, and are taught by a skilled, experienced faculty, using the latest educational techniques. Completed courses can be applied to meet accreditation and continuing education requirements. But class sizes are limited, so enroll today. All applications are processed on a first come, first served basis.

For complete details, dates, accommodations, etc., write to: Charles Roosevelt, Director Medical Education Programs, General Electric Medical Systems, Dept. No. 414, P.O. Box 414 Tl 40, Milwaukee, Wisconsin 53201. Or call: 414-383-3211, ext. 2286, Dept. NM.

Announcing a 24 course, low-fat curriculum for healthcare professionals.

<table>
<thead>
<tr>
<th>RADIOLGY PROGRAMS</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding X-ray Generation I</td>
<td></td>
</tr>
<tr>
<td>Standardization of Radiologic Techniques II</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance in Radiology III</td>
<td></td>
</tr>
<tr>
<td>Introduction to Radiologic Techniques</td>
<td></td>
</tr>
<tr>
<td>Radiology Registration & Certification</td>
<td></td>
</tr>
<tr>
<td>Advanced Concepts in Diagnostic Imaging*</td>
<td></td>
</tr>
<tr>
<td>COMPUTED TOMOGRAPHY PROGRAMS</td>
<td></td>
</tr>
<tr>
<td>Principles of Computerized Tomography I</td>
<td></td>
</tr>
<tr>
<td>Quality Control in Computerized Tomography II</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance in Computerized Tomography III</td>
<td></td>
</tr>
<tr>
<td>Advanced Concepts in Diagnostic Imaging*</td>
<td></td>
</tr>
<tr>
<td>NUCLEAR MEDICINE PROGRAMS</td>
<td></td>
</tr>
<tr>
<td>Basics of Nuclear Medicine</td>
<td></td>
</tr>
<tr>
<td>Quality Control & Compliance in Nuclear Medicine</td>
<td></td>
</tr>
<tr>
<td>Advanced Concepts of Nuclear Medicine</td>
<td></td>
</tr>
<tr>
<td>Dynamics in Nuclear Medicine</td>
<td></td>
</tr>
<tr>
<td>Nuclear Cardiology</td>
<td></td>
</tr>
<tr>
<td>Comprehensive Nuclear Medicine</td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine Registration & Certification</td>
<td></td>
</tr>
<tr>
<td>Radiopharmaceutical Techniques</td>
<td></td>
</tr>
<tr>
<td>Advanced Concepts in Diagnostic Imaging*</td>
<td></td>
</tr>
<tr>
<td>Radioisotope Handlers</td>
<td></td>
</tr>
<tr>
<td>MONITORING PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Principles of Cardiovascular Monitoring</td>
<td></td>
</tr>
<tr>
<td>ULTRASOUND PROGRAMS</td>
<td></td>
</tr>
<tr>
<td>Basics of Ultrasound I</td>
<td></td>
</tr>
<tr>
<td>Quality Control & Compliance in Ultrasound II</td>
<td></td>
</tr>
<tr>
<td>Advanced Concepts in Diagnostic Imaging*</td>
<td></td>
</tr>
<tr>
<td>MANAGEMENT PROGRAMS</td>
<td></td>
</tr>
<tr>
<td>Medical Management</td>
<td></td>
</tr>
<tr>
<td>Management Contract</td>
<td></td>
</tr>
<tr>
<td>Medical Laboratory Management for Diagnostic Accuracy and Cost Containment</td>
<td></td>
</tr>
<tr>
<td>DENTAL PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Radiological Techniques in Dentistry</td>
<td></td>
</tr>
</tbody>
</table>

Includes Coverage of Radiology, CT, Ultrasound and Nuclear Medicine
TO MONITOR
The Chemotherapy Of
The Cancer Patient
Diagnostic Biochemistry Inc.

Presents

Doxorubicin [\textsuperscript{\textit{125}}I]
(Adriamycin)*
Radioimmunoassay
Kit
For Investigational Use Only.

High circulating levels of Adriamycin* may result in irreversible myocardial damage, bone marrow depression, and gastrointestinal trauma.1,2 Knowledge of circulating Adriamycin* concentrations therefore, is important.

Our 125I Doxorubicin (Adriamycin) Radioimmunoassay Kit features a rapid, simple procedure with 100 picogram sensitivity in serum, plasma or urine. Six precalibrated standards as well as a control serum are supplied. The stable 125I tracer and one hour incubation time makes this kit a unique tool in cancer management.

*Tradename Adria Labs.

Methotrexate [\textsuperscript{\textit{125}}I]
Radioimmunoassay
Kit

High dose Methotrexate therapy in combination with leucovorin "rescue" treatment creates a vital need for close monitoring of circulating Methotrexate plasma levels. Methotrexate overdose has been shown to be associated with severe myelosuppression, renal damage3 and hepatotoxicity.3

Our 125I Methotrexate Radioimmunoassay Kit provides a rapid simple method, with sensitivity of 10 picograms in serum, plasma, cerebrospinal fluid or urine. Results can be reported in less than 1\frac{1}{2} hours. Precalibrated human serum standards and control serum are provided as well as a stable 125I tracer and antisemur.

For further information call or write:

Diagnostic Biochemistry Inc.

(714) 452-0950

10457-H ROSELLE STREET • SAN DIEGO, CA 92121
If you think computers are infallible, you should know Madge Fossi. Her task is to catch that rare error—to the benefit of everyone who wears a Nuclibadge II radiation dosimeter.

Madge marvels at the computer’s speed and accuracy, but that never stops her from checking and rechecking its work before personnel radiation exposure reports are sent to hospitals and other facilities using Nuclibadge II Radiation Monitoring Service.

Madge and the Searle computer are part of the team that evaluates exposed film and TLD chips, and issues the reports so essential to the long-term protection of hospital and research personnel working in radiation-risk areas. The computer-generated report details radiation exposures by individual. The report is so complete it meets federal, state, and local requirements, and it is so reliable it meets Madge Fossi’s own demanding criteria.

Where an exposure exceeds levels established by each client, Madge sees that it is reported immediately by phone. That’s where personal attention really pays off.

Another way it pays is in fast response to your questions or request for changes. Our toll-free hotline is available for that purpose, and badges for new employees are on the way to you within 24 hours.

All aspects of the Searle personalized service are just as timely. Emergency reports and additional monitors are airmailed within 24 hours; exposure reports are returned within days of receipt of exposed packet and new packets are sent in plenty of time for distribution before the next monitoring period.

Our color coding system lets you know at a glance that a person is wearing the correct badge, and we have just the right Nuclibadge II monitoring badge for every situation—whole-body, wrist, ring, or wallet card.

Put Madge Fossi, the computer, and the rest of the Searle team to work for your hospital. Call toll-free today about a customized radiation monitoring program, and learn more about Searle’s personal touch.

Searle
Searle Health Physics Services
Unit of Searle Medical Products
2000 Nuclear Drive
Des Plaines, IL 60018
<call toll-free> 800/323-6015
(In Illinois, call collect, 312/635-3387)
Help your cardiologist study heart kinetics non-invasively with Brattle-gated scintiphotos.

The RAO view shows akinesis of the lower antero-lateral wall and apex; and contraction of the inferior wall and high up the antero-lateral wall. The LAO view shows good contraction posteriorly and akinesis of the septal aspect of the chamber. Patient was injected IV with 20mCi of 99mTc labelled Human Serum Albumin. The agent was prepared using the New England Nuclear Electrolysis Kit for labelling HSA. Write or call for a portfolio of Brattle-gated lung, liver and heart studies.

No knobs, no meters, no errors
The spartan panel above tells the second-best part of our story. If you want to photograph peak systole, press the SYSTOLE button. If, say, you want systole only at full expiration, press the EXPIRATION button as well. If only breathing is relevant, don’t press the heart button.

The Brattle is connected to the patient and to your gamma (or x-ray or ultrasonic) camera. Whenever the patient is in the selected phase, both the scope and the scaler on your gamma camera are gated ON, and film is exposed. Otherwise, they are OFF.

Brattles lock onto patients — and stay locked on
It doesn’t matter if the patient’s heart rate and breathing depth change while he’s under the collimator because we stay right with him. Brattles contain an ECG to track heart, a plethysmograph to track respiration, and a tiny computer to deduce systole and diastole times from the heart signal. And because it’s all built in, your operator need not be a physiologist.

We don’t cover our tracks — we print them
The panel lights flash whenever the patient reaches the selected phases; and pushing the RECORDER-ON button gets you an ECG tracing marked with breathing and camera-on times. You can verify function before, during and after exposure.

A single pair of axillary electrodes captures both heart and breath
It’s easy. And we supply disposable, pre-filled electrodes.

Some Brattles have been in clinical use for over three years — in community and major hospitals
More than half of our instruments are in community hospitals and the list is growing rapidly. Upon request, we’ll supply names of happy users in your area.

What’s the next step?
Get in touch
Ask your NEN man about Brattles and HSA Kits. He can show you a portfolio of clinical pictures and arrange to have one of our people give you a demo. Or write or call us direct. We’ll send you brochures on this and other models, and will give you your own set of clinical pictures and a bibliography on gated scintigraphy. If you wish, we’ll even make you a Brattle owner. (This is the best part of our story.)

Brattle Instrument Corporation
243 Vassar Street • Cambridge, Massachusetts 02139 • 617-661-0300
Since 1962, UNION CARBIDE has played a vital role in nuclear medicine that has led to a broadly integrated product line of diagnostic chemicals and instrumentation...unit dose radiopharmaceuticals...reagent kits for a wide range of organs and functions...whole body imagers...gamma cameras...image processors...and emission systems for brain and body tomography.