A versatile, disposable system

Xenon Xe 133-V.S.S. includes everything you need for a Xenon Xe 133 ventilation study. The completely disposable system includes the Xenon Xe 133 contained in a valve-shield, a CO₂ absorber and bag for rebreathing and collection of expired xenon, and a filter/mouthpiece assembly.

One system can be used for single-breath, rebreathing and wash-out studies. The valve-shield can deliver either a concentrated or a dispersed dose.

Safe, convenient assembly

Xenon Xe 133-V.S.S. can be assembled in less than a minute. Radiation exposure is minimized because there is no need to dilute the xenon gas or transfer it to a delivery system. After assembly, the ventilation study may begin immediately.

For complete information consult the package insert, a summary of which follows:

Xenon Xe 133-V.S.S. (Xenon Xe 133) Ventilation Study System

DESCRIPTION: The Xenon Xe 133-Ventilation Study System consists of a sealed frangible capsule containing 10 millicuries ±20% of Xenon Xe 133 gas at calibration time and date with less than 1% carrier xenon in air.

INDICATIONS AND USAGE: Study of pulmonary ventilation.

WARNINGS: Xenon Xe 133 should not be administered to children or to patients who are pregnant, or to nursing mothers unless the benefits to be gained outweigh the potential hazards. Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of a woman of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses.

Adequate reproduction studies have not been performed in animals to determine whether this drug affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Xenon Xe 133 should be used in pregnant women only when clearly needed.
CONSIDER MPI's
XENON Xe 133-V.S.S.
(Xenon Xe 133)
VENTILATION
STUDY SYSTEM

True, single-unit dose
The MPI Xenon Xe 133-V.S.S. contains enough Xenon Xe 133 for one ventilation study. You only use what you need and are not “locked into” an expensive delivery system that requires daily use to justify costs. Another advantage of single-unit dosage is that the risk of cross infection via reusable apparatus is significantly reduced. Further safety is afforded by the filter/mouthpiece assembly.

Reduced radiation exposure
The Xenon Xe 133 is supplied in a sealed frangible capsule. The valve-shield is designed to prevent radiation leaks during transport and use. Additionally, a shield to reduce radiation exposure to patient and attending personnel and a valve assembly to minimize the escape of exhaled xenon during washout studies are available as accessory components.

PRECAUTIONS: Xenon Xe 133 gas, as well as other radioactive drugs, must be handled with care and appropriate safety measures should be used to minimize radiation exposure to clinical personnel and to patients consistent with proper patient management.

Exhaled Xenon Xe 133 gas should be controlled in a manner that is in compliance with the appropriate regulations of the government agency authorized to license the use of radionuclides.

Xenon Xe 133 gas delivery systems, i.e., respirators or spirometers, and associated tubing assemblies must be leak-proof to avoid loss of radioactivity into the laboratory environs not specifically protected by exhaust systems.

Xenon Xe 133 adheres to some plastics and rubber and should not be allowed to stand in tubing or respirator containers for such unrecognized loss of radioactivity from the dose for administration may render the study non-diagnostic.

ADVERSE REACTIONS: Adverse reactions specifically attributable to Xenon Xe 133 have not been reported.

DOSEAGE AND ADMINISTRATION: The recommended activity range for pulmonary ventilation studies in the average patient (70 kg) is 2 to 20 millicuries (0.03 to 0.3 millicuries/kg).

HOW SUPPLIED: Each Ventilation Study System (V.S.S.) contains Xenon Xe 133 in a sealed frangible capsule containing 10 millicuries ±20% at calibration time and date stated on the label.

The sealed capsule is enclosed in a metal valve-shield which is sealed with a plastic shrink-band to prevent accidental loss of xenon during shipping. A key is provided to remove the end plugs of the valve-shield and to turn the valve fitting which breaks the sealed capsule of Xenon Xe 133. The V.S.S. also includes a disposable filter/mouthpiece assembly and a breathing-collection bag with an attached CO₂ absorber canister.

Emeryville, California (415) 658-2184.
Toll Free (In Calif.) (800) 772-2446. (Outside Calif.) (800) 227-0483.

medi+physics™
Just look at the options you get from ADAC.

1. A vertical or horizontal cabinet. Whichever you prefer.
2. A compact *portable* system.
3. A portable data acquisition module.
4. A remote terminal.
5. A device that lets you transmit images and data over ordinary telephone lines.
6. A multiformat camera that transfers images or curves to X-ray film.
7. A high-speed disc drive with framing rates up to 100 per second.
8. A Fortran IV compiler if you want to write your own software.
9. A radioimmunoassay paper tape reader and high-speed printer for RIA lab procedures.
Now look at performance.

Only ADAC gives you a 512 x 512 display matrix and 64 shades of gray for an image of such high resolution that it is nearly identical to original analog scintiphotos.

Only ADAC is so easy to operate. There's no computer language to learn. It speaks plain English.

And the cost is surprisingly low.

To arrange for a demonstration at a convenient location near you, please write or phone collect.

ADAC Laboratories.
255 San Geronimo Way, Sunnyvale, California 94086.
Phone: (408) 736-1101.
Until recently, testing for testosterone levels was a long, hairy process. But now, Diagnostic Products Corporation offers an RIA test kit that not only simplifies the job, but gives you specificity greater than any other test available on the market today.

Our kit has the lowest cross-reactivity, only 22% with dihydrotestosterone and virtually none with other androgens, thus eliminating the need for chromatography. Sensitivity is 2 pg. Intra-assay variation is 3%, inter-assay variation is a low 8%. Other benefits include: a simplified one-step extraction procedure that is 98% efficient, individual standards, a short incubation (60 minutes) at room temperature, and a second antibody PEG separation. Results can be achieved in one working day. If you would like more information on how to shave time off testosterone testing, write:

Diagnostic Products Corporation
12306 Exposition Blvd., Los Angeles, Ca. 90064. Call toll free (800) 421-7171, or collect in California (213) 826-0831.
The UNION CARBIDE
Large Field Gamma Camera:

The Critical Difference in Diagnostic Power.

The CLEON 720 Large Field Gamma Camera is a high resolution imaging system designed for exacting, contemporary clinical nuclear medicine.

It can be installed as a stand-alone camera or connected to the CLEON 110 Image Processor as an integrated imaging and data processing system.

The unique hand control lets the technologist remain with the patient at all times while setting up the complete imaging study. Bolus injection procedures can be easily accomplished with one technologist.

The optional CLEON 110 Image Processor provides a powerful microcomputer system complete with specialized Nuclear Medicine software to permit a full range of functional analyses including automatic calculation of cardiac ejection fractions, cerebral perfusion determination, renal function analysis, pulmonary function analysis, and simultaneous end-systole and end-diastole data acquisition. The Image Processor is easy to use and requires no computer codes or terminology to operate.

Ask Union Carbide for the Facts
Imaging Systems products from Union Carbide are designed to enhance diagnosis and research, produce a return on investment, and create better health care at lower patient cost.

If you feel you should know more about this powerful new diagnostic tool, send today for descriptive literature. Or call for a personal presentation.

Touching your life through medicine . . .

Union Carbide
Imaging Systems, Inc.
Medical Products Division
333 Providence Highway
Norwood, Massachusetts 02062
(617) 769-5400 TELEX 924-494
to our engineering, sales and service people for making our Giant-Field XL-91 Gamma Camera a winner.

to our customers for giving us the chance to prove it. They are happy and so are we!

to the excellent technical measurements, these fine clinical results were predictable. They demonstrate that the biggest camera is also the best.

PLEASE . . . we would like nothing more than to install a winner for you. May we have the chance?

Typical
Condensed
Performance
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of View</td>
<td>16.5" dia (214 sq in)</td>
</tr>
<tr>
<td>Intrinsic Resolution</td>
<td>3/32" lead bars with 3/32" spacing visualized using 99mTc point source over entire 16.5" field</td>
</tr>
<tr>
<td>Uniformity</td>
<td>± 2% over 16.5" field of view in Autocomp mode (± 10% maximum integral in uncorrected field with 20% window)</td>
</tr>
<tr>
<td>Integral Linearity Error</td>
<td>Less than ± 3%</td>
</tr>
<tr>
<td>Count Rate Capability</td>
<td>>100K per sec in 20% window</td>
</tr>
<tr>
<td>Energy Resolution</td>
<td>14% F. W. H. M. with 99mTc</td>
</tr>
</tbody>
</table>

RAYTHEON MEDICAL ELECTRONICS
70 Ryan Street
Stamford Connecticut 06907
Tel: 800-243-9058
For high-quality lung perfusion imaging

PULMOLITE

Technetium Tc 99m Aggregated Albumin Kit

Convenient
stores at room temperature

Rapidly prepared
jump sodium pertechnetate
Tc 99m into vial, shake for
30 seconds—and it's ready
for administration

Complete
no additional reagents or equipment

Economical
5 vial package and 30 vial Convenience Pak

Indications and Usage: Technetium Tc 99m aggregated albumin is indicated as a lung imaging agent to be used as an adjunct in the evaluation of pulmonary perfusion.

Contraindications: Technetium Tc 99m aggregated albumin should not be administered to patients with severe pulmonary hypertension.

The use of Tc 99m aggregated albumin is contraindicated in persons with a history of hypersensitivity reactions to products containing human serum albumin.

Warnings: The possibility of allergic reactions should be considered in patients who receive multiple doses.

Theoretically, the intravenous administration of particulate material such as aggregated albumin imposes a temporary small mechanical impediment to blood flow. While this effect is probably physiologically insignificant in most patients the administration of aggregated albumin is possibly hazardous in acute cor pulmonale and other states of severely impaired pulmonary blood flow.

This radiopharmaceutical preparation should not be administered to children or to pregnant or lactating women unless the expected benefits to be gained outweigh the potential risks.

Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of a woman of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses.

Precautions: In cases of right-to-left cardiac shunt, additional risk may exist due to the rapid entry of aggregated albumin into the systemic circulation.

The contents of the kit are not radioactive. However, after the sodium pertechnetate Tc 99m is added, adequate shielding of the final preparation must be maintained.

The labeling reactions involved in preparing the agent depend on maintaining the reduced state. Any oxidant present in the sodium pertechnetate Tc 99m supply may thus adversely affect the quality of the prepared agent. Hence, sodium pertechnetate Tc 99m containing oxidants, or other additives, should not be employed without first demonstrating that it is without adverse effect on the properties of the resulting agent.

The contents of the vial are sterile and non-pyrogenic. It is essential that the user follow the directions provided and adhere to strict aseptic procedures during preparation of the radiopharmaceutical.

Technetium Tc 99m aggregated albumin is physically unstable and as such the particles will settle with time. Failure to mix the vial contents adequately before use may result in non-uniform distribution of radioactivity.

It is also recommended that, because of the increasing probability of agglomeration with aging, a batch of Technetium Tc 99m aggregated albumin not be used after eight hours from the time of reconstitution. Refrigerate at 2° to 8°C after reconstitution. If blood is withdrawn into the syringe, an unnecessary delay prior to injection may result in clot formation in situ.

The contents of the vial are under a nitrogen atmosphere and should be protected from air. Do not use if clumping or foaming of the contents is observed.

Accurate reproduction studies have not been performed in animals to determine whether this drug affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Technetium Tc 99m aggregated albumin should be used in pregnant women only when clearly needed.

It is not known whether this drug is excreted in human milk. As a general rule, nursing should not be undertaken while a patient is on a drug since many drugs are excreted in human milk.

Safety and effectiveness in children have not been established.

In as the use of any radioactive material, care should be taken to minimize radiation exposure to the patient, consistent with proper management, and to ensure minimum radiation exposure to the occupational worker.

Radiopharmaceuticals should be used only by physicians who are qualified by training and experience in the safe use and handling of radionuclides and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.

Adverse Reactions: The literature contains reports of death occurring after the administration of aggregated albumin to patients with pre-existing severe pulmonary hypertension. Instances of hemodynamic or idiosyncratic reactions to preparations of Tc 99m-labeled aggregated albumin have been reported.

Hypersensitivity reactions are possible whenever protein-containing materials such as Tc 99m-labeled aggregated albumin are used in man. Epinephrine, antihistamines and corticosteroid agents should be available for use.

Dosage and Administration: The recommended intravenous dose range for the average patient (70kg) is 1 to 4 millicuries. The volume of the dose may vary from 0.2 to 1.3 ml.

The recommended number of aggregated albumin particles to be administered per dose is 200,000-700,000 with the suggested number being approximately 350,000.

For ease and accuracy in dispensing the prepared agent, it is recommended that prior to reconstitution, concentrated sodium pertechnetate Tc 99m be further diluted to a volume of 8ml with fresh, preservative-free sodium chloride injection (U.S.P.).

New Supplies: PULMOLITE™ Technetium Tc 99m Aggregated Albumin Kit is supplied in kits of five (5) or thirty (30) vials, sterile and non-pyrogenic, each vial containing in lyophilized form:

- Aggregated albumin (human)-10mg
- Normal human serum albumin-10mg
- Sodium chloride-10mg

Each vial contains 3.6-5.5 x 10⁹ aggregated albumin particles. PULMOLITE contains no preservative; after reconstitution the shielded vial should be stored at 2° to 8°C.

Included in each five (5) vial kit is one (1) package insert and six (6) radiation labels. Included in each thirty (30) vial kit is one (1) package insert and thirty-six (36) radiation labels.

Cat. No. NRP-415

New England Nuclear
Medical Diagnostics Division

601 Treble Cove Rd., North Billerica, MA 01862 Call Toll-Free 800-225-1572 Telex 94-0996 (In Mass. and International 617-482-9595)
All activated charcoal packs will eventually fail. The name xenon trap is actually a misnomer, xenon delay system is much more descriptive. When it will fail depends on many variables. When it fails, you need to know. That is what the Xenalarm was designed to do. It will give you an audio/visual alarm when the concentration of Xenon-133 in the exhaust port exceeds 1×10^{-2} uCi/ml. It can be added to any manufacturer's xenon trap. It should be added to all manufacturers' xenon traps (except the Radx Model 120 Xenon Trap, which has the alarm already built-in.)

For a demonstration, please call or write

RAX
P.O. Box 19164 • Houston, Texas 77024 • 713-468-9628

*Timpe, O. M. Precautions for Avoiding 133Xe Release From Charcoal Xenon Traps. Journal of Nuclear Medicine Technology Volume 4, Number 4, Pages 208-209.
TO MONITOR
The Chemotherapy Of
The Cancer Patient

Diagnostic Biochemistry Inc.

Doxorubicin [\(^{125}\)I]
(Adriamycin)*
Radioimmunoassay
Kit

Methotrexate [\(^{125}\)I]
Radioimmunoassay
Kit

High circulating levels of Adriamycin* may result in irreversible myocardial
damage, bone marrow depression, and
gastrointestinal trauma.\(^{1,2}\) Knowledge of
circulating Adriamycin* concentrations
therefore, is important.

For further information call or write:

Diagnostic Biochemistry Inc.

(714) 452-0950

10457-H ROSELLE STREET • SAN DIEGO, CA 92121
Whatever kind of generator you use,

Our better way is a vial shield made specifically for your generator. Vial shields that give you protection equivalent to 12 HVLs plus 360 degrees of visibility.

The secret? A special blend of high density lead glass* we’ve developed and used in making lead glass radiation shielding systems for nuclear research installations worldwide for nearly 30 years.

Vial shields made by Nuclear Pacific stop radiation danger, yet provide crystal clear optical quality visibility so you can see what you’re doing. Each shield loads with a twist and centers the vial inside automatically.

Remember, if you want protection and visibility, now there’s a better way. Vial shields pictured: 75-S (Squibb), 75-UC (Union Carbide), 75-NEN (New England Nuclear), 75-M (Mallinckrodt). Each: $225.00 F.O.B. Seattle, Washington.

Nuclear Pacific, Inc.
6701 Sixth Ave. S.
Seattle, WA 98108
(206) 763-2170

*Hi-D® 6.2 gm/cm². Registered U.S. Patent Office.
Platinum melted ultra high density optical glass.
Joe-

When measuring radiopharmaceuticals, the CRC-17 will do the work for you accurately, quickly, easily - and economically.

Dave

• Connector provided to interface the calibrator to CRC-U Computer/Printer system
• Push-button operation ... instant digital readout of total activity of eight most frequently used radionuclides
• Manual radioisotope selection for over 200 radionuclides
• Deep ionization chamber well allows convenient measurements of virtually any radioisotope in clinical use and accommodates sample sizes up to 200 ml vial
• Ion collection potential supply easily displayed by pushing TEST button
• High sensitivity (0.1 μCi resolution)
• Moly-assay capability
• Pressurized argon detector

SQUIBB CRC®-17 Radioisotope Dose Calibrator
Medotopes® Product Manager
E. R. Squibb & Sons, Inc.
Box 4000
Princeton, N.J. 08540

Send CRC-17 information.
Have representative call.

NAME
ADDRESS
CITY
STATE
ZIP
Before you invest in xenon monitoring equipment, discover the unique features of the new

XenAlert™ XENON-133 MONITOR

The ONLY wide-range unit that monitors ROOM AIR and GAS TRAP OUTPUT

- Reads directly in Maximum Permissible Concentration (MPC) units (or fractions thereof).
- Integrates and displays ^{133}Xe concentration in MPC-Hours.*
- Audio and visual indicators alert you BEFORE hazardous xenon concentrations are reached.

...AND MUCH MORE!

