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FIG. 2. Sampling frequency as function of bar orientation with re-
spect to square matrix.
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FIG. 3. Variation of contrast as function of bar displacement with
respect to square matrix. (A) Bar pattern aligned with matrix: 100%
contrast. (b) Bar pattern displaced by Y, pixel width: 0% con-
trast.
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FIG. 4. Sampling frequency in hexagonal matrix as a function of
bar orientation.

oricntations should have bars and spaces of one-half the hole-
separation distance. When the bars are aligned at 0 and 60° to the
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scpta, the finest bars discernible should be of the order of v/3/2
of the hole-separation distance. Therefore, for equivalent hole-
scparation distance and pixel size in the collimator and the com-
puter matrix respectively, the collimator is capable of superior
bar-pattern resolution due to the hexagonal configuration of the
array.

A comprehensive review of the effects of two-dimensional image
sampling, including a discussion of the moiré fringe effect, is given
by Legault (4).

DOUGLAS R. SHEARER
ROLAND WONG

Rhode Island Hospital
Providence, Rhode Island
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Distortion of Bar Phantom Images Due to Image
Digitalization

The point made by the above paper is well taken, but further
amplification of