Early and Delayed Tc-99m Glucoheptonate Brain Scintigraphy: Are Routine Early Images Indicated?

Doina E. Tanasescu, Ralph S. Wolfstein, Michael B. Brachman, and Alan D. Waxman

Cedars-Sinai Medical Center, Los Angeles, California

Both early and delayed Tc-99m glucoheptonate brain images were evaluated in 859 patients in order to determine whether the early imaging with this agent is clinically useful. The results suggest that the early brain images are inferior to the delayed ones in detecting CNS lesions. Use of both, however, may help to differentiate skull or scalp abnormalities from true lesions of the brain.

Because of scheduling difficulties involved in 3- or 4-hr delayed brain scintigrams, several agents have been evaluated for their sensitivity in detecting CNS abnormalities with immediate or early studies (1-3).

The purpose of this study was to evaluate early or immediate brain images using Tc-99m glucoheptonate (TcGH), and to determine when the early series should be used to complement the delayed study.

METHODS

Fifteen to twenty mCi of TcGH were administered as a bolus i.v. injection. Brain images were obtained 15–20 min following the dynamic flow, and repeated 2–4 hr postinjection. An Anger camera with a high-resolution low-energy collimator was used in all studies. Scan findings were compared with those of angiography, surgery, pathology, or clinical followup for at least 1 yr. At least two independent observers compared the early and delayed static images using subjective estimates of lesion-to-calvarial (scalp, skull, dura) ratio, as well as lesion size, in forming an opinion.

FIG. 1. W. E., 49-year-old man with proven right CVA.
TABLE 1. COMPARISON OF LESION DETECTION WITH EARLY VS. DELAYED Tc-99m GLUCOHEPTONATE BRAIN
SCINTIGRAPHY

<table>
<thead>
<tr>
<th>Lesion type</th>
<th>E - D+</th>
<th>E < D</th>
<th>E = D</th>
<th>E > D</th>
<th>E+ D-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain tumors</td>
<td>7</td>
<td>24</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVA</td>
<td>18</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone tumors</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Skull fractures</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniotomies</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Infections</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDH</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalp</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVM</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False positive</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>37</td>
<td>52</td>
<td>27</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Percentage</td>
<td>29</td>
<td>41</td>
<td>21</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

E = early; D = delayed

RESULTS

We have studied 859 patients with 927 scintigrams. One hundred patients lost to followup, or not documented, were excluded. One hundred twenty-three patients were found to have 126 lesions. Normal scintigrams were found in 634 patients. Two patients gave false-positive studies. The results are summarized in Table 1.

In 29% of these patients the early TcGH brain scintigram was normal and the delayed study positive. An additional 41% showed the delayed images to be superior. In 6% the early study showed greater activity in the abnormality than in the delayed images. This group contained one patient with an AVM, whereas the other patients had superficial abnormalities of either the scalp or skull. Two additional patients, one with a craniotomy and the other with a scalp abnormality, were read as positive only on the early study, with the delayed being read as normal.

Figure 1 compares early and delayed scintigrams in a patient with a proven thrombosis of the right middle cerebral artery. Figure 2 compares early and delayed studies in a patient with proven brain metastases from an oat-cell carcinoma. Figure 3 illustrates a case in which extracerebral abnormalities are better visualized on early than on delayed studies in a patient with proven skull metastases.

In lesions near major blood vessels, or in the posterior fossa, the early study helps to differentiate normal anatomic structures from true lesions by allowing a comparison of normal vascular structures with abnormalities that are seen only on delayed views. This is demonstrated in Fig. 4 in a patient with a cerebellar astrocytoma (Grade 1).

DISCUSSION

Early imaging using pertechnetate and Tc-99m DTPA has been evaluated for sensitivity in detecting CNS abnormalities (1,2). An earlier report comparing early and delayed pertechnetate scans showed abnormalities to be more obvious on delayed scans in 53% of the cases (1). A clinical comparison of early and delayed DTPA scintigrams showed the early (30-min) DTPA study to be significantly inferior to the delayed (3 hr) study. This report stated that 27% of lesions detected on the delayed study were not seen at all in the early images (2). TcGH has been shown to be effective agent in brain scintigraphy when compared with other agents (3,4). A study comparing pertechnetate

FIG. 2. C.W., 65-year-old woman with proven brain metastases.
with TcGH for brain scanning also analyzed a few cases to compare early and delayed TcGH brain scintigrams. It found that 48% of the delayed studies were superior to the early images (3). Rollo’s data (5) suggest that the 90-min glucoheptonate study gives satisfactory brain findings, but earlier imaging was not indicated. LeVeille et al. (6) have obtained much better TcGH brain images with a delay of 5–9 hrs rather than the usual 2 hrs.

The current study clearly shows the superiority of delayed TcGH studies in the evaluation of cerebral vascular disease or CNS tumor. The early scintigram showed the higher uptake in only one true case of CNS abnormality, later shown to be an AVM. If the activity on a delayed study is significantly less, however, the early study is helpful in determining whether an abnormality observed on the delayed study is within the scalp or skull. This finding parallels the results of Hoffer et al. who used pertechnetate (7). In addition, abnormalities close to normal vascular structures can be evaluated more clearly with the help of early images, since the vascular structures tend to fade with time.

The early TcGH brain scintigram, then, is not a substitute for a study delayed 2–4 hr. The former helped us, however, in 8% of the cases studied. A repeat injection following the delayed image can imitate an “early” scintigram, since the residual activity is low by comparison with the new.

We note that additional information was obtained in 8% of the patients when both early and delayed studies were done. Currently, we are not using a routine early study but choose to reinject whenever it is indicated. Exceptions occur when we scan early in patients with scalp or skull lesions and in those suspected of an AVM.

REFERENCES

4. Tanasecu DE, Wolfstein RS, Waxman AD: Critical

Accepted Articles to Appear in Upcoming Issues

Fixation of Gallium (Letter to the Editor). Accepted 7/7/78.
Jose Pierrez and Alain Bertrand
Reply. Accepted 7/7/78.
Shumpei Takeda
Thyroid-Hormone Concentrations after Radioiodine Therapy for Hyperthyroidism. Accepted 10/31/78.
Ellen I. Tamagna, Gerald A. Levine, and Jerome M. Hershman
In Memoriam: Asa E. Seeds, M.D. Accepted 11/16/78.
Thomas Carlile
Blood Flow and Tracer Uptake in Normal and Abnormal Canine Bone: Comparisons with Sr-85 Microspheres, Kr-81m, and Tc-99m MDP. Accepted 11/22/78.
J. Peter Lavender, Ralph A. A. Khan, and Sean P. F. Hughes
Femoral Head Activity in Perthes Disease (Letter to the Editor). Accepted 11/22/78.
John J. Sziklas
Reply. Accepted 11/22/78.
T. R. Morley, M. D. Short, and D. J. Dowsett
Gallium-68 Labeling of Albumin and Albumin Microspheres. Accepted 11/29/78.
Sally J. Wagner and Michael J. Welch
Pontine Glioma—Positive Tc-99m Brain Scan, with Negative TCT and Angiogram (Letter to the Editor). Accepted 12/1/78.
Robert B. Leman, Nihal S. Gooneratne, G. Douglas Hungerford, and Arthur V. Williams, Jr.
A Radiometric Microbiologic Assay for The Biologically Active Forms of Niacin. Accepted 12/4/78.
Judith A. Kertcher, Tomas R. Guilarte, Marianne F. Chen, Agatha A. Rider, and Patricia A. McIntyre
Radiolabeled Liposomes as Metabolic and Scanning Tracers in Mice. II. In-111 Oxine Compared with Tc-99m DTPA. Entrapped in Multilamellar Lipid Vesicles. Accepted 12/4/78.
L. G. Espinola, J. Beaucaire, A. Gottschalk, and V. J. Caride
The In Vitro Stability of [131I]O-Iodohippurate. Accepted 12/4/78.
Clifford E. Hotte and Rodney D. Ice
Gallium-67 Scanning in the Evaluation of Mesothelioma (Letter to the Editor). Accepted 12/5/78.
Richard B. Wolk
Demonstration of Lactoferrin in Tumor Tissue from Two Patients with Positive Gallium Scans. Accepted 12/6/78.
Paul B. Hoffer, Robin Miller-Catchpole, and David A. Turner
In-111-labelled Platelets vs. Iodinated Fibrinogen for the Detection of Deep Venous Thrombosis (Letter to the Editor). Accepted 12/6/78.

Milo M. Webber, Bieshia Chang, Donald Buffkin, and Ramesh Verma
Reply. Accepted 12/6/78.
Michael J. Welch, Linda C. Knight, and Barry A. Siegel
Evaluation of Three Imaging Instruments in Dogs with Liver Hematomas: Concise Communication. Accepted 12/7/78.
Mathis P. Frick, Laura C. Knight, Richard A. Ponto, and Merle K. Loken
[131I]Hippuran Renography in the Detection of Orthostatic Hypertension (Letter to the Editor). Accepted 12/13/78.
P. S. Helliwell
Reply. Accepted 12/13/78.
J. H. Clorius, H. Ostertag, and E. Raptou
Nuclear Medicine in the People’s Republic of China. Accepted 12/18/78.
Masahiro Iio
Gated and Cinematic Perfusion Lung Imaging in Dogs with Experimental Pulmonary Embolism. Accepted 12/19/78.
Comparison of Tc-99m Pyrophosphate and Tc-99m Methylenediphosphonate in Acute Myocardial Infarction: Concise Communication. Accepted 12/22/78.
Myocardial Accumulation of Labeled Phosphate in Malignant Pericardial Effusion. Accepted 12/22/78.
Merton A. Quaife, Paul Boschult, Harold A. Baltaxe, Jr., and Barry Dzindzio
Evaluation of Bone-Marrow Scanning with Technetium-99m Sulfur Colloid in Pediatric Oncology. Accepted 12/22/78.
Xenon-133 Retention in Hepatic Steatosis—Correlation with Liver Biopsy in 45 Patients: Concise Communication. Accepted 12/29/78.
Munir Ahmad, Robert P. Perrillo, Young C. Sunwoo, and Robert M. Donati
Xenon-127 Compared with Xenon-133 for Ventilation Scanning—Is the Evidence All In? Accepted 1/12/79.
Jerome G. Jacobstein
Reply. Accepted 1/12/79.
G. Coates