Details on request.
Ask for Bulletin 266-B

*The Maximum Permissible Concentration of ^{133}Xe in a restricted area is 1×10^{-1} μCi/ml for a time period of 40 hours in any 7 consecutive days.

TM Nuclear Associates

NUCLEAR ASSOCIATES
Division of VICTOREEN, INC.
100 Voice Road • Carle Place, N.Y. 11514 • (516) 741-6360
The fastest way to assay total estriol in urine or serum.
- 1/2-hour incubation
- Four simple steps, single incubation
- No separate hydrolysis
- Routinely provides STAT performance
- Urine and serum controls of conjugated estriol supplied at two levels
- Minimal reagent preparation, minimal pipetting

Send for data sheet today.

Complete directions for use are provided with each product. These directions should be read and understood before use. Particular attention should be paid to all warnings and precautions. Additional performance data are available. Should you have any questions, contact your Clinical Assays/Travenol representative.
Ohio-Nuclear establishes, once standard for nuclear cardiac studies
Introducing the VIP 550. A sophisticated computer integrated into the Sigma gamma camera. This single unit is specifically designed to allow one technologist to acquire and process nuclear cardiac studies at bedside without the need for a computer specialist—while retaining nuclear medicine capabilities of our mobile gamma camera. With total upgradability for all existing Ohio-Nuclear mobile camera models, of course. VIP 550.
The tradition continues.

For further information, write: Susan Wright, Marketing Communications Manager, Nuclear Products, Ohio-Nuclear, Inc., 29100 Aurora Rd., Solon, OH 44139.
again, the clinically proven and nuclear medicine imaging. cated nuclear medicine 420 mobile

the full exceptional

ohio-nuclear, inc.
A subsidiary of Technicare Corporation
29100 Aurora Road, Solon, Ohio 44139
Phone: (216) 248-1800
Recent research shows...

NOW AVAILABLE FOR ROUTINE USE AS AN ADJUNCT IN THE DIAGNOSIS OF ACUTE MYOCARDIAL INFARCTION.

Solitary lesion seen with OSTEOSCAN®¹
Technetium Tc99m etidronate sodium kit

Same patient scanned with Tc99m pyrophosphate¹

In whole body scans from which these skeletal views were taken, a solitary ileal metastasis was seen with Osteoscan, but not with the pyrophosphate imaging agent.
Clinical evidence produced by two groups of investigators demonstrates that Osteoscan outperforms pyrophosphates in detecting bone lesions.

“In ten of the 30 scans (33%) one or more metastases not detected on the Tc-PPi [pyrophosphate] image were noted by at least two of the three readers with Tc-HEDP [Osteoscan].”

“...in three of 30 patients the Tc-PPi [pyrophosphate] scan was falsely read as normal by at least two of three readers, whereas metastatic disease was found in these patients with Tc-HEDP [Osteoscan].”

The superior lesion detection demonstrated by Osteoscan may be explained by the higher tumor to normal bone ratios obtained. In fact, it was concluded that Osteoscan “…is at present the agent of choice for routine clinical practice…”

With Osteoscan, you can also expect excellent in vitro stability (greater than 98% tag 8 hours after preparation) ...a very low tin level (.16 mg stannous chloride per vial) to minimize the potential for liver visualization or interference with subsequent brain scans ...rapid blood clearance ... plus excellent in vivo stability due to Osteoscan’s P-C-P bond.

For additional information, call or write Procter & Gamble, Professional Services, P. O. Box 85507, Cincinnati, Ohio 45201, (513) 977-5547.

In Europe, contact: Philips-Duphar B.V., Cyclotron and Isotope Laboratories, Petten, Holland.

References:

Brief summary of Package Insert. Before using, please consult the full Package Insert included in each kit.

Description: Each vial of OSTEOSCAN contains 5.9 mg diphosphonate disodium, 0.16 mg stannous chloride and 0.56 mg sodium ascorbate as active ingredients. Upon addition of ADDITIVE-FREE sodium pertechnetate Tc99m the diphosphonate disodium and stannous chloride combine with Tc99m to form a stable soluble complex.

Clinical pharmacology: When injected intravenously, Tc99m-labeled OSTEOSCAN has a specific affinity for areas of altered osteogenesis. Areas of bone which are undergoing neoplastic invasion often have an unusually high turnover rate which may be imaged with Tc99m-labeled OSTEOSCAN.

Three hours after intravenous injection of Tc99m-labeled OSTEOSCAN, an estimated 40-50% of the injected dose has been taken up by the skeleton. At this time approximately 50% has been excreted in the urine and 6% remains in the blood. A small amount is retained by the soft tissue. The level of Tc99m-labeled OSTEOSCAN excreted in the feces is below the level detectable by routine laboratory techniques.

Tc99m-labeled OSTEOSCAN is also taken up in areas of necrosis and severe injury to the myocardial cells. Approximately 1.5 hours following intravenous injection 0.01-0.02 percent of the administered dose per gram of tissue is taken up by an acutely infarcted myocardium.

Indications: OSTEOSCAN is a skeletal imaging agent used to demonstrate areas of altered osteogenesis and a cardiac imaging agent used as an adjunct in the diagnosis of acute myocardial infarction. When used as an adjunct in the diagnosis of myocardial infarction the incidence of false negatives has been found to be approximately 14% and false positives approximately 16%. False negatives may result from failure to observe temporal requirements for good myocardial imaging; false positives may be related to coronary heart disease, left ventricular aneurysma, trauma, repeated cardioversion following coronary by-pass surgery or old myocardial infarcts.

Contraindications: None known.

Warnings: This radiopharmaceutical should not be administered to patients who are pregnant or lactating unless the information to be gained outweighs the potential hazards.

Ideally, examinations using radiopharmaceuticals, especially those effective in nature, of a woman of childbearing capability should be performed during the next few (approximately 10) days following the onset of menses.

The technetium used to tag the product should be routinely tested for molybdenum and aluminum; if an unacceptable level of either is found, the technetium should not be used.

Radiopharmaceuticals should be used only by physicians who are qualified by specific training in the safe use and handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

Precautions: As in the use of any other radioactive material, care should be taken to insure minimum radiation exposure to the patient, consistent with the proper patient management, and to insure minimum radiation exposure to occupational workers.

Bone Imaging: Both prior to and following Tc99m-labeled OSTEOSCAN administration, patients should be encouraged to drink fluids. Patients should void as often as possible after the Tc99m-labeled OSTEOSCAN injection to minimize background interference from accumulation in the bladder and unnecessary exposure to radiation.

Cardiac Imaging: Patient's cardiac condition should be stable before beginning the cardiac imaging procedure. If not contraindicated by the cardiac status, patients should be encouraged to ingest fluids and to void frequently in order to reduce unnecessary radiation exposure.

Interference from chest wall lesions such as breast tumors and healing rib fractures can be minimized by employing the three recommended projections.

Adverse reactions: None known.

Dosage and administration: The recommended adult dose of Tc99m-labeled OSTEOSCAN is 10-15 mCi. The activity of each dose should be measured by a suitable radiation calibration system just prior to administration. The dose should be given intravenously by slow injection. For optimal results bone imaging should not be done 2-4 hours post injection and cardiac imaging 6-10 hours post injection. The acute myocardial infarct can be visualized from 1-3 days following onset of symptoms with maximum uptake at 2-3 days. It is recommended that three projections of the heart be made (anterior, left anterior oblique and left lateral).
Increase your knowledge in all areas of nuclear medicine--with these two books:

A New Book. BASICS OF RADIOPHARMACY. By Buck A. Rhodes, Ph.D. and Barbara Y. Croft, Ph.D. Broaden your knowledge of the preparation and clinical use of radioactive tracers. This comprehensive new book analyzes both tracer principles and pharmacy techniques to provide you with the basics you need to prepare radioactive substances for intravenous administration. Highlights include discussions on the production of radionuclides, daily preparations and their quality control, design criteria, and radiation dosimetry. June, 1978. 208 pp., 246 illus. Price, $14.95.

CONTENTS (Section heads only): Quality in nuclear medicine: an introduction • The nuclear diagnostic system • Human factors • Radiopharmaceuticals • Nuclear instrumentation • In vitro assays • Conclusion • Appendixes • Procedures.

NUCLEAR MEDICINE PHYSICS, INSTRUMENTATION AND AGENTS. Edited by F. David Rollo, Ph.D., M.D.; with 12 contributors. In this exhaustive resource, physicians and nuclear medicine scientists provide a comprehensive, yet easy-to-understand look at the physical factors involved in nuclear imaging. You'll benefit from a wealth of practical information, including important discussions of physics, instrumentation and agents to help you increase your comprehension of nuclear medicine devices. 1977. 712 pp., 626 illus. Price, $54.50.

CONTENTS: Atomic and nuclear physics • Radioactivity and properties of nuclear radiation • Basic electronics • Applied electronics • Detection and measurement of nuclear radiation • Anger scintillation camera • Special imaging devices • Quality assurance in nuclear medicine • Operation and quality control of the rectilinear scanner • Factors affecting image formation • Evaluating imaging devices • Computers in nuclear medicine • Nuclear medicine statistics • Dose estimate techniques • Radiation safety • Principles, properties, and quality control of nuclear medicine agents • Appendixes

For even faster service, call us! Dial toll-free (800) 325-4177, ext. 10 during normal business hours. In Missouri, call collect (314) 872-8370 ext. 10. A90146

Mail this coupon today, and you'll have 30 days to evaluate your selections!
Yes! Please send me an on-approval copy of the book(s) I've checked below:

___ BASICS OF RADIOPHARMACY (4127-6), $14.95
___ NUCLEAR MEDICINE PHYSICS, INSTRUMENTATION AND AGENTS (4181-0), $54.50

Prices effective only in U.S.
□ Bill me □ Payment enclosed
mastercharge # ____________________________
VISA # ____________________________

Name __
Address __

City ____________________ State __________ Zip Code ____________

30-day approval good in U.S. and Canada. A90146

Complete and mail to:
The C. V. Mosby Company, 11830 Westline Industrial Drive, St. Louis, Mo. 63141

MOSBY TIMES MIRROR

THE C. V. MOSBY COMPANY
11830 WESTLINE INDUSTRIAL DRIVE
ST. LOUIS, MISSOURI 63141

THE JOURNAL OF NUCLEAR MEDICINE
Clinical evidence produced by two groups of investigators demonstrates that Osteoscan outperforms pyrophosphates in detecting bone lesions.

"In ten of the 30 scans (33%) one or more metastases not detected on the Tc-PPI [pyrophosphate] image were noted by at least two of the three readers with Tc-HEDP [Osteoscan]."

"...in three of 30 patients the Tc-PPI [pyrophosphate] scan was falsely read as normal by at least two of three readers, whereas metastatic disease was found in these patients with Tc-HEDP [Osteoscan]."

The superior lesion detection demonstrated by Osteoscan may be explained by the higher tumor to normal bone ratios obtained. In fact, it was concluded that Osteoscan "...is at present the agent of choice for routine clinical practice."

With Osteoscan, you can also expect excellent in vitro stability (greater than 98% tag 8 hours after preparation)...a very low tin level (.16 mg stannous chloride per vial) to minimize the potential for liver visualization or interference with subsequent brain scans...rapid blood clearance...plus excellent in vivo stability due to Osteoscan's P-C-P bond.

For additional information, call or write Procter & Gamble, Professional Services, P.O. Box 85507, Cincinnati, Ohio 45201, (513) 977-5547. In Europe, contact: Philips-Duphar B.V., Cyclotron and Isotope Laboratories, Petten, Holland.

References:

Brief summary of Package Insert. Before using, please consult the full Package Insert included in each kit.

Description: Each vial of OSTEOSCAN contains 5.9 mg etidronate disodium, 0.16 mg stannous chloride and 0.56 mg sodium ascorbate as active ingredients. Upon addition of ADDITIVE-FREE sodium pertechnetate Tc99m the etidronate disodium and stannous chloride combine with Tc99m to form a stable soluble complex.

Clinical pharmacology: When injected intravenously, Tc99m-labeled OSTEOSCAN has a specific affinity for areas of altered osteogenesis. Areas of bone which are undergoing neoplastic invasion often have an unacceptably high turnover rate which may be imaged with Tc99m-labeled OSTEOSCAN.

Three hours after intravenous injection of Tc99m-labeled OSTEOSCAN, an estimated 40-50% of the injected dose has been taken up by the skeleton. At this time approximately 50% has been excreted in the urine and 6% remains in the blood. A small amount is retained by the soft issue. The level of Tc99m-labeled OSTEOSCAN excreted in the feces is below the level detectable by routine laboratory techniques.

Tc99m-labeled OSTEOSCAN is also taken up in areas of necrosis and severely injured myocardial cells. Approximately 1.5 hours following intravenous injection 0.01-0.02 percent of the administered dose per gram of tissue is taken up by an acutely infarcted myocardium.

Indications: OSTEOSCAN is a skeletal imaging agent used to demonstrate areas of altered osteogenesis and a cardiac imaging agent used as an adjunct in the diagnosis of acute myocardial infarction. When used as an adjunct in the diagnosis of myocardial infarction the incidence of false negatives has been found to be approximately 14% and false positives about 16%. False negatives may result from failure to observe temporal requirements for good myocardial imaging; false positives may be related to coronary heart disease, left ventricular aneurysms, trauma, repeated cardiovascular following coronary by-pass surgery or old myocardial infarcts.

Contraindications: None known.

Warnings: This radiopharmaceutical should not be administered to patients who are pregnant or lactating unless the information to be gained outweighs the potential hazards.

Radioisotopes used in radiopharmaceuticals, especially those electrolyte in nature, of a woman of childbearing capability should be performed during the first few (approximately 10) days following the onset of menstruation.

The technetium used to tag the product should be routinely tested for molybdenum and aluminum; at an unacceptable level of either is found, the technetium should not be used.

Radioisotopes should be used only by physicians who are qualified by specific training in the safe use and handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate government agency.

Precautions: As in the use of any other radiopharmaceutical, care should be taken to insure minimum radiation exposure to the patient, consistent with proper patient management, and to insure minimum radiation exposure to occupational workers.

Bone Imaging:

Before and following Tc99m-labeled OSTEOSCAN administration, patients should be encouraged to drink fluids. Patients should void as often as possible after the Tc99m-labeled OSTEOSCAN injection to minimize background interference from accumulation in the bladder and unnecessary exposure to radiation.

Cardiac Imaging:

Patient's cardiac condition should be stable before beginning the cardiac imaging procedure. If not contraindicated by the cardiac status, the patient should be encouraged to ingest fluids and to void frequently in order to reduce unnecessary radiation exposure.

Interference from chest wall lesions such as breast tumors and healing rib fractures can be minimized by employing the three recommended projections.

Adverse reactions: None known.

Dosage and administration: The recommended adult dose of Tc99m-labeled OSTEOSCAN is 10-15 mCi. The activity of each dose should be measured by a suitable radiation calibration system just prior to administration. The dose should be given intravenously by slow injection. For optimal results bone imaging should be done 2-4 hours post injection and cardiac imaging 1-1½ hours post injection. The acute myocardial infarct can be visualized from 1-3 days following onset of symptoms with maximum uptake at 2-3 days. It is recommended that three projections of the heart be made (anterior, left anterior oblique and left lateral).
Two cassettes. Two buttons. The choice of 4:1, or 1:1 is yours at the push of a button. Instantly.
It's the perfect marriage. Easy to use and inexpensive to operate. And coupled to the needs of Nuclear Medicine Computers.

We do it in tandem. Our Model 414 Video Display Camera uses 2 side by side film cassettes. So you can change from 4:1 to 1:1 as easily as pushing a button. On any video-based medical imaging.

No more fussing with dark slides and changing film cassettes every time you want to switch. No more buttons and whistles to recalibrate. When you see an image during the 4:1 mode you want to shoot 1:1, just press the Single Image Expose Button. Then go back to where you left off in 4:1 simply by pushing another button. You won't even lose your place. Or your patience.

But there's more to this merger than mere ease of operation. On-axis photography and a faster lens allow for single-field video recordings. Spot metering gives consistently excellent results from photo to photo, film to film. Microprocessor electronics afford fast, precise operation and reliability. And a high resolution monitor makes sure it all starts out right before anything goes on film.

Four on one. One on one. In one.

Call (415) 957-1600. Or write to Dunn Instruments, P.O. Box 77172, 52 Colin P. Kelly Jr. Street, San Francisco, Ca 94107. We'll show you how to get it twogether for Nuclear Medicine Computers.

Dunn Instruments
Model 414 Video Display Camera

Whichever format you're in, the results are always the same.
Excellent.
Increase your knowledge in all areas of nuclear medicine--with these two books:

A New Book. BASICS OF RADIOPHARMACY. By Buck A. Rhodes, Ph.D. and Barbara Y. Croft, Ph.D. Broaden your knowledge of the preparation and clinical use of radioactive tracers. This comprehensive new book analyzes both tracer principles and pharmacy techniques to provide you with the basics you need to prepare radioactive substances for intravenous administration. Highlights include discussions on the production of radionuclides, daily preparations and their quality control, design criteria, and radiation dosimetry. June, 1978. 206 pp., 246 illus. Price, $14.95.

CONTENTS (Section heads only): Quality in nuclear medicine: an introduction • The nuclear diagnostic system • Human factors • Radiopharmaceuticals • Nuclear instrumentation • In vitro assays • Conclusion • Appendixes • Procedures.

NUCLEAR MEDICINE PHYSICS, INSTRUMENTATION AND AGENTS. Edited by F. David Rollo, Ph.D., M.D.; with 12 contributors. In this exhaustive resource, physicians and nuclear medicine scientists provide a comprehensive, yet easy-to-understand look at the physical factors involved in nuclear imaging. You'll benefit from a wealth of practical information, including important discussions of physics, instrumentation and agents to help you increase your comprehension of nuclear medicine devices. 1977. 712 pp., 625 illus. Price, $54.50.

CONTENTS: Atomic and nuclear physics • Radioactivity and properties of nuclear radiation • Basic electronics • Applied electronics • Detection and measurement of nuclear radiation • Anger scintillation camera • Special imaging devices • Quality assurance in nuclear medicine • Operation and quality control of the rectilinear scanner • Factors affecting image formation • Evaluating imaging devices • Computers in nuclear medicine • Nuclear medicine statistics • Dose estimate techniques • Radiation safety • Principles, properties, and quality control of nuclear medicine agents • Appendixes

For even faster service, call us! Dial toll-free (800) 325-4177, ext. 10 during normal business hours. In Missouri, call collect (314) 872-8370 ext. 10. A90146

Mail this coupon today, and you'll have 30 days to evaluate your selections!

Yes! Please send me an on-approval copy of the book(s) I've checked below:

___ BASICS OF RADIOPHARMACY (4127-6), $14.95
___ NUCLEAR MEDICINE PHYSICS, INSTRUMENTATION AND AGENTS (4181-0), $54.50

Prices effective only in U.S.

☐ Bill me ☐ Payment enclosed

mastercharge # ________________________

VISA # ________________________

Name _______________________________________

Address _______________________________________

City ____________________ State ______ Zip Code __________

30-day approval good in U.S. and Canada A90146

Complete and mail to:
The C. V. Mosby Company, 11830 Westline Industrial Drive, St. Louis, Mo. 63141

MOSBY TIMES MIRROR

THE C. V. MOSBY COMPANY
11830 WESTLINE INDUSTRIAL DRIVE
ST. LOUIS, MISSOURI 63141

24A

THE JOURNAL OF NUCLEAR MEDICINE
If you've waited until now to get started in cardiovascular nuclear medicine...

Thallous Chloride
TI 201

New England Nuclear
To help rule out, confirm or evaluate

Coronary artery disease

Positive stress ECG without angina

History
A.C., 50-year-old accountant, asymptomatic, required to undergo exercise ECG as part of “executive physical.”

ECG findings
Normal at rest, 2.5-3 mm ST-segment depression on exercise; denied accompanying angina.

Thallium-201 imaging
Large apical defect on immediate post-exercise anterior view; defect filled in on delayed images.

Working diagnosis
Coronary artery disease, confirmed on preoperative angiography.

Acute myocardial infarction

Early diagnosis

History
J.B., 54-year-old construction worker, admitted to CCU following episode of severe chest pain, diaphoresis, dizziness. Patient fell to ground upon onset of symptoms, severely bruising left thigh, chest wall. No history of angina pectoris or prior MI; ECG documented left bundle branch block.

Serum enzymes, ECG
Elevated shortly following admission; isoenzyme analysis unavailable to differentiate elevation secondary to trauma from possible elevation secondary to acute MI; ECG nondiagnostic because of LBBB.

Thallium-201 imaging
Images made upon admission displayed anterior wall defect (anterior view), large septal defect (LAO view).

Working diagnosis
Extensive anteroseptal MI.
To start using thallium-201 in your department, you’ll need:

A recent model 37 photomultiplier tube camera with all-purpose collimator, capable of resolving 1 cm line separations on an Au 195 line phantom.

Treadmill or bicycle ergometer and ECG recorder, to perform maximal stress testing in accordance with good clinical practice.

Ability to begin imaging promptly (within 3–5 minutes) following thallous chloride Tl 201 injection and termination of stress.

To get the most out of thallium-201’s total diagnostic capability, you’ll want:

Clinical training in scan interpretation at an institution experienced in thallium-201 imaging.*

Electronic image acquisition and processing, to help resolve ambiguous studies.

Mobile imaging/acquisition instrumentation, to facilitate acute MI thallium-201 studies when patients cannot be transported to the nuclear medicine department.

Continuing medical education on thallium-201, for your staff and for your referring physicians.*

*Your NEN representative may help recommend an institution in your area. For continuing medical education programming, ask your NEN representative or write: Teaching Program Administrator, New England Nuclear, 549 Albany Street, Boston, Mass. 02118.

Thallous Chloride Tl 201

NEN New England Nuclear
Thallous Chloride
TI201
November 1977

FOR DIAGNOSTIC USE

DESCRIPTION: Thallous Chloride TI 201 is supplied in isotonic solution as a sterile, non-pyrogenic diagnostic radiopharmaceutical for intravenous administration. The aqueous solution at calibration time contains 1mCi/ml Thallous Chloride TI 201, adjusted to pH 4.5-6.5 by the addition of hydrochloric acid and/or sodium hydroxide solution. It is made isotonic with 0.9% sodium chloride and is preserved with 0.3% benzyl alcohol. Thallium TI 201 has a half-life of 73.1 hours and is cyclotron-produced. It is essentially carrier-free, and contains less than 0.25% lead Pb 203 and less than 1.9% Thallium TI 202.

PHYSICAL CHARACTERISTICS
Thallium TI 201 decays by electron capture to Mercury Hg 201 with a physical half-life of 73.1 hours. Photons that are useful for detection and imaging are listed in Table 1. The lower energy X-rays obtained from the Mercury Hg 201 daughter of TI 201 are recommended for myocardial imaging, because the mean %/disintegration at 68-80.3 keV is much greater than the combination of gamma-4 and gamma-6 mean %/disintegration.

Table 1. Principal Radiation Emission Data

<table>
<thead>
<tr>
<th>Radiation</th>
<th>Mean %/Disintegration</th>
<th>Mean Energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma-4</td>
<td>2.65</td>
<td>135.3</td>
</tr>
<tr>
<td>Gamma-6</td>
<td>10.0</td>
<td>167.4</td>
</tr>
<tr>
<td>Mercury X-rays</td>
<td>94.5</td>
<td>68-80.3</td>
</tr>
</tbody>
</table>

Martin, M.J. Nuclear Data Project, ORNL, January 1977

EXTERNAL RADIATION

The specific gamma ray constant for Thallium TI 201 is 0.47R/mCi-hr at 1 cm. The first half-value layer is 0.23mm of lead. A range of values for the relative attenuation of the radiation emitted by this radionuclide that results from the interception of various thicknesses of lead (Pb) is shown in Table 2. For example, the use of 4.4mm of lead will decrease the external radiation exposure by a factor of about 10,000.

Table 2. Radiation Attenuation By Lead Shielding

<table>
<thead>
<tr>
<th>mm of Lead (Pb)</th>
<th>Coefficient of Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>10^-5</td>
</tr>
<tr>
<td>0.33</td>
<td>10^-4</td>
</tr>
<tr>
<td>1.9</td>
<td>10^-3</td>
</tr>
<tr>
<td>3.1</td>
<td>10^-2</td>
</tr>
<tr>
<td>4.4</td>
<td>10^-1</td>
</tr>
<tr>
<td>5.7</td>
<td>10^-0</td>
</tr>
</tbody>
</table>

To correct for physical decay of this radionuclide, the fractions that remain at selected intervals before and after calibration are shown in Table 3.

Table 3. Thallium TI 201 Decay Chart: Half-Life 73.1 Hours

<table>
<thead>
<tr>
<th>Fraction Remaining</th>
<th>Fraction Remaining</th>
<th>Fraction Remaining</th>
<th>Fraction Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours Remaining</td>
<td>Hours Remaining</td>
<td>Hours Remaining</td>
<td>Hours Remaining</td>
</tr>
<tr>
<td>.72</td>
<td>1.98</td>
<td>18</td>
<td>0.84</td>
</tr>
<tr>
<td>.45</td>
<td>1.77</td>
<td>24</td>
<td>0.80</td>
</tr>
<tr>
<td>.48</td>
<td>1.58</td>
<td>30</td>
<td>0.75</td>
</tr>
<tr>
<td>.36</td>
<td>1.41</td>
<td>36</td>
<td>0.71</td>
</tr>
<tr>
<td>.36</td>
<td>1.34</td>
<td>42</td>
<td>0.67</td>
</tr>
<tr>
<td>.6</td>
<td>1.06</td>
<td>48</td>
<td>0.63</td>
</tr>
<tr>
<td>0</td>
<td>1.00</td>
<td>54</td>
<td>0.60</td>
</tr>
<tr>
<td>.12</td>
<td>1.58</td>
<td>57</td>
<td>0.54</td>
</tr>
<tr>
<td>12</td>
<td>0.90</td>
<td>66</td>
<td>0.54</td>
</tr>
</tbody>
</table>

*Calibration Time

CLINICAL PHARMACOLOGY: Carrier-free Thallous Chloride TI 201 has been found to accumulate in viable myocardium in a manner analogous to potassium. Experiments employing labeled microspheres in human volunteers have shown that the myocardial distribution of Thallous Chloride TI 201 correlates well with regional perfusion. In clinical studies, thallium images have been found to visualize areas of infarction confirmed by electrocardiographic and enzyme changes. Regions of transient myocardial ischemia corresponding to areas perfused by coronary arteries with partial stenoses have been visualized when thallium was administered in conjunction with an exercise stress test. It is usually not possible to differentiate recent from old myocardial infarction, and no exact differentiation can be made between recent myocardial infarction and ischemia. After intravenous administration, Thallous Chloride TI 201 clears rapidly from the blood with maximal concentration by normal myocardium occurring at about ten minutes.

INDICATIONS AND USAGE: Thallous Chloride TI 201 may be useful in myocardial perfusion imaging for the diagnosis and localization of myocardial infarction. It may also be useful in conjunction with exercise stress testing as an adjunct in the diagnosis of ischemic heart disease (atherosclerotic coronary artery disease).

CONTRAINdications: None known.

WARNINGS: In studying patients in whom myocardial infarction or ischemia is known or suspected, care should be taken to assure continuous clinical monitoring and treatment in accordance with safe, accepted procedure. Exercise stress testing should be performed only under the supervision of a qualified physician and in a laboratory equipped with appropriate resuscitation and support apparatus.

Ideally, examinations using radiopharmaceuticals should be performed only under the supervision of a qualified physician and in a laboratory equipped with appropriate resuscitation and support apparatus.

The estimated absorbed radiation dose to an average adult (70kg) from an intravenous injection of a maximum dose of 1.5 millicuries of TI 201 is shown in Table 4.

Table 4. Radiation Dose Estimates of Thallous Chloride TI 201: Absorbed Dose/1mCi

<table>
<thead>
<tr>
<th>Organ</th>
<th>Rads/1mCi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>0.51</td>
</tr>
<tr>
<td>Small Intestines</td>
<td>0.87</td>
</tr>
<tr>
<td>Kidneys</td>
<td>2.2</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.93</td>
</tr>
<tr>
<td>Red Marrow</td>
<td>0.51</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.85</td>
</tr>
<tr>
<td>Testes</td>
<td>0.81</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.81</td>
</tr>
<tr>
<td>Total Body</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Values listed include a maximum correction of 10% to the radiation doses from TI 201 due to the radiocarbons Pb 203 and TI 202.

NOW SUPPLIED: Thallous Chloride TI 201 for intravenous administration is supplied as a sterile, non-pyrogenic solution containing at calibration time, 1mCi/ml of Thallous Chloride TI 201, 9mg/ml sodium chloride, and 9mg/ml of benzyl alcohol. The pH is adjusted to between 4.5-6.5 with hydrochloric acid and/or sodium hydroxide solution. Vials are available in the following quantities of radioactivity: 1.5, 3.0, 4.5, 6.0, and 9.0 millicuries of Thallous Chloride TI 201.

The contents of the vial are radioactive. Adequate shielding and handling precautions must be maintained.

Catalog Number NRP-427
Introducing our second generation generator

The Radiochemical Centre Amersham

The Radiochemical Centre Limited, Amersham, England. Tel: Little Chalfont (024 04) 4444
In West Germany: Amersham Buchler GmbH & Co KG, Braunschweig. Tel: 05307-4693-97
World-Wide Acceptance
...Global Availability

ISOCLEAN CONCENTRATE
Radio-Labware Cleaner

The most effective solution anywhere offered for cleansing hot-lab apparatus of adherent radioactivity. Safe and easy-to-use. Proves itself thousands of times daily in research and clinical laboratories throughout the world.

Now available at reasonable cost, internationally, through licensed manufacture to Isolab's exacting specifications, plus national distribution from local stocks.

Contact your nearest Isoclean licensee or distributor for complete information.

In the U.S. and Canada: Order from any office of Amersham-Searle, Nuclear Associates, Picker and other distributors—or call Isolab collect.
1/10 Inch or Better Resolution at a fraction of new system cost.

BEFORE
NEN Thallium 201 phantom at 2" distance from collimator.
500K

AFTER
NEN Thallium 201 phantom at 2" distance from collimator.
500K

The picture on your left does not provide adequate resolution for cardiac work. The picture on the right is more than adequate!

Picker 2C with ultrafine collimator.
Picker 2C with ultrafine collimator and SX-11 detector head.

Enjoy new camera performance without a major investment. Nuclear Service Inc. can upgrade your existing gamma camera system to provide you with 1/10" or better intrinsic resolution.

With NSI upgrade you not only receive State-of-the-Art resolution, but in most cases your converted system will provide you with IMPROVED FIELD UNIFORMITY.

Learn more about this efficient and economical method available from one of the country's largest independent nuclear medicine service organizations. Call or write NSI for complete information on gamma camera upgrade.

Up to 75% Better Resolution.

<table>
<thead>
<tr>
<th>Picker</th>
<th>Improved Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>75%</td>
</tr>
<tr>
<td>2C</td>
<td>50%</td>
</tr>
<tr>
<td>3C, 4-12</td>
<td>40%</td>
</tr>
<tr>
<td>1/8"</td>
<td>20%</td>
</tr>
</tbody>
</table>

Leasing plans and reconditioned upgraded systems also available.

Nuclear Services Inc. (516) 752-9270
P. O. Box 5492 (203) 281-3957
Hamden, CT 06518
As nuclear medicine has matured and progressed so has the development of the Ultra-Technetium* FM Tc 99m Generator. In keeping pace with the changing needs of the nuclear medicine community, we have redesigned the Ultra-Technetium system and further refined those features that have, through the years, made the Ultra-Technetium Generators among the safest, easiest-to-operate, and most reliable performing technetium delivery systems in the world.

An important part of the total system is our commitment to provide the best overall, on-time delivery record in the industry. The Customer Service people have established a reputation for solving some of the most difficult routing problems imaginable.

We invite you to evaluate our evolutionary system and challenge the people in Customer Service to demonstrate why they're the best, at what they do, in the industry. Contact your local Mallinckrodt representative or call Don Burkhead at 314-895-0247.

Here are a few of the changes that make the latest Ultra-Technetium easier to use and more reliable than ever:

- Redesigned canister:
 For easier lifting and maneuverability, the canister has a large firm top handle. Change in design simplifies engaging and removing the Luer-lock needle on a daily basis; an important feature in maintaining sterile elution technique.

- New valve system:
 Provides positive protection against accidental elution or leakage.

- Better shielding:
 To reduce radiation levels during elution, an additional lead plate has been inserted inside between the tubing and the canister.

 A redesigned auxiliary shield is available that provides added reduction in surface radiation levels on all sides and the top.

- Reduced weight (smaller units):
 A change in the configuration of the internal column shield allows weight reduction of our smaller generators.

See following page for brief summary.
INTRODUCING...
Our latest Evolutionary Technetium delivery system.

Ultra-TechneKow® FM
(Technetium Tc-99m Generator)
For the Production of Sodium Pertechnetate Tc 99m

DESCRIPTION
The Ultra-TechneKow FM Generator is prepared with fission-produced molybdenum-99. This generator provides a closed system for the production of sterile metastable technetium-99m, which is produced by the decay of molybdenum-99. Sterile, pyrogen-free isotonic solutions of Sodium Pertechnetate Tc 99m can be obtained conveniently by periodic aseptic elution of the generators. These solutions should be crystal clear.

The generator consists of a sealed glass chamber containing specially processed alumina. This treated alumina has a high absorption capacity for molybdenum-99 and a low affinity for technetium-99m. As a result, elution of the generator yields a solution of technetium-99m containing negligible amounts of molybdenum-99.

ACTIONS
The pertechnetate ion distributes in the body similarly to the iodide ion but is not organified when trapped in the thyroid gland. Pertechnetate tends to accumulate in intracranial lesions with excessive neovascularity or an altered blood-brain barrier. It also concentrates in thyroid gland, salivary glands, stomach and choroid plexus. After intravascular administration it remains in the circulatory system for sufficient time to permit blood pool, organ perfusions, and major vessel studies. It gradually equilibrates with the extracellular space. A fraction is promptly excreted via the kidneys.

INDICATIONS
Sodium pertechnetate Tc-99m is used for brain imaging, thyroid imaging, salivary gland imaging, placenta localization and blood pool imaging.

CONTRAINDICATIONS
None.

WARNINGS
This radiopharmaceutical should not be administered to patients who are pregnant or during lactation unless the information to be gained outweighs the potential hazards.

Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of a woman of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses.

Radiopharmaceuticals should be used only by physicians who are qualified by specific training in the safe use and handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

PRECAUTIONS
As in the use of any other radioactive material, care should be taken to insure minimum radiation exposure to the patient, consistent with proper patient management, and to insure minimum radiation exposure to occupational workers.

At the time of administration the solution should be crystal clear.

ADVERSE REACTIONS
None.

DOSED AND ADMINISTRATION
Sodium pertechnetate Tc-99m is usually administered by intravascular injection but can be given orally. The dosage employed varies with each diagnostic procedure.

The suggested dose range employed for various diagnostic indications in the average patient (70 kg) is:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain imaging</td>
<td>10 to 20 mCi</td>
</tr>
<tr>
<td>Thyroid gland imaging</td>
<td>1 to 10 mCi</td>
</tr>
<tr>
<td>Salivary gland imaging</td>
<td>1 to 5 mCi</td>
</tr>
<tr>
<td>Placenta localization</td>
<td>1 to 3 mCi</td>
</tr>
<tr>
<td>Blood pool imaging</td>
<td>10 to 20 mCi</td>
</tr>
</tbody>
</table>

NOTE: Up to 1 gram of reagent grade potassium perchlorate in a suitable base or capsule may be given orally prior to administration of sodium pertechnetate Tc-99m injection for brain imaging, placenta localization and blood pool imaging.

The patient dose should be measured by a suitable radioactivity calibration system immediately prior to administration.

HOW SUPPLIED
The Ultra-TechneKow FM (Technetium Tc 99m) Generators contain the following amount of molybdenum-99 at the time of calibration stated on the label.

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.25 curies</td>
</tr>
<tr>
<td>101</td>
<td>0.50 curies</td>
</tr>
<tr>
<td>106</td>
<td>0.75 curies</td>
</tr>
<tr>
<td>102</td>
<td>1.0 curies</td>
</tr>
<tr>
<td>103</td>
<td>1.5 curies</td>
</tr>
<tr>
<td>104</td>
<td>2.0 curies</td>
</tr>
<tr>
<td>105</td>
<td>2.5 curies</td>
</tr>
<tr>
<td>107</td>
<td>3.0 curies</td>
</tr>
</tbody>
</table>

Each generator is supplied with the following components for the elution of the generator:

6—Sterile, graduated, evacuated collecting vials
6—Sterile Luer-Lock needles with plastic covers
6—Pressure-sensitive “Caution—Radioactive Material” collecting vial labels
6—Pressure-sensitive radioassay data labels for lead dispensing shield

EVACUATED COLLECTING VIALS. Collecting vials are available on request in 5, 10 and 30 milliliter sizes.

Mallinckrodt, Inc.
P.O. Box 5840
St. Louis, MO 63134

RADIOPHARMACEUTICALS
First-Pass Radionuclide Angiocardiography

In 8 to 10 heartbeats...

- Ejection fraction, global and regional.
- Ventricular wall motion.
- Right and left ventriculograms in any view.
- End-diastolic volume in milliliters.
- Cardiac output in liters per minute.
- Pulmonary transit time and blood volume.
- Detection of aneurysms in RAO and LAO.

The Cordis-Baird System Seventy-Seven® Gamma Camera

Telephone, toll-free 1-800-327-7820
or write, Cordis Nuclear Medical Systems
P.O. Box 370428, Miami, Florida 33137
Results obtained using the Dymax-MB Mobile Camera with its powerful minicomputer data processor, clearly demonstrate the advantages of radiocardiology as a diagnostic technique. Dymax-MB is compact, fully mobile and simple to operate. The camera produces studies with excellent resolution and uniformity at both low and high countrates, while the self-contained processor provides instant clinical analysis of the data. Among the heart functions which can be studied "live" are wall motion, ejection fraction, cardiac output, interventricular shunts and other parameters of major importance.

Analytical procedures are speeded by automatic repeat of previously established protocols. On-the-spot analysis enables the attending physician to immediately evaluate results, eliminating the delays of batch processing at a central installation, thus maximising the efficacy of the Dymax-MB.

Check for yourself the significant advantages of this highly efficient clinical tool.

You can:
- Spare your patient the trauma of catheterization.
- Complete the diagnosis at the patient's bed-side, sparing him exhausting movement to overburdened laboratories.
- Receive pre-processed data for more rapid and detailed interpretation than was possible with earlier techniques.

Until you examine the performance of this outstanding unit, you haven't heard the last word. Call us or write for more information or demonstration.

The Elscint commitment to excellence
“Perhaps the greatest contribution of bone imaging is its superiority over conventional radiography in the detection of metastatic bone tumors.”

In oncology...
for reliable early detection of bone metastases:

Most rapid blood clearance²
- At 90 minutes postinjection, blood clearance of MDP pharmacologically identical to OSTEOLITE was approximately equal to that of tested pyrophosphate agents at 6 hours postinjection.
- At 3 hours, MDP blood levels were considerably less than those of tested EHDP and pyrophosphate.
Result: low-background studies, whether you must scan early to meet patient-flow demands, or at 3 hours for more optimal image detail.

Lowest soft tissue activity²,³
The “difference in soft tissue activity (highest with polyphosphate and lowest with MDP) is discernible in clinical images.”²
A University of Minnesota study found that only 4% of 175 MDP images showed moderate to marked soft tissue activity, compared to 17% of EHDP images.³
Result: highest assurance of visualizing all skeletal structures.

Highest target-to-background differential⁴
OSTEOLITE’s rapid blood clearance and lower soft tissue uptake usually enable current gamma cameras to resolve peripheral skeletal structures and phalanges.
Result: confidence of detecting resolution-challenging alterations in osteogenesis...even roentgenographically “invisible” fractures and small metastases.

Convenient storage and preparation
Available in 5-vial or 30-vial “Convenience Packs,” OSTEOLITE can be stored and used at room temperature (15–30°C).

REFERENCES:
3. Forstrom L et al: Data on file at New England Nuclear, Medical Diagnostics Division, North Billerica, MA
A 19-year-old male with known eosinophilic granuloma involving the mandible bilaterally was referred for a bone scan to rule out occult sites of involvement. Bone imaging with OSTEOLITE showed increased uptake in the rami of the mandible on both sides. The medial portion of the mandible anteriorly and the remainder of the skull, the spine, ribs, pelvis and long bones show no abnormalities suggestive of multiple foci of disease. The increased area of uptake around the left ankle was attributed to soft tissue swelling due to a recent ankle sprain.

Images produced with 20.5 mCi technetium-99m labeled OSTEOLITE; spot images recorded at 500 K counts. Searle LFOV™ camera with Micro Dot™ Imager.
OSTEOLlTE
Technetium Tc 99m Medronate Sodium Kit (Formerly Known as MDP)

DESCRIPTION: New England Nuclear’s OSTEOLITE™ Technetium Tc 99m Medronate Sodium Kit (formerly known as MDP), is supplied sterile and non-pyrogenic in lyophilized kit form suitable for reconstitution with sodium pertechnetate Tc 99m to form a diagnostic skeletal imaging agent for intravenous administration. Each vial contains 10ng medronate disodium, and 0.55mg stannous chloride dihydrate; pH is adjusted between 7.0–7.5 with hydrochloric acid and/or sodium hydrosulfite solution. The contents of the vial are lyophilized and stored under nitrogen.

PHYSICAL CHARACTERISTICS: Technetium Tc 99m decays by isomeric transition with a physical half-life of 6.02 hours. (SOURCE: Martin, M. J. Nuclear Data Project, Oak Ridge National Laboratory, March, 1976) Photons that are useful for imaging studies are listed in Table 1.

Table 1. Principal Radiation Emission Data — Technetium Tc 99m

| Mean %| Mean Energy (ev) | Gamma-2 | 88.96 | 140.5 |

To facilitate correction for physical decay of Technetium Tc 99m, the fractions of initial activity that remain at selected intervals after the time of calibration are shown in Table 2.

Table 2. Physical Decay Chart — Technetium Tc 99m Half-Life 6.02 Hours

<table>
<thead>
<tr>
<th>Fraction Remaining</th>
<th>Hours</th>
<th>Hours Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>1.98</td>
<td>891</td>
<td>9</td>
</tr>
<tr>
<td>2.91</td>
<td>794</td>
<td>10</td>
</tr>
<tr>
<td>3.61</td>
<td>708</td>
<td>11</td>
</tr>
<tr>
<td>4.27</td>
<td>631</td>
<td>12</td>
</tr>
<tr>
<td>4.81</td>
<td>562</td>
<td>13</td>
</tr>
<tr>
<td>5.34</td>
<td>501</td>
<td>14</td>
</tr>
<tr>
<td>5.84</td>
<td>477</td>
<td>15</td>
</tr>
</tbody>
</table>

*Calibration Time

EXTERNAL RADIATION: The specific gamma ray constant for Technetium Tc 99m is 0.8/450 mCi/hr at 1cm. The half value layer is 0.22cm of Pb. To facilitate control of radiation exposure from milliureas of Technetium Tc 99m, the use of a 6.35mm thick standard radiation filtration lead shield will attenuate the radiation emitted by a factor greater than 10³.

Table 3. Radiation Attenuation by Lead Shielding

<table>
<thead>
<tr>
<th>Shield Thickness (Pb)</th>
<th>Coefficient of Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>0.95</td>
<td>10^-1</td>
</tr>
<tr>
<td>1.8</td>
<td>10^-2</td>
</tr>
<tr>
<td>2.7</td>
<td>10^-3</td>
</tr>
<tr>
<td>3.6</td>
<td>10^-4</td>
</tr>
<tr>
<td>4.5</td>
<td>10^-5</td>
</tr>
<tr>
<td>5.4</td>
<td>10^-6</td>
</tr>
<tr>
<td>6.3</td>
<td>10^-7</td>
</tr>
</tbody>
</table>

CLINICAL PHARMACOLOGY: Upon intravenous injection, Technetium Tc 99m OSTEOLITE exhibits a specific affinity for areas of altered osteogenesis. In humans, blood levels fall to 4-10% of the injected dose by two hours post-injection and to 3-5% by three hours. During the first 24 hours following its administration in patients with normal renal function, 50-75% of the radioactivity is excreted into the urine and less than 2% of the injected dose remains in the vascular system.

Uptake of the Technetium Tc 99m in bone appears to be related to osteogenic activity and to skeletal blood perfusion. The deposition in the skeleton is bilaterally symmetrical, with increased accumulation in the axial structure as compared to the appendicular skeleton. There is increased activity in the distal aspect of long bones as compared to the diaphyses. In pediatric patients, in whom the epiphysial centers are still open, there is more marked accumulation of the radiopharmaceutical in the distal aspects of long bones than is seen in adults in whom the epiphyssal centers are closed. Localized areas of abnormal accumulation of the radiopharmaceutical may be seen in primary skeletal malignancies, metastatic malignancies to bone, acute or chronic osteomyelitis, arthritides, recent fractures, areas of ectopic calcification, Paget’s disease, regional migratory osteopetrosis, areas of acute, necrosis and, in general, any pathological situation involving bone in which there is increased osteogenic activity or localized increased osseous blood perfusion. Since increased osteogenic activity and localized increased osseous blood perfusion are not usually present in chronic bone diseases, bone imaging agents, in general, are not effective in detecting such diseases. Localized areas of decreased accumulation of the radiopharmaceutical may be noted in areas of bone which have received localized fields of external radiation or to which blood flow has been interrupted. OSTEOLITE has also been noted to accumulate in areas of acute myocardial infarction from one to fourteen days after the pathologic event.

INDICATIONS AND USAGE: Technetium Tc 99m OSTEOLITE may be used as a bone imaging agent to delineate areas of altered osteogenesis.

CONTRAINDICATIONS: None known.

WARNING: The contents of the OSTEOLITE vial are intended only for use in the preparation of Technetium Tc 99m medronate sodium and are NOT to be directly administered to the patient.

Ideally, examinations using radiopharmaceuticals—especially those elective in nature—of women of childbearing capability should be performed during the first ten days following the onset of menses.

PRECAUTIONS: A thorough knowledge of the normal distribution of intravenously administered Technetium Tc 99m medronate sodium is essential in order to accurately interpret pathologic studies. Technetium Tc 99m medronate sodium, as well as any radioactive agent, must be handled with care. Once sodium pertechnetate Tc 99m is added to the kit, appropriate safety measures should be used to minimize external radiation exposure to hospital personnel. Care should also be taken to minimize radiation exposure to patients in a manner consistent with proper patient management.

The Technetium Tc 99m labeling reaction involved in preparing Technetium Tc 99m medronate sodium depends on the maintenance of the ion in the divalent state. Any oxidant present in the sodium pertechnetate Tc 99m employed may adversely affect the quality of the prepared agent. Thus, sodium pertechnetate Tc 99m containing oxidants should not be used without first demonstrating that it is without adverse effect on the properties of the resulting agent.

The use of bacteriostatic sodium chloride as a diluent for sodium pertechnetate Tc 99m may adversely affect the biologic distribution of the prepared agent, and its use is not recommended.

Adequate reproduction studies have not been performed in animals to osteogenesis. Whether this drug affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Technetium Tc 99m medronate should be used in pregnant women only when clearly needed.

It is not known whether this drug is excreted in human milk. As a general rule nursing should not be undertaken when a patient is administered radioactive material.

Safety and effectiveness in children have not been established.

ADVERSE REACTIONS: None reported.

Dosage and Administration: The recommended dose for the average 70kg adult patient is 15mCi with a range of 10–20mCi. The patient dose should be measured by a suitable radioactive calibration system immediately prior to administration. Optimal imaging results are obtained within one to four hours after administration.

OSTEOLITE should be used within six hours after aspecific reconstitution with sodium pertechnetate Tc 99m. For optimum results this time should be minimized. The vial contains no bacteriostat.

Radiopharmaceuticals should be used by persons who are qualified by specific training in the safe use and handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate governmental agencies authorized to license the use of radionuclides.

RADIATION DOSIMETRY: The estimated absorbed radiation dose to an average patient (70kg) from an intravenous injection of a maximum dose of 20 millicuries of Technetium Tc 99m OSTEOLITE is shown in Table 4.

Table 4. Absorbed Radiation Dose — Technetium Tc 99m Medronate Sodium (rads/20mCi)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Total Body</th>
<th>Bone Total</th>
<th>Red Marrow</th>
<th>Kidneys</th>
<th>Liver</th>
<th>Bladder Wall</th>
<th>Ovaries</th>
<th>Testes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.13</td>
<td>0.70</td>
<td>0.56</td>
<td>0.62</td>
<td>0.16</td>
<td>2.60</td>
<td>6.20</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>4.8 hr</td>
</tr>
<tr>
<td></td>
<td>2 hr vial</td>
</tr>
</tbody>
</table>

HOW SUPPLIED: NEN’s OSTEOLITE™ Technetium Tc 99m Medronate Sodium Kit is supplied as a set of four or thirty vials, sterile and non-pyrogenic. Each nitrogen-flushed vial contains in lyophilized form:

Medronate Disodium — 10mg
Stannous Chloride Dihydrate — 0.85mg

The pH is adjusted to between 7.0–7.5 with hydrochloric acid and/or sodium hydrosulfite solution. The contents of the vial were lyophilized under nitrogen. Store at room temperature (15–30°C). Included in each five (5) vial kit is one (1) package insert and six (6) radiation labels. Included in each thirty (30) vial kit is one (1) package insert and thirty-six (36) radiation labels.

INSTRUCTIONS FOR PREPARATION OF TECHNETIUM Tc 99m OSTEOLITE: Asceptically inject 2 to 8m of sodium pertechnetate Tc 99m (pertechnetate in isotonic saline without a bacteriostat) into the supplied OSTEOLITE enclosed by a radiation shield. Swirl for at least ten seconds to dissolve completely. Label appropriately. Suitable labels have been supplied with each OSTEOLITE Kit. Use within six hours after reconstitution. For optimum results, this time should be minimized.

Using proper shielding, the vial containing the reconstituted solution should be visually inspected to insure that it is clear and free of particulate matter.

The contents of the kit vials are not radioactive; however, after reconstitution with sodium pertechnetate Tc 99m the contents are radioactive and adequate shielding and handling precautions used be maintained.

Do not use if there is a vacuum in the immediate drug container or if air is injected into the container when the dose is withdrawn.

Catalog Number NRP-420 (5 vial kit)
Catalog Number NRP-426C (30 vial kit)
If you’re getting all these advantages from your TSH RIA Kit, you must be using ours.

- Colour coding reduces missed tubes and indicates adequate mixing of reagents.
- Room Temperature Incubation eliminates the use of a water bath for the incubation stages.
- Quick reliable results: Tests are completed in one working day—with excellent reproducibility within and between batches.
- Low cross reactivity: With FSH, LH, and HCG.

Examine the advantages of our new kit for yourself, and discover the optimum balance we have achieved in assay performance, reliability, and service.

New TSH RIA Kit

The Radiochemical Centre Amersham

Full information is available on request.
The Radiochemical Centre Limited, Amersham, England. Telephone: 024-04-4444
In North America: Amersham Corporation, Illinois 60005. Telephone: 312-593-6300
In W.Germany: Amersham Buchler GmbH & Co KG, Braunschweig. Telephone: 05307-4691
Gallium Citrate Ga 67

DESCRIPTION

Gallium Citrate Ga 67 is supplied in isotonic solution as a sterile, non-pyrogenic diagnostic radiopharmaceutical for intravenous administration. Each milliliter contains 3 millicuries Gallium Ga 67 on the calibration date complexed with 0.67 mg sodium citrate in sodium chloride injection, U.S.P., with 0.5% benzyl alcohol v/v as a preservative. The pH is adjusted to between 5.0-8.0 with hydrochloric acid and/or sodium hydroxide solution. Gallium Ga 67, with a half-life of 78.1 hours, is cyclotron produced by the proton irradiation of Zinc Zn 66 of enriched zinc oxide and is essentially carrier-free. Gallium Ga 67 has a minimum purity of 95% with no more than 1% Gallium Ga 66 and no more than 0.05% of Zinc Zn 65.

CLINICAL PHARMACOLOGY

Carrier-free Gallium Citrate Ga 67 has been found to concentrate in certain viable primary and metastatic tumors. The mechanism of concentration is unknown, but investigational studies have shown that Gallium Ga 67 accumulates in lymphomeses and is bound to a soluble intracellular protein. It has been reported in the scientific literature that following intravenous injection, the highest tissue concentration of Gallium Ga 67—other than tumors—is in the renal cortex. After the first day, the maximum concentration shifts to bone and lymph nodes and after the first week, to liver and spleen. Gallium is excreted relatively slowly from the body. The average whole body retention is 65% after 7 days, with 20% having been excreted in the urine and 5% in the stools.

INDICATIONS AND USAGE

Gallium Citrate Ga 67 may be useful to demonstrate the presence and extent of Hodgkin's disease or lymphoma. Positive Gallium Ga 67 uptake in the absence of prior symptoms warrants follow-up as an indication of a potential disease state.

CONTRAINDICATIONS

None known.

WARNINGS

Gallium Citrate Ga 67 should not be administered to children or to patients who are pregnant or to nursing mothers unless the information to be gained outweighs the potential hazards. Ideally, examinations using radiopharmaceutical drug products, especially those elective in nature of a woman's childbearing capability should be performed during the first two (approximately ten) days following the onset of menstrual cycles.

PRECAUTIONS

A thorough knowledge of the normal distribution of intravenously administered Gallium Citrate Ga 67 is essential in order to interpret pathologic studies accurately. The finding of an abnormal gallium concentration usually implies the existence of underlying pathology, but further diagnostic studies should be done to distinguish benign from malignant lesions. Gallium Citrate Ga 67 is intended for use as an adjunct in the diagnosis of certain neoplasms. Certain pathologic conditions may yield up to 40% false negative gallium studies. Therefore, a negative study cannot be definitely interpreted as ruling out the presence of disease.

Lymphocytic lymphoma frequently does not accumulate Gallium Ga 67 sufficiently for unequivocal imaging, and the use of gallium with this histologic type of lymphoma is not recommended at this time.

Gallium Citrate Ga 67, as well as other radioactive drugs, must be handled with care and appropriate safety measures should be used to minimize external radioactivity exposure to clinical personnel. Also, care should be taken to minimize radiation exposure to patients consistent with proper patient management.

No long term animal studies have been performed to evaluate carcinogenic potential. Adequate reproduction studies have not been performed in animals to determine whether this drug, affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Gallium Citrate Ga 67 should be used in pregnant women only when clearly needed.

Gallium Citrate Ga 67 has been found to accumulate in breast milk and should not be used in nursing mothers. Safety and effectiveness in children have not been established.

ADVERSE REACTIONS

No adverse reactions have been observed with Diagnostic Isotopes' Gallium Citrate Ga 67 at this time.

DOSEAGE AND ADMINISTRATION

The recommended adult (70 kg) dose of Gallium Citrate Ga 67 is 2-5 millicuries. Gallium Citrate Ga 67 is intended for intravenous administration only. Approximately 10% of the administered dose is excreted in the feces during the first week after injection. Daily locations and/or enemas are recommended from the day of injection until the final images are obtained in order to cleanse the bowel of radioactive material and minimize the possibility of false positive studies.

Studies indicate the optimal tumor to background concentration ratios are often obtained about 48 hours post-injection. However, considerable biological variability may occur in individuals, and acceptable images may be obtained as early as 6 hours and as late as 110 hours after injection. The patient dose should be measured by a suitable radioactive calibration system immediately prior to administration.

Radioisotopes should be used by persons who are qualified by specific training in the safe use and handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate government agencies authorized to license the use of radionuclides.

HOW SUPPLIED

Gallium Citrate Ga 67 is supplied at a concentration of 3 millicuries/ml at the time of calibration. The contents of the vial are radioactive and adequate shielding and handling precautions must be maintained.
The New way to buy Gallium Citrate

Extra pre-calibration days give you more activity for the same cost

NEW Concentration
NEW Calibration
NEW Multi-Dose Vial
OLD Price

For ordering and customer service
Call Toll Free (800) 631-1260
In New Jersey (201) 429-7590
"We got 66,000 hours of operation from our KODAK X-OMAT Processor with only 48 hours downtime. That works out to 99.9993% up-time."

For more about this example of cost effectiveness and information on new developments in Up-time Processors from Kodak, read on.

Dr. Willard Smullen, right, and John LaFond, RT(R), FASRT, with the KODAK X-OMAT Processor, Model M3, which served St. Mary's Hospital in Decatur, Illinois, for 14 years with a total of 2 days out for service. It processed 1.3 million sheets of film and 61 miles of 70-mm and 16-mm film.

When you buy a processor, it may be years before you know the true cost. It all depends on how many hours of trouble-free service the processor gives you. That may be one reason KODAK RP X-OMAT Processors are virtually unmatched in performance. When you're considering processors, you'll discover there's a dependable KODAK Up-time Processor to fit your needs.

90-second processing: You're familiar with the Model M6A-N, which provides consistent high-quality, 90-second processing. Now you can get the same dependability in a new 90-second processor that uses an ambient water wash (40-90°F). Called the Model M6AW, it occupies only 5 square feet of floor space and can save you money on initial plumbing and subsequent water-heating costs.

150-second processing: The Model M7A also provides for an ambient water wash (40 to 87°F). In addition, it features an automatic standby control to decrease wear and power consumption when the processor must be left on but no films are being processed. For an even greater saving, you can order the KODAK RP X-OMAT Water Saving Kit, Model M7. This accessory turns off the water flow completely when the processor is not in use.

For special procedure radiography: The Model SP Processor is specifically designed to meet the high-volume needs of the angiographer and neuroradiologist. You have a choice of 200-second or 150-second processing. The shorter cycle can be used with all KODAK X-OMAT Films. The longer cycle extends automatic processing to include such films as KODAK BLUE BRAND Film. Film throughput speed is comparable to that of any KODAK RP X-OMAT Processor.

If you've been using Kodak processors, you probably have a reliability example of your own. If you'd like to know more about Kodak processors, just ask your Kodak representative. Or contact your dealer in Kodak x-ray products. Either will be glad to show you why we call them the Up-time Processors.

TURNING ENERGY INTO IMAGES

Kodak

COMPUTED TOMOGRAPHY • NUCLEAR MEDICINE
ULTRASOUND • RADIOGRAHY • THERMOGRAPHY
PROCESSORS.
Tech It!

Because quality is important to your image ... Check your Products with a Tech Kit! It's the only move to make.

Tech is a quality control testing system which provides a quick, convenient and inexpensive means for determining unbound and free Technetium 99m in the following products:

- PYROPHOSPHATE
- DIPHOSPHONATE
- POLYPHOSPHATE
- MDP
- PHYTATE
- DTPA
- MICROSPHERES
- HUMAN SERUM ALBUMIN
- GLUCOHEPTONATE
- SULFUR COLLOID
- MACROAGGREGATED ALBUMIN

For more detailed information, contact:

ACKERMAN NUCLEAR, INC.

Pharmaceuticals for Nuclear Medicine
445 West Garfield Avenue
Glendale, California 91204, U.S.A.
(213) 246-2555
THE OBVIOUS SOLUTION

Low* Dissolved Oxygen
Non-preservative normal saline USP

Designed with Nuclear Medicine in mind, Low Dissolved Oxygen, non-preservative, normal saline for routine use is now available from Ackerman Nuclear, Inc.

- **ELUTION:**
 Use for eluting Technetium-99m generators.

- **DILUTION:**
 Use for diluting high specific concentrations of Technetium-99m.

DESCRIPTION:
SODIUM CHLORIDE INJECTION U.S.P. with LOW DISSOLVED OXYGEN
pH 4.5 to 7.0

INDICATIONS:
SODIUM CHLORIDE INJECTION U.S.P. with LOW DISSOLVED OXYGEN is indicated for eluting, preparing and/or diluting pharmaceuticals that specify oxidants may cause adverse effects on the final product. SODIUM CHLORIDE INJECTION U.S.P. with LOW DISSOLVED OXYGEN is also used as a fluid and electrolyte replenisher or as an irrigating solution.

WARNING:
Excessive amounts of sodium chloride by any route may cause hypopotassemia and acidosis. Excessive amounts by the parenteral route may precipitate congestive heart failure and acute pulmonary edema, especially in patients with cardiovascular disease, and in patients receiving corticosteroids or corticotropin drugs that may give rise to sodium retention. No antimicrobial agent has been added.

PRECAUTIONS:
Unused amounts should be discarded immediately following withdrawal of any portion of the contents.

HOW SUPPLIED:
Catalog No. 25
Product S-25
Packaging 10 ml single-dose vial contains approximately 6 ml. Each ml contains 9 mg sodium chloride providing 0.154 mEq each of sodium and chloride ions. Total osmolarity 300 mOsM/1, pH between 4.5 and 7.0. Dissolved oxygen content less than 5 ppm. Contains no preservatives.

ACKERMAN NUCLEAR, INC.
445 W. Garfield Avenue
Glendale, Calif. 91204

Decrease the amount of oxygen you add daily and reduce the effect of one more variable from your radiopharmacy. Use Low Dissolved Oxygen saline when preparing kits containing any stannous tin products.

*less than 5 ppm

For additional information call or write to:

ACKERMAN NUCLEAR, INC.
Pharmaceuticals for Nuclear Medicine
445 W. Garfield Ave.
Glendale, CA 91204, USA
(213) 240-8555
Do your RIA tests give you high blood pressure?

If you're feeling the pressure of time consuming lab tests, Diagnostic Products Corporation RIA tests are just what the doctor ordered. We specialize in RIA and have for the past seven years. We offer one of the most complete lines of RIA tests available from one source: • 3H Aldosterone • 125I Aldosterone • 125I Amikacin • 125I Cortisol • 3H Cyclic AMP • 125I Digitoxin • 125I Digoxin • 125I Folic Acid • 3H Folic Acid • 125I FSH • 125I Gentamicin • 125I Kanamycin* • 125I Neonatal T-4 • 125I Neonatal TSH • 125I Sisomicin* • 125I Testosterone • 125I T-3 RIA • 125I T-4 RIA • 125I T-3U • 125I TSH

125I Tobramycin
• 57Co Vitamin B-12 and Dual-count™† Every test we market is known for lot-to-lot consistency. Innovation in time saving techniques. Sensitivity. Reproducibility. Specificity. And, most important, quality. Our RIA test kits are available for immediate delivery. And they're priced so you can afford to use them. If you'd like to put us to the test, or just get more information on our complete line, write:

Diagnostic Products Corporation
12306 Exposition Blvd., Los Angeles, Ca. 90064. Call toll free (800) 421-7171, or collect in California (213) 826-0831.

*Available for research only in U.S.A.
† Combination, Folate and Vitamin B-12.

THE JOURNAL OF NUCLEAR MEDICINE
The new Capintec CRC-U° computer/printer provides a quick and easy method of computing and recording the target to non-target ratio of imaging compounds as demonstrated by radiochromatographic separation of the imaging compound.

The CRC-U° works with your present Capintec calibrator to provide the most advanced calibrator/computer/printer system in nuclear medicine. Write or call for prices and ordering information.

Anticipating the purchase of a new calibrator? The Capintec Model 30 incorporates all of the features available with the CRC-U°.
Scintadren is a unique new agent for adrenal scintigraphy. Based on a cholesterol derivative substituted at the C6 position with selenium-75, Scintadren has a higher uptake in the adrenals than 19-[131]I iodocholesterol, and gives clearer imaging. The result is more reliable diagnostic information, as our clinical trials have proved. Problems of free iodide uptake by the thyroid simply don’t exist with Scintadren.

It saves both physician and patient time: scintigraphy can commence 3-4 days after administration. The radiation dose to the patient compares favourably with alternative agents and radiographic methods.

Finally, Scintadren is more stable than iodine based agents, with a guaranteed shelf life of one month from reference date when stored at room temperature. So Scintadren is always available when you need it most.

And with results like the picture shown here, our story couldn’t be clearer.

Computer enhanced scintigram of left adrenal adenoma in Cushings Syndrome. Nuclear Enterprises Mk-3 gamma-camera 2.6 day post injection of Scintadren (kidneys localized with SmCit 99m-Te DTPA) R. Marz, Department of Nuclear Medicine, University Hospital, Hamburg, F.D.R.

Full information is available on request.
The Radiochemical Centre Limited, Amersham, England.
Telephone: 024 04-4444.
In W. Germany: Amersham Buchler GmbH & Co KG, Braunschweig.
Telephone: 05037-4693-97.
GE Medical Education Programs are comprehensive, yet concise courses for physicians and technologists. These concentrated programs are offered all year around to accommodate busy schedules, and are taught by a skilled, experienced faculty, using the latest educational techniques. Completed courses can be applied to meet accreditation and continuing education requirements. But class sizes are limited, so enroll today. All applications are processed on a first come, first served basis.

For complete details, dates, accommodations, etc., write to: Charles Rose, Director Medical Education Programs, General Electric Medical Systems, Dept. NMT, P.O. Box 414 TI 40, Milwaukee, Wisconsin 53201. Or call: 414-383-3211, ext. 2286, Dept. NMT.

Announcing a 24 course, low-fat curriculum for healthcare professionals.

<table>
<thead>
<tr>
<th>1979 GE MEDICAL EDUCATION PROGRAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIOLOGY PROGRAMS</td>
</tr>
<tr>
<td>Understanding X-ray Generation I</td>
</tr>
<tr>
<td>Standardization of Radiologic Techniques II</td>
</tr>
<tr>
<td>Quality Assurance in Radiology III</td>
</tr>
<tr>
<td>Introduction to Radiologic Techniques</td>
</tr>
<tr>
<td>Radiology Registration & Certification</td>
</tr>
<tr>
<td>Advanced Concepts in Diagnostic Imaging*</td>
</tr>
<tr>
<td>COMPUTED TOMOGRAPHY PROGRAMS</td>
</tr>
<tr>
<td>Principles of Computerized Tomography I</td>
</tr>
<tr>
<td>Quality Control in Computerized Tomography II</td>
</tr>
<tr>
<td>Quality Assurance in Computerized Tomography III</td>
</tr>
<tr>
<td>Advanced Concepts in Diagnostic Imaging*</td>
</tr>
<tr>
<td>NUCLEAR MEDICINE PROGRAMS</td>
</tr>
<tr>
<td>Basics of Nuclear Medicine</td>
</tr>
<tr>
<td>Quality Control & Compliance in Nuclear Medicine</td>
</tr>
<tr>
<td>Advanced Concepts of Nuclear Medicine</td>
</tr>
<tr>
<td>Dynamics in Nuclear Medicine</td>
</tr>
<tr>
<td>Nuclear Cardiology</td>
</tr>
<tr>
<td>Comprehensive Nuclear Medicine</td>
</tr>
<tr>
<td>Radiopharmaceutical Techniques</td>
</tr>
<tr>
<td>Advanced Concepts in Diagnostic Imaging*</td>
</tr>
<tr>
<td>Radioisotope Handlers</td>
</tr>
<tr>
<td>MONITORING PROGRAM</td>
</tr>
<tr>
<td>Principles of Cardiovascular Monitoring</td>
</tr>
<tr>
<td>ULTRASOUND PROGRAMS</td>
</tr>
<tr>
<td>Basics of Ultrasound I</td>
</tr>
<tr>
<td>Quality Control & Compliance in Ultrasound II</td>
</tr>
<tr>
<td>Advanced Concepts in Diagnostic Imaging*</td>
</tr>
<tr>
<td>MANAGEMENT PROGRAMS</td>
</tr>
<tr>
<td>Medical Management</td>
</tr>
<tr>
<td>Management Contract</td>
</tr>
<tr>
<td>Medical Laboratory Management for Diagnostic</td>
</tr>
<tr>
<td>Accuracy and Cost Containment</td>
</tr>
<tr>
<td>DENTAL PROGRAM</td>
</tr>
<tr>
<td>Radiological Techniques in Dentistry</td>
</tr>
</tbody>
</table>

*Includes Coverage of Radiology, C.T. Ultrasound and Nuclear Medicine

GENERAL ELECTRIC

50A THE JOURNAL OF NUCLEAR MEDICINE
When your plans call for a new scintillation detector design — call Harshaw.

Every Harshaw scintillation detector represents the solution to a specific application problem. Our innovative designs have helped to advance nuclear medical technology in many areas, including gamma cameras, computerized axial tomographic scanners, and positron emission tomography systems.

Harshaw's partnership with nuclear medicine spans 25 years. Our commitment to excellence in service, innovative design, and materials research is more important today than ever before.

Experienced physicists, engineers and design teams are constantly prepared to serve you. We can help you translate today's ideas into proven detectors for tomorrow's systems.

Call us! The Harshaw Chemical Company, Crystal & Electronic Products, 6801 Cochran Road, Solon, Ohio 44139, (216) 248-7400.

Europe: Harshaw Chemie B.V./ Postbus 19
DeMeern, Netherlands/ Telex: 84447017
thrombosis
detection of DVT using I-125 fibrinogen

- Direct digital percent readout
- Printout saves time
- Bedside operation
- Right angle probe minimizes patient disturbance
- Controls are on probe
- Operator error protection
- Versatile — settable for other isotopes

TECHNICAL ASSOCIATES
7051 ETON AVE. • CANOGA PARK, CA. 91303 (213) 883-7043
NOW AVAILABLE FOR USE WITH UP TO 90 mCi PER VIAL.

Easy to prepare.
Stable formulation prepared with stannous tartrate, which is more resistant to oxidation than stannous chloride.
Lowest dose rate to the lungs of any commercially available kit.

For ordering, customer service and technical information call toll-free: (800) 431-1146. In New York State, call (914) 351-2131, ext. 227.

Technetium Tc 99m Aggregated Albumin Kit

BRIEF SUMMARY OF PRESCRIBING INFORMATION

Indications and usage
Technetium Tc 99m Aggregated Albumin is indicated as a lung imaging agent to be used as an adjunct in the evaluation of pulmonary perfusion.

Contraindications
Technetium Tc 99m Aggregated Albumin should not be administered to patients with severe pulmonary hypertension.

The use of Technetium Tc 99m Aggregated Albumin is contraindicated in persons with a history of hypersensitivity reactions to products containing human serum albumin.

Warnings
The possibility of allergic reactions should be considered in patients who receive multiple doses.

Theoretically the intravenous administration of any particulate material such as aggregated albumin imposes a temporary small mechanical impediment to blood flow. While this effect is probably physiologically insignificant in most patients, the administration of aggregated albumin is possibly hazardous in acute cor pulmonale and other states of severely impaired pulmonary blood flow.

This radiopharmaceutical preparation should not be administered to children, to pregnant women or lactating women unless the expected benefits to be gained outweigh the potential risks.

Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of a woman of childbearing capability should be performed during the first few (approximately 10) days following the onset of menses.

Precautions
In cases of right-to-left cardiac shunt, additional risk may exist due to the rapid entry of aggregated albumin into the systemic circulation.

The contents of the kit are not radioactive. However, after the Sodium Pertechnetate Tc 99m is added, adequate shielding of the final preparation must be maintained.

The labeling reactions involved in preparing the agent depend on maintaining the tin in the reduced state. Any oxidant present in the Sodium Pertechnetate Tc 99m supply may thus adversely affect the quality of the prepared agent. Hence, Sodium Pertechnetate Tc 99m containing oxidants, or other additives, should not be employed without first demonstrating that it is without adverse effect on the properties of the resulting agent.

The contents of the vial are sterile and pyrogen-free. It is essential that the user follows the directions carefully and adheres to strict aseptic procedures during preparation of the radiodiagnostic.

Technetium Tc 99m Aggregated Albumin is physically unstable and as such the particles will settle with time. Failure to agitate the vial adequately before use may result in non-uniform distribution of radioactivity.

It is also recommended that, because of the increasing probability of agglomeration with aging, a batch of Technetium Tc 99m Aggregated Albumin not be used after eight hours from the time of preparation. Refrigerate at 2° to 8°C after preparation. If blood is withdrawn into the syringe, unnecessary delay prior to injection may result in clot formation in situ.

The contents of the vial are under a nitrogen atmosphere and should be protected from air. On preparation with Sodium Pertechnetate Tc 99m, the contents of the vial should be mixed by gentle swirling to avoid changes in particle size. Do not use if clumping or foaming of the contents is observed.

Adequate reproduction studies have not been performed in animals to determine whether this drug affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Technetium Tc 99m Aggregated Albumin should be used in pregnant women only when clearly needed.

It is not known whether this drug is excreted in human milk. As a general rule, nursing should not be undertaken while a patient is on a drug since many drugs are excreted in human milk.

Safety and effectiveness in children have not been established.

As in the use of any radioactive material, care should be taken to minimize radiation exposure to the patient, consistent with proper patient management, and to insure minimum radiation exposure to the occupational worker.

Radiopharmaceuticals should be used only by physicians who are qualified by training and experience in the safe use and handling of radionuclides and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.

Adverse reactions
The literature contains reports of deaths occurring after the administration of aggregated albumin to patients with pre-existing severe pulmonary hypertension. Instances of hemodynamic or idiosyncratic reactions to preparations of Technetium Tc 99m labeled aggregated albumin have been reported.

Hypersensitivity reactions are possible whenever protein-containing materials such as Technetium Tc 99m labeled aggregated albumin are used in man. Epinephrine, antihistamines and corticosteroid agents should be available for use.

How supplied

5 STERILE MULTIDOSE REACTION VIALS (10 cc, silver aluminum seal), each containing 0.34 mg MAA Aggregated Normal Serum Albumin (Human) 2.0 x 10²± 25% particles, 0.27 mg stannous tartrate, 0.6 ml of isotonic saline. Hydrochloric acid and/or sodium hydroxide may have been added for pH adjustment.

10 PRESSURE-SENSITIVE LABELS for final Technetium Tc 99m Aggregated Albumin preparation.

1 PACKAGE INSERT.

Lead shield available, Catalog No. 17500502.

FOR FULL PREPARATION AND PRESCRIBING INFORMATION, SEE PACKAGE INSERT.

Notes:
PHYSICIAN, Nuclear Medicine, Board eligible/certified with Nuclear Medicine experience preferred. Contact: Raymond B. Gentile, M.D., Chief Nuclear Medicine Department. Submit resume to Box 24362, Rochester, NY 14602-3624.

NATIONAL NUCLEAR MEDICINE CONSULTANT. Position open at the Washington, DC headquarters of the American College of Nuclear Physicians. Contact: Peter L. Keating, M.D., American College of Nuclear Physicians, 1100 Seventeenth St. NW, Washington, DC 20036. Submit resume to: PLACEMENT, JOURNAL OF NUCLEAR MEDICINE, Suite 100, 530 W. Fullerton Avenue, Chicago, IL 60614-3696.

NURSE ANESTHETIST. United Healthcare, Inc. is recruiting for a Nurse Anesthetist position. Submit resume to: Nutricia, Inc., Att.: Joyce Smith, PO Box 1149, Darien, IL 60561-1149.

NURSE — Head Nurse. University of Wisconsin at Madison. Please contact: Dr. John E. Convery, Department of Radiation Therapy, University of Wisconsin, Madison, WI 53792. Please include: name, address, phone number, and a letter detailing why you are interested in this position.

NUCLEAR MEDICINE RESIDENCY. Two year program in Nuclear Medicine with two positions available. For more information, contact: Department of Radiology, New York University Medical Center, 465 East 72nd Street, Room 621, New York, NY 10021. Submit resume to: Paul A. Langer, M.D., Professor and Chairman, Department of Radiology, New York University Medical Center, 535 East 68th Street, New York, NY 10021.

NUCLEAR PHYSICIST. The United States Department of Energy has a new opening in the field of nuclear physics. Contact: John R. Haggerty, Assistant Director, Nuclear Physics Program, Oak Ridge National Laboratory, P.O. Box 20088, Oak Ridge, TN 37830.

NUCLEAR PHYSICIST—ABNM Board Certified. Full-time position in Nuclear Medicine at the University of California, Los Angeles. Contact: D. K. Stone, M.D., Department of Radiology, University of California, Los Angeles, CA 90024. Submit resume to: D. K. Stone, M.D., Department of Radiology, University of California, Los Angeles, CA 90024.

NUCLEAR PHYSICISTS. The University of California, San Francisco, has a new opening for two Nuclear Physicists. Contact: Judith S. Goldsmith, M.D., Department of Radiology, University of California, San Francisco, CA 94143. Submit resume to: Judith S. Goldsmith, M.D., Department of Radiology, University of California, San Francisco, CA 94143.

NUCLEAR PHYSICISTS. The University of Wisconsin at Madison has a new opening for a Nuclear Physicist. Contact: Antone R. Smith, M.D., Department of Radiology, University of Wisconsin, Madison, WI 53792. Submit resume to: Antone R. Smith, M.D., Department of Radiology, University of Wisconsin, Madison, WI 53792.

PHARMACY DOCTOR. A one year residency position in Nuclear Medicine at the University of Michigan is available. Contact: Dr. Charles A. Bierman, Department of Radiology, University of Michigan, Ann Arbor, MI 48109.

PHYSICIAN, Nuclear Medicine. Full-time opening available in Nuclear Medicine at the University of California, San Diego. Contact: Dr. David B. Hannon, Department of Radiology, University of California, San Diego, CA 92103. Submit resume to: Dr. David B. Hannon, Department of Radiology, University of California, San Diego, CA 92103.

PLACEMENT POSITIONS OPEN

NUCLEAR MEDICINE RESIDENCY. Two years training in Nuclear Medicine with two positions available. For more information, contact: Department of Radiology, New York University Medical Center, 465 East 72nd Street, Room 621, New York, NY 10021. Submit resume to: Paul A. Langer, M.D., Professor and Chairman, Department of Radiology, New York University Medical Center, 535 East 68th Street, New York, NY 10021.

PHYSICIAN, Nuclear Medicine. State Univ. of New York at Buffalo has two openings at the Atst./Assoc. Prof. level. New York University Medical Center, 535 East 68th Street, New York, NY 10021. Contact: Dr. Robert A. Langer, M.D., Chief of Nuclear Medicine, University of Buffalo Medical Center, Buffalo, NY 14215.

PHYSICIAN. University of California, Los Angeles, has a new opening for a Nuclear Physicist. Contact: Dr. Robert A. Langer, M.D., Chief of Nuclear Medicine, University of Buffalo Medical Center, Buffalo, NY 14215.
NUCLEAR MEDICINE TECHNOLOGIST. Registered or registry eligible nuclear medicine technologist. This is a challenging and dynamic department and is equipped with an LEM, an LFOV, an ON 400, and two DEC Gamma 11 computers. This position will provide an interesting opportunity for a dedicated technologist. Contact Yvette Lanoise or Dr. S. Treves, Division of Nuclear Medicine, Children’s Hospital Medical Center, 300 Longwood Avenue, Boston, MA 02115 or call (617) 734-6000, extension 3366. An Equal Opportunity Employer.

NUCLEAR MEDICINE TECHNOLOGIST, Experienced. Full-time permanent position 9:00 a.m. to 5:00 p.m., Monday through Friday. Excellent starting wage and fringe benefits available. Apply at the Personnel Office, The Cooley Dickinson Hospital, Northampton, Mass.

CHIEF NUCLEAR MEDICINE TECHNOLOGIST. Immediate opening in Washington’s largest metropolitan teaching hospital for a certified Nuclear Medicine Technologist. Our department does extensive cardiac studies and In Vitro RIA Assays, has a large computer system and 4 cameras. Individual must have 3-5 years experience in RIA and Imagery and possess proven supervisory experience. Salary commensurate with experience and knowledge. Send resume to: Mr. Carter W. Taliaferro, Nuclear Medicine Department, Washington Hospital Center, 110 Irving Street, N.W., Washington, D.C. 20010.

POSITIONS WANTED

NUCLEAR PHYSICIAN—ABNM CERTIFIED. With strong academic credentials and substantial clinical experience, seeks new position. Reply: Box 200, Society of Nuclear Medicine, 475 Park Ave. So., New York, N.Y. 10016.

PHYSICIAN, ABNM, HOLDING ACADEMIC position, 4 years experience in all aspects of Nuclear Medicine, wishes to relocate. Prefers Florida, Texas or California. Reply: Box 201, Society of Nuclear Medicine, 475 Park Ave. So., New York, N.Y. 10016.

NUCLEAR PHYSICIAN/THERAPEUTIC RADIOLOGIST: Board certified in Radiation Therapy; Eligible ABNM; Nuclear cardiology and RIA experience; Available July 1979. Reply: Box 202, Society of Nuclear Medicine, 475 Park Avenue South, New York, N.Y. 10016.

FOR SALE

TWO MOTORIZED NIKON CAMERAS with mounting bracket and power supply; compatible with Scarle Pho-Gamma cameras; excellent condition. Contact Mr. James McFarland (615) 329-5306.

BAYLOR ANNUAL RADIOLOGY CONFERENCE - 1979
May 6 - 12, 1979

Location of Course:
May 6-7 Host International Hotel, Houston
May 8-12 Hotel Hyatt Regency - Plaza International, Acapulco

Registration Fee:
$250

Presented by:
Department of Radiology
Baylor College of Medicine
Houston, Texas 77030

For further information contact:
The Office of Continuing Education
Baylor College of Medicine
Texas Medical Center
Houston, Texas 77030
(713) 790-4941

STAFF NUCLEAR MEDICINE TECHNOLOGIST

Full time position available in modern 358-bed general acute care hospital. Staff Nuclear Medicine position in a rapidly expanding Nuclear Medicine department. Must be registered or registry eligible. Good salary and fringe benefits. Contact Personnel Office:

Wadley Hospital
1000 Pine Street
Texarkana, Texas 75501

NUCLEAR MEDICINE PHYSICIAN

Nuclear Medicine Physician urgently needed for 450-bed teaching hospital in northern New Jersey. Extremely active department with large computer and busy general nuclear medicine and nuclear cardiology practice. If interested, please respond giving background experience and salary requirements. A general medicine background is preferred, but not absolutely required. Ultrasound experience desirable. Reply to:

Martin F. Sturman, MD
Director of Nuclear Medicine
St. Michaels Medical Center
268 High Street, Newark, NJ 07102

RESIDENCY

Two-year approved program offering broad clinical experience including tertiary care and community hospitals, oncology and pediatrics. Ultrasound and CT. Strong basic science teaching, radiation safety, central radiopharmacy and RIA. Opportunity for research.

An integrated program at State University of New York at Buffalo School of Medicine. Available July 1, 1979. Contact: M.A. Bender, M.D., Program Director, Dept. of Nuclear Medicine, 666 Elm Street, Buffalo, NY 14263 or M. Blau, Ph.D., Chairman, Dept. of Nuclear, 3495 Bailey Avenue, Buffalo, NY 14215.
DIVISION MANAGER

Searle Instrumentation, a respected leader in the medically significant and rapidly expanding medical diagnostic imaging market has an immediate opening for a Division Manager.

Integral responsibilities will include directing an existing national sales, marketing and service organization. The objective is to achieve optimum sales and service performance in each area. This will necessitate liaison with Searle in the U.S., and utilizing the corporate resources of Searle Canada.

Reporting to the President of Searle Canada, the Division Manager will be instrumental in the organization's financial growth through effective contributions in the management of people and systems and in structuring corporate policy. Qualifications include seven to ten years in a management position, preferably in the Medical Instrumentation field. Technical expertise must be combined with a high level of interpersonal and management competence. Previous experience in either sales or service is a requirement.

Enterprising individuals will be attracted by the professional challenge, competitive salary, plus incentive plan, company car and benefit program.

For a rewarding career with Searle Instrumentation, respond in confidence to:
Mr. R. C. Morrison
SEARLE INSTRUMENTATION
400 Iroquois Shore Road
Oakville, Ontario L6H 1M5

BAYLOR COLLEGE OF MEDICINE, DEPARTMENT OF RADIOLOGY,
NUCLEAR MEDICINE SECTION
FELLOWSHIP AND RESIDENCY PROGRAM, 1979–80

Residency and fellowship positions are available in an AMA approved residency program which includes training in two large nuclear medicine laboratories; 1) St. Luke's Episcopal-Texas Children's Hospitals and The Texas Heart Institute joint facilities and 2) Ben Taub General Hospital.

Residency training encompasses the full spectrum of nuclear medicine procedures, both in vivo and in vitro, in pediatric and adult patients. A mobile nuclear medicine capability emphasizes critically ill patients. Because of a substantial commitment to education, including a bachelor's degree program in nuclear medicine technology, the faculty of the Nuclear Medicine Section is very broad based. Trainees attend lectures and laboratories in radiation physics, instrumentation, radiopharmacy, radioimmunoassay, radiobiology, and radiation health in addition to the usual clinical nuclear medicine courses and seminars.

Fellowships (2) with emphasis on cardiac and pulmonary disease are available in association with the Texas Heart Institute. With the mobile capabilities and a large population of critically ill patients (total hospital beds, 1000; intensive care beds, 100), participation in one of the most rapidly growing areas of clinical nuclear medicine is possible with potential for participation in several research projects related to cardiovascular, pulmonary, and critical care nuclear medicine.

Requests for further information should be directed to John A. Burdine, M.D., Chief, Nuclear Medicine Section, or Paul H. Murphy, Ph.D., Residency and Fellowship Coordinator, Department of Radiology, Baylor College of Medicine, Houston, Texas 77030.
Medi-Ray announces...

SURVEY METER
CALIBRATION and REPAIR SERVICE

The Medi-Ray Survey Meter Calibration and Repair Service is designed to provide reliable, competent calibration and repair for the areas of Nuclear Medicine, Radiology, Research and Industry. Our service incorporates the latest techniques and facilities, as well as a staff of highly qualified personnel functioning in the latest and most modern of environments. The result is the highest quality service at a reasonable cost to the customer.

Types of Meters:
• Ionization Chamber
• Geiger - Mueller
• Scintillation

Features:
• New York State Licensed Laboratory
• Three calibration points on each range
• Accuracy ± 10% of indicated reading
• Low cost — $50.00 meter calibration
 $50.00 repair service (excluding GM tube replacement)
• Rapid turnaround

For information, write or call collect:
Medi-Ray, Inc. / 150 Marbledale Rd. / Tuckahoe, N.Y. 10707
(914) 961-8484

Medi-Ray, Inc.
Why Minitec® (Technetium 99m) Generator belongs and very probably is in your laboratory.
Radiation Safety

Minitec® (Technetium 99m) Generator was designed for safety as well as efficiency. Protective shielding (6") surrounds collecting vial during elution and dose withdrawal. No exposed tubing: 1/2" lead around column affords high shielding-to-activity ratio. Maxi-Shield® provides additional 1 1/2" of solid lead shielding...only cap is removed for elution.

Computer Assistance

Customtec®, a free, exclusive Squibb computer service, custom-tailors generator size and delivery schedule to meet a lab's daily 99mTc requirements. Programs planned by Customtec reduce waste, increase efficiency and promote radiation safety by providing technetium when it is needed—in amounts that are needed. Ask your Squibb Representative for a free program.

Customer Service

Squibb Technical Associates have had extensive training in nuclear medicine, radiopharmaceuticals, RIA and instrumentation. When you need technical information or have an unusual problem, a call to your local TA brings the quick, personal attention of an experienced specialist. Assistance is also available at Squibb headquarters. Telephone 609-921-4100 or write Medotopes Technical Customer Service, P.O. Box 4000, Princeton, N.J. 08540.

Perfect Combinations

Products designed to complement each other are more likely to produce a better end product. When sodium pertechnetate eluate obtained from Minitec (Technetium 99m) Generator is utilized in Squibb imaging kits, the results are purity, quality, and compatibility.

See next page for brief summary.
MINITEC®
Technetium 99m
GENERATOR

DESCRIPTION: Minitec (Technetium 99m) Generator provides a means of obtaining a sterile, nonpyrogenic supply of technetium 99m (99mTc) as sodium pertechnetate 99mTc.

INDICATIONS AND USAGE: Sodium pertechnetate 99mTc is indicated for brain imaging, thyroid imaging, salivary gland imaging, blood pool imaging, and placenta localization.

CONTRAINDICATIONS: None known.

WARNINGS: Radiopharmaceuticals should not be administered to patients who are pregnant or to nursing mothers unless the expected benefit to be gained outweighs the potential hazards.

Since 99mTc is excreted in human milk during lactation, formula-feedings should be substituted for breast-feedings.

Ideally, examinations using radiopharmaceuticals, especially those elective in nature, of a woman of childbearing capability, should be performed during the first few (approximately 10) days following the onset of menses.

Radiopharmaceuticals should be used only by physicians who are qualified by training and experience in the safe use and handling of radionuclides and whose experience and training have been approved by the appropriate government agency authorized to license the use of radionuclides.

IMPORTANT: Since material obtained from the generator may be intended for intravenous administration, aseptic technique must be strictly observed in all handling. Only the eluent provided should be used to elute the generator. Do not administer material eluted from the generator if there is any evidence of foreign matter.

PRECAUTIONS: In the use of any radioactive material, care should be taken to insure minimum radiation exposure to the patient and occupational workers consistent with proper patient management. At the time of administration the solution should be crystal clear.

ADVERSE REACTIONS: No adverse reactions specifically attributable to the use of 99mTc have been reported.

For complete prescribing information, consult package insert.

HOW SUPPLIED: Minitec (Technetium 99m) Generator is available in potencies of 220, 440, 880, 1330, 1770, or 2220 millicuries 99Mo at calibration time. Complete assay data for each generator is provided on the label; directions for determining the activity of material eluted from the generator are provided in the package insert. Supplied with the generator are vials of sterile, nonpyrogenic eluent and suitable equipment for eluting, collecting, and assaying the Technetium 99m.

Preserve your copies of The Journal of NUCLEAR MEDICINE for years of reference in a durable, custom-designed Library Case or Binder. These storage units will hold an entire 12-issue volume. The case supplied is an attractive blue with a gold-embossed spine. Each unit also includes a gold transfer so that the volume and year can be recorded.

CASE: Holds 12 issues/$4.95 each three for $14.00; six for $24.00
BINDER: Holds 12 issue/$6.50 each four for $25.00

TO: Jesse Jones Box Corp.
P.O. Box 5120 Dept. JNM
Philadelphia, PA 19141

I enclose my check or money order for $_____
(Orders outside the U.S. add $1.00 per file for postage and handling)

Please send me _______ JOURNAL OF
NUCLEAR MEDICINE
____ Files ______ Binders

Name ____________________________
Address __________________________

City________ State______ Zip ______

Note: Satisfaction guaranteed or money refunded. Allow 5 weeks for delivery.
instant kits for complete quality control of radiopharmaceuticals

QUICK - 3 to 5 minutes to complete

EFFICIENT - same technique for all products

ECONOMICAL - more tests for more products

EASY - all solvents, strips and vials color coded

*CHROMATOGRAPHY KIT A 202 For the radiochemical determination of Tc-99m labeled MAA, microspheres, sulfur colloid, polyphosphate, diphosphonate, pyrophosphate, DTPA, and glucoheptonate, phytate, methylene diphosphonate.

*CHROMATOGRAPHY KIT B 303 For the radiochemical determination of Tc-99m labeled DMSA and DHTA.

*CHROMATOGRAPHY KIT B 313 For the radiochemical determination of Tc-99m labeled H.S.A. (double chromatography system).

*ALUMINUM BREAKTHRU KIT C 404 For the determination of aluminum ion concentration in Tc-99m pertechnetate eluate.

*CHROMATOGRAPHY KIT D 505 For the radiochemical determination of I-131, I-125, and I-123 labeled sodium iodide, RISA, iodocholesterol, iodohippurate, and rose bengal.

*CHROMATOGRAPHY KIT E 606 For the radiochemical determination of In-111 DTPA and Y6-169 DTPA.

*Patent applied for.

Please send me information on the above kits.

Name ________________________________

Title ________________________________

Institution __________________________

Address ______________________________

City ________________________________ Zip ________________

Representative inquiries invited.

Technical Advancement Corporation
P. O. Box 545
Lisle, Illinois 60532
(312) 971-1300
As the uses for nuclear medicine continue to expand, the responsibilities of the nuclear physician and the radiologist will increase just as rapidly. Their services are requested in more and more disciplines. Picker gamma-camera systems have been designed to allow the physician to select and refine the views he needs. Picker Dyna® Camera accessories help our cameras to see more. As our systems have grown more sophisticated in their ability to deliver results, they've also become simpler to use and maintain.

DynaCamera 4/15 takes the large view. Within the DynaCamera 4 series, Picker's 4/15 becomes the nucleus of a nuclear medicine department. Its 15" (380 mm) detector brings high uniformity and exceptional system resolution. It can image lung and liver/spleen studies in one view — without a diverging collimator. It's ideal for cerebral and cardiac flow studies, lung perfusion studies, bone, liver/pancreas and kidney studies.

DynaCamera 4/11 for unparalleled resolution — 3.6 mm FWHM. DynaCamera 4/11 delivers big performance in small areas, and lets you visualize small lesions, often hidden, and shows larger lesions with clearer definition. With the 4/11, you can easily image the myocardium to locate and measure infarcts, get precise region placement in left ventricular ejection fraction studies, and obtain cardiac-output measurements.
Dyna®Mo: A department on wheels. As a high-resolution, mobile, battery-operated camera that extends the role of nuclear medicine to every part of the hospital, DynaMo is a great system to have around. Its high-resolution detector – 3.6 mm FWHM – makes it the equal of our finest small field of view cameras and its quick-change collimators, five-motion detector and integral tape recorder make it a virtual department in itself.

DynaCamera accessories expand the role of your department in important new directions. Your selection of the right DynaCamera 4 gives you the range of capabilities your nuclear medicine department needs – and your selection of the right DynaCamera 4 accessories takes even greater advantage of these capabilities. For example, our Cardiac Module used in conjunction with DynaMo or any DynaCamera 4 system, allows you to compute left-ventricular ejection fraction without the expensive services of a nuclear computer. Our Clinical Image Processor significantly improves upon your present methods of viewing, analyzing, photographing and recording images. The Picker Image Programmer makes it possible to record multiple images on a single piece of film. Our Compact Recording Camera, used with PIP, formats and photographs up to 90 images on a single film. And, we offer the widest selection of collimators in the industry, to give you the best speed, resolution, sensitivity and convenience.

Keeping your department ahead of the future. A modular DynaCamera 4 system is an investment in the future of nuclear medicine. As new technologies emerge from the laboratory, Picker gamma-camera systems will keep pace...and set it. Our investment in the future of nuclear medicine is rooted in 20 years of industry leadership through the concept of adding capabilities, not complications.

For full details, contact Picker Corporation, 12 Clintonville Road, Northford, CT 06472 (203-484-2711); or Picker International, 595 Miner Road, Cleveland, OH 44143. ONE OF THE C.I.T. COMPANIES
Automatic
PULMONEX
XENON DELIVERY SYSTEM

Single unit with integrated gas trap.

One 3-position control handle directs all functions through regional ventilation studies. Automatic venting of gas into the trap after each study. Air circulator assists patient breathing.

#130-500 Pulmonex Delivery System

Only $2495.

THE DELIVERERS TAKE ALL THE COMPLEXITY OUT OF XENON STUDIES FROM START TO FINISH

Atomic Products Corporation

Center Moriches, New York 11934, U.S.A. (516) 878-1074

ECONOMY
XENON DELIVERY SYSTEM

Modular two-section system.
Delivery unit connects to gas trap.

Delivery module is mounted over gas trap. Two handle control system channels gas and air through each phase of all regional ventilation studies.

#130-330 Xenon Delivery Unit
#127-313 Xenon Gas Trap

Only $1890.
The superior technique: "The bone scan may be the only technique capable of locating sites of suspected or unsuspected (bone) trauma."

The superior agent:

OSTEOLITE™

Technetium Tc 99m Medronate Sodium Kit (MDP)

New England Nuclear®
In bone trauma...when the X-ray is inconclusive.

Most rapid blood clearance

- At 90 minutes postinjection, blood clearance of MDP pharmacologically identical to OSTEOLITE was approximately equal to that of tested pyrophosphate agents at 6 hours postinjection.
- At 3 hours, MDP blood levels were considerably less than those of tested EHDP and pyrophosphate.

Result: low-background studies, whether you must scan early to meet patient-flow demands, or at 3 hours for more optimal image detail.

Lowest soft tissue activity

The "difference in soft tissue activity (highest with polyphosphate and lowest with MDP) is discernible in clinical images." A University of Minnesota study found that only 4% of 175 MDP images showed moderate to marked soft tissue activity, compared to 17% of EHDP images.

Result: highest assurance of visualizing all skeletal structures.

Highest target-to-background differential

OSTEOLITE's rapid blood clearance and lower soft tissue uptake usually enable current gamma cameras to resolve peripheral skeletal structures and phalanges.

Result: confidence of detecting resolution-challenging alterations in osteogenesis...even roentgenographically "invisible" fractures and small metastases.

Convenient storage and preparation

Available in 5-vial or 30-vial "Convenience Packs," OSTEOLITE can be stored and used at room temperature (15–30°C).

REFERENCES:
3. Forstrom L et al: Data on file at New England Nuclear, Medical Diagnostics Division, North Billerica, MA
A 23-year-old graduate student actively engaged in amateur soccer complained of pain in both knees. X-rays of both knees suggested the possibility of a stress fracture only at the right proximal tibia. OSTEOLITE images of the right knee displayed focal uptake in the proximal tibia, consistent with the diagnosis of a stress fracture. A routine anterior view of both knees disclosed a roentgenographically occult stress fracture of the left proximal tibia as well.

Images produced with 19.6 mCi technetium-99m labeled OSTEOLITE; recorded at 500 K counts, Searle LFOV™ camera with Micro Dot™ Imager.
Technetium Tc 99m decayed by isometric transition with a physical half-life of 6.02 hours. SOURCCE: Martin, J. M. Nuclear Data Project. Oak Ridge National Laboratory, March, 1976.) Photons that are useful for imaging studies are listed in Table 1.

Table 1. Principal Radiation Emission Data—Technetium Tc 99m

<table>
<thead>
<tr>
<th>Mean %</th>
<th>Mean Energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma-2</td>
<td>88.96</td>
</tr>
</tbody>
</table>

To facilitate correction for physical decay of Technetium Tc 99m, the fractions of initial activity that remain at selected intervals after the time of calibration are shown in Table 2.

Table 2. Physical Decay Chart—Technetium Tc 99m Half-Life 6.02 Hours

<table>
<thead>
<tr>
<th>Fraction Remaining</th>
<th>Hours</th>
<th>Fraction Remaining</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>8</td>
<td>0.36</td>
<td>3</td>
</tr>
<tr>
<td>0.89</td>
<td>10</td>
<td>0.36</td>
<td>6</td>
</tr>
<tr>
<td>0.89</td>
<td>11</td>
<td>0.36</td>
<td>9</td>
</tr>
<tr>
<td>0.89</td>
<td>12</td>
<td>0.36</td>
<td>12</td>
</tr>
<tr>
<td>0.89</td>
<td>18</td>
<td>0.36</td>
<td>24</td>
</tr>
<tr>
<td>0.89</td>
<td>24</td>
<td>0.36</td>
<td>36</td>
</tr>
</tbody>
</table>

Calibration Time

EXTERNAL RADIATION

The specific gamma ray constant for Technetium Tc 99m is 0.89 mCi/μCi·hr. at 1cm. The half value layer is 0.2mm of Pb. To facilitate control of radiation exposure from micromicrocuries of Technetium Tc 99m, the use of a 0.63mm thick standard radiation elution lead shield will attenuate the radiation emitted by a factor greater than 10.

Table 3. Radiation Attenuation By Lead Shielding

<table>
<thead>
<tr>
<th>Shield Thickness (Pbmm)</th>
<th>Coefficient of Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>0.95</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.6</td>
<td>1.0</td>
</tr>
<tr>
<td>4.5</td>
<td>1.0</td>
</tr>
<tr>
<td>5.4</td>
<td>1.0</td>
</tr>
<tr>
<td>6.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

CLINICAL PHARMACOLOGY

Upon intravenous injection, Technetium Tc 99m OSTEOLITE exhibits a specific affinity for areas of altered osteogenesis. In humans, blood levels fall to 4-10% of the injected dose by two hours post-injection and to 3-5% by three hours. During the first 24 hours following its administration in patients with normal renal function, 50-75% of the radioactivity is excreted into the urine and less than 2% of the injected dose remains in the vascular system.

The uptake of the Technetium Tc 99m in bone appears to be related to osteogenic activity and to skeletal blood perfusion. The deposition in the skeleton is bilaterally symmetrical, with increased accumulation in the axial structure as compared to the appendicular skeleton. There is increased activity in the distal aspect of long bones as compared to the diaphyses. In pediatrics, in whom the epiphyseal centers are still open, there is more marked accumulation of the radiopharmaceutical in the distal aspects of long bones than is seen in adults in whom the epiphyseal centers are closed. Localized areas of abnormal accumulation of the radiopharmaceutical may be seen in primary skeletal malignancies, metastatic malignancies to bone, acute or chronic osteomyelitis, arthritides, recent fractures, areas of ectopic calcification. Paget's disease, regional migratory osteoporosis, areas of aseptic necrosis and, in general, any pathological situation involving bone in which there is increased osteogenic activity or localized increased osseous blood perfusion. Since increased osteogenic activity and localized increased osseous blood perfusion are not usually present in chronic bone diseases, bone imaging agents, in general, are not effective in detecting such diseases. Localized areas of decreased accumulation of the radiopharmaceutical may be noted in areas of bone which have received localized fields of external radiation or to which blood flow has been interrupted. OSTEOLITE has also been noted to accumulate in areas of acute myocaridal infarction from one to fourteen days after the pathologic event.

INDICATIONS AND USAGE

Technetium Tc 99m OSTEOLITE may be used as a bone imaging agent to delineate areas of altered osteogenesis.

CONTRAINDICATIONS

None known.

WARNINGS

The contents of the OSTEOLITE vial are intended only for use in the preparation of Technetium Tc 99m medronate sodium and are NOT to be directly administered to the patient.

Ideally, examinations using radiopharmaceuticals—especially those elective in nature—of children with chickling capability should be performed during the first ten days following the onset of menarche.

PRECAUTIONS

A thorough knowledge of the normal distribution of intravenously administered Technetium Tc 99m medronate sodium is essential in order to accurately interpret pathologic studies. Technetium Tc 99m medronate sodium, as well as any radiopharmaceutical, must be handled with care. Once sodium pertechnetate Tc 99m is added to the kit, appropriate safety measures should be used to minimize external radiation exposure to personnel. Care should also be taken to minimize radiation exposure to patients in a manner consistent with proper patient management.

Technetium Tc 99m labeling reaction involved in preparing Technetium Tc 99m medronate sodium depends on the maintenance of tin in the divalent state. Any oxide present in the sodium pertechnetate Tc 99m employed may adversely affect the quality of the prepared agent. Thus, sodium pertechnetate Tc 99m containing oxidants should not be used without first demonstrating that it is without adverse effect on the properties of the resulting agent.

The use of bacteriostatic sodium chloride as a diluent for sodium pertechnetate Tc 99m may adversely affect the biologic distribution of the prepared agent, and its use is not recommended.

Adenquate reproduction studies have not been performed in animals to determine whether this drug affects fertility in males or females, has teratogenic potential, or has other adverse effects on the fetus. Technetium Tc 99m medronate sodium should be used in pregnant women only when clearly needed.

It is not known whether this drug is excreted in human milk. As a general rule nursing should not be undertaken when a patient is administered radioactive material.

ADVERSE REACTIONS

None reported.

DOSAGE AND ADMINISTRATION

The recommended dose for the average 70kg adult patient is 15mCi with a range of 10-20mCi. The patient dose should be measured by a suitable radioactivity calibration system immediately prior to administration. Optimal imaging results are obtained within one to four hours after administration.

OSTEOLITE should be used within six hours after aseptic reconstitution with sodium pertechnetate Tc 99m. For optimum results this time should be minimized.

The vial contains no bacteriostat. Radiopharmaceuticals should be used by persons who are qualified by specific training in the safe use and handling of radionuclides produced by nuclear reactor or particle accelerator and whose experience and training have been approved by the appropriate government agencies authorized to license the use of radionuclides.

RADIATION DOSIMETRY

The estimated absorbed radiation dose to an average patient (70kg) from an intravenous injection of a maximum dose of 20 millicuries of Technetium Tc 99m OSTEOLITE is shown in Table 4.

Table 4. Absorbed Radiation Dose—Technetium Tc 99m Medronate Sodium

<table>
<thead>
<tr>
<th>Organ</th>
<th>(rads/20mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body</td>
<td>0.13</td>
</tr>
<tr>
<td>Bone Total</td>
<td>0.70</td>
</tr>
<tr>
<td>Red Marrow</td>
<td>0.56</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.62</td>
</tr>
<tr>
<td>Liver</td>
<td>0.16</td>
</tr>
<tr>
<td>Bladder Wall</td>
<td>2.60</td>
</tr>
<tr>
<td>2 hr v/d</td>
<td>6.20</td>
</tr>
<tr>
<td>4.8 hr</td>
<td>3.34</td>
</tr>
<tr>
<td>6 hr</td>
<td>0.24</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.16</td>
</tr>
<tr>
<td>2 hr v/d</td>
<td>0.34</td>
</tr>
<tr>
<td>Tests</td>
<td>4.8 hr v/d</td>
</tr>
</tbody>
</table>

HOW SUPPLIED

NEN's OSTEOLITE Technetium Tc 99m Medronate Sodium Kit is supplied as a set of five or thirty vials, sterile and non-pyrogenic. Each nitrogen-flushed vial contains in hyphosphorized form: Medronate Disodium—10mg, Stannous Chloride Dihydrate—0.85mg.

The pH is adjusted to between 7.0-7.5 with hydrochloric acid and/or sodium hydroxide solution. The contents of the vial were hyphosphorized under nitrogen. Store at room temperature (15°-30° C). Included in each five (5) vial kit is one (1) package insert and six (6) radiation labels. Included in each thirty (30) vial kit is one (1) package insert and thirty-six (36) radiation labels.

INSTRUCTIONS FOR PREPARATION OF TECHNETIUM Tc 99m OSTEOLITE

Bacteriostatically inject 2 to 8ml of sodium pertechnetate Tc 99m (pertechnetate in isotonic saline without a bacterio- stat) into the supplied vial of OSTEOLITE enclosed by a radiation shield. Swirl for at least ten seconds to dissolve completely. Label appropriately. Suitable labels have been supplied with each OSTEOLITE Kit. Use within six hours after reconstituti. For optimum results, this time should be minimized.

Using proper shielding, the vial containing the reconstituted solution should be visually inspected to insure that it is clear and free of particulate matter.

The contents of the kit vials are not radioactive, however, after reconstitution with sodium pertechnetate Tc 99m the contents are radioactive and adequate shielding and handling precautions must be maintained.

Do not use if there is a vacuum in the immediate drug container or if air is injected into the container when the dose is withdrawn.

Catalog Number NRP-420 (5 vial kit) Catalog Number NRP-420C (30 vial kit)
NEW SNM AUDIOVISUALS AVAILABLE NOW

The most recent additions to the Society of Nuclear Medicine's audiovisual instruction program are:

SI-14	Radiopharmaceuticals for Tumor and Adrenal Scanning: Samuel Halpern
SI-15	Scintillation Cameras: Bryan Westerman
SI-18	Basic Concepts in Cardiac Anatomy and Physiology: Glen W. Hamilton
SI-21	Perfusion Studies of the Ischemic Heart: Glen W. Hamilton
SI-22	Detection of Acute Myocardial Infarction: B. Leonard Holman
SI-23	Instrumentation for Nuclear Cardiology: Trevor D. Craddock
SI-24	Your Nuclear Medicine Examination: An Audiovisual for Patients (*)

Please send me:

<table>
<thead>
<tr>
<th></th>
<th>SI-14</th>
<th>SI-22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI-15</td>
<td>SI-23</td>
</tr>
<tr>
<td></td>
<td>SI-18</td>
<td>SI-24</td>
</tr>
<tr>
<td></td>
<td>SI-21</td>
<td></td>
</tr>
</tbody>
</table>

COSTS FOR EACH UNIT (except SI-24):
- $55.00 for members of SNM
- $75.00 for nonmembers

COSTS FOR SI-24:
- $65.00 for members
- $85.00 for nonmembers
- SI-24 also available in 3/4 inch videocassette
- $85.00 for members
- $110.00 for nonmembers

Send my order to:

All orders must be accompanied by check or purchase order. Make checks payable to the Society of Nuclear Medicine, Inc. Costs given include handling and mailing in the United States.

NUCLEAR MEDICINE TECHNOLOGY CERTIFICATION BOARD

The Nuclear Medicine Technology Certification Board will have a change of address beginning January 1, 1979. Please send all requests for applications for the examination or recognition of previous certification and all other correspondence to:

MS. BARBARA HORTON
Nuclear Medicine Technology Certification Board
P.O. Box 1034
Stone Mountain, GA 30086
As your diagnostic needs expand . . .
To provide you with more productive, patient-oriented nuclear imaging systems designed to match your present and future needs. That’s our commitment.

With the introduction of the MaxiCamera™ II System to nuclear imaging, GE ushered in new concepts and standards of performance, results, operator convenience, flexible capability with modular electronics, and much more.

The MaxiCamera II scintillation camera system features a counterbalanced detector that allows precise positioning with a touch. Modular electronics provide the flexibility of choosing the level of capability you need. And, of course, exceptional diagnostic results.

DataCamera™, another GE first, is the only mobile scintillation camera system available with data analysis. DataCamera gets to the patient’s bedside easily. Its superior positioning capability allows imaging of patients connected to monitoring, life support or traction devices.

DataCamera provides exceptional bedside imaging and data analysis for both nuclear physicians and cardiologists.

The latest technology applied to the latest needs in nuclear diagnostics by people committed to excellence. That’s what you get with GE. Contact your GE representative.

General Electric Medical Systems, Milwaukee, Toronto, Madrid.

100 Years of Progress for People

GENERAL ELECTRIC
Six years ago, when it was clear that the new area of nuclear medicine technology was becoming one of the most vital paramedical fields in medicine, the Technologist Section of The Society of Nuclear Medicine started publishing a journal, specifically written and designed for nuclear medicine technologists. The Journal covers all important developments in the field. Its contributors write to share their professional experiences, to enlighten their colleagues, and to further the effectiveness of patient care.

Edited by Pat Weigand, the Journal enjoys excellent contents, and an enthusiastic readership. Employing the same format as the Journal of Nuclear Medicine, it is a substantial, beautifully produced periodical. It also belongs in every institutional library used by nuclear medicine technologists.

Published quarterly: March, June, September, December.

Subscription Rates: $30.00 a year in the U.S., $32.00 elsewhere.

Note: Subscriptions are entered on a calendar year basis. We are happy to supply back issues for the current volume, or to pro-rate your subscription for the remainder of the current volume.

ORDER FORM

Clip and mail to: The Society of Nuclear Medicine, 475 Park Avenue South, New York, NY 10016, or order through your subscription agent.

Please enter my subscription to:

☐ Payment of $________ enclosed.

☐ Purchase Order attached.

☐ Bill Me.

Name__

Address___

City/State/Zip ________________________________

☐ JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY (Volume VII)

☐ $30.00

☐ $32.00 (Outside U.S.)

Signature__Date______
Yes, Radx has developed programs where we can provide you with the complete Radx System:

Ventil-Con — Patient Administration Spirometer

Xenon Trap — with Detector/Alarm

Xenon-Kow II — 133Xe Dispenser

Plus all the 133Xe you need in either 1 or 0.5 curie ampules, usually for less than you now pay for 133Xe and disposable bags alone.

Sound hard to believe, try us.

Call today with information on your weekly patient load and monthly cost. We can probably save you money plus supply you with a more versatile, simpler, and safer system.

Now available through Radx: 1.0 and 0.5 curie ampules of 133Xe. Call or write for complete information.

RADX • P.O. Box 19164
Houston, Texas 77024 • (713) 468-9628
Minitec®
(Technetium Tc 99m)
Generator

Small in size and light in weight, but big in performance. That’s Minitec. Designed for minimum amount of exposure to operator, its unique construction (no exposed tubing) and thick shielding (1½" lead) provide high shielding-to-activity ratio. Small-volume, high-concentration eluates give maximum flexibility for varying applications. Wide range of potencies and calibration dates fit the 99mTc needs of every lab.

Minitec (Technetium Tc 99m) Generator — the largest-selling generator in the U.S.

Squibb Technical Associates

When you buy Minitec and Squibb radiopharmaceuticals, you get the back-up service of a Squibb Technical Associate. He’s had extensive training in nuclear medicine, radiopharmaceuticals, RIA and instrumentation. Call him when a new tech needs instruction, a problem develops, you’re planning to expand, or there’s need for special information. You’ll get the prompt, personal attention of an experienced specialist.
Yes, Radx has developed programs where we can provide you with the complete Radx System:

- Ventil-Con — Patient Administration Spirometer
- Xenon Trap — with Detector/Alarm
- Xenon-Kow II — ^{133}Xe Dispenser

Plus all the ^{133}Xe you need in either 1 or 0.5 curie ampules, usually for less than you now pay for ^{133}Xe and disposable bags alone.

Sound hard to believe, try us.

Call today with information on your weekly patient load and monthly cost. We can probably save you money plus supply you with a more versatile, simpler, and safer system.

Now available through Radx: 1.0 and 0.5 curie ampules of ^{133}Xe. Call or write for complete information.

RADX • P.O. Box 19164
Houston, Texas 77024 • (713) 468-9628
FINALLY...
A chair for your Gamma Camera!

Now rapid, convenient positioning can be done on ambulatory patients for brain, lung or liver scans.

Fits all CAMERAS, requires no electrical connections, firmly locks in all positions, Patient securely held with seat belt.

Enhance your current Camera investment by reducing the time required for these predominant exams.

HUMANETICS, INC.
214-242-2164 Box 185 CARROLLTON, TEXAS 75006

INDEX TO ADVERTISERS

ACKERMAN NUCLEAR, INC.
Glendale, CA 46A,47A
ADAC
Cupertino, CA 2A,3A
ATOMIC PRODUCTS
Center Moriches, NY 64A
BRATTLE INSTRUMENT
Cambridge, MA IBC
CAPINTEC, INC.
Montvale, NJ 181
CIS RADIOPHARMACEUTICALS
Bedford, MA 75A
CLINICAL ASSAYS
Cambridge, MA 17A
CORDIS CORPORATION
Miami, FL 35A
DIAGNOSTIC BIOCHEMISTRY
San Diego, CA 13A
DIAGNOSTIC ISOTOPES
Bloomfield, NJ 42A,43A
DIAGNOSTIC PRODUCTS
Los Angeles, CA 5A,48A
DUNN INSTRUMENTS
San Francisco, CA 22A,23A
EASTMAN KODAK COMPANY
Rochester, NY 44A,45A
ELSCEINT INC.
Hackensack, NJ 36A
G.E. MEDICAL SYSTEMS
Milwaukee, WI 50A,70A,71A
HARSHAW CHEMICAL CO.
Solon, OH 51A
HUMANETICS, INC.
Carrolton, TX 74A
ISOLAB, INC.
Norton, OH 30A
MALLINCKRODT, INC.
St. Louis, MO 32A,33A,34A
MEDI-PHYSICS, INC.
Emeryville, CA IFC,1A
MEDI-RAY, INC.
Tuckahoe, NY 57A
C.V. MOSBY CO.
St. Louis, MO 24A
NEW ENGLAND NUCLEAR
NISE, INC.
Cerritos, CA 42A
NUCLEAR ASSOCIATES
Carle Place, NY 16A
NUCLEAR PACIFIC
Seattle, WA 14A
NUCLEAR SERVICES, INC.
Hamden, CT 31A
OHIO-NUCLEAR
Solon, OH 18A,19A
O'NEILL ENTERPRISES
Ann Arbor, MI 42A
PICKER CORPORATION
Cleveland, OH 62A,63A
PROCTOR & GAMBLE CO.
Cincinnati, OH 20A,21A
RADIOCHEMICAL CENTRE
Amersham, England 29A,41A,49A
RADX CORPORATION
Houston, TX 12A,73A
RAYTHEON COMPANY
Burlington, MA 8A
SEARLE RADIOGRAPHICS
Des Plaines, IL BC
SNM PLACEMENT
New York, NY 54A,55A,56A
E.R. SQUIBB & SONS, INC.
Princeton, NJ 15A,58A,59A,60A,76A
TAC INC.
Lisle, IL 61A
TECHNICAL ASSOCIATES
Canoga Park, CA 52A
UNION CARBIDE CORPORATION
Rye, NY 53A
UNION CARBIDE IMAGING SYSTEMS
Norwood, MA 8A,7A
Remember!

Ours is a freeze-dried DTPA that does not require refrigeration and is ready for addition of Tc99m solution. Made with monocalcium trisodium salt, rather than pentasodium salt.

Available in a six pack, each of the six vials contains a sterile, pyrogen-free mixture of 20.6 mg of CaNa₃ diethylenetriaminepenta acetate, 0.210 mg of stannous chloride and HCl and/or NaOH to adjust pH.

CIS Radiopharmaceuticals, Inc.
5 DeAngelo Drive/Bedford, Ma. 01730/Telephone: (617) 275-7120; outside Massachusetts (800) 225-1145/TELEX 94-9465
Minitec®
(Technetium Tc 99m)
Generator

Small in size and light in weight, but big in performance. That's Minitec. Designed for minimum amount of exposure to operator, its unique construction (no exposed tubing) and thick shielding (1½" lead) provide high shielding-to-activity ratio. Small-volume, high-concentration eluates give maximum flexibility for varying applications. Wide range of potencies and calibration dates fit the 99mTc needs of every lab.

Minitec (Technetium Tc 99m) Generator — the largest-selling generator in the U.S.

Squibb Technical Associates

When you buy Minitec and Squibb radiopharmaceuticals, you get the back-up service of a Squibb Technical Associate. He's had extensive training in nuclear medicine, radiopharmaceuticals, RIA and instrumentation. Call him when a new tech needs instruction, a problem develops, you're planning to expand, or there's need for special information. You'll get the prompt, personal attention of an experienced specialist.
Help your cardiologist study heart kinetics non-invasively with Brattle-gated scintiphotos.

cause we stay right with him. Brattles contain an ECG to track heart, a plethysmograph to track respiration, and a tiny computer to deduce systole and diastole times from the heart signal. And because it’s all built in, your operator need not be a physiologist.

We don’t cover our tracks— we print them
The panel lights flash whenever the patient reaches the selected phases; and pushing the RECORDER-ON button gets you an ECG tracing marked with breathing and camera-on times. You can verify function before, during and after exposure.

A single pair of axillary electrodes captures both heart and breath
It’s easy. And we supply disposable, pre-filled electrodes.

Some Brattles have been in clinical use for over three years— in community and major hospitals
More than half of our instruments are in community hospitals and the list is growing rapidly. Upon request, we’ll supply names of happy users in your area.

What’s the next step?
Get in touch
Ask your NEN man about Brattles and HSA Kits. He can show you a portfolio of clinical pictures and arrange to have one of our people give you a demo. Or write or call us direct. We’ll send you brochures on this and other models, and will give you your own set of clinical pictures and a bibliography on gated scintigraphy. If you wish, we’ll even make you a Brattle owner. (This is the best part of our story.)

Brattle Instrument Corporation
243 Vassar Street • Cambridge, Massachusetts 02139 • 617-661-0300
When a camera can be taken where one has never been before, man's perception of reality is expanded.

In many instances, our demand to see things more clearly could only be satisfied with technology that finally enabled cameras to go where one has never been before. In diagnostic imaging, Searle Radiographics' Pho/Gamma L.E.M. (low energy mobile) Scintillation Camera satisfies a similar demand in that it can be taken wherever the patient's environment may be, and incorporates state-of-the-art electronics that result in excellent inherent resolution and uniformity, as well as overall system reliability, accuracy, and image stability.

The Scintistore™ Time-compression Storage/Retrieval System docks compactly with the L.E.M. camera for transport and makes ventricular wall motion studies possible, as well as allowing playback of all studies in a fraction of real recording time.

For detailed information on Searle's Pho/Gamma L.E.M./Scintistore combination, contact Searle Radiographics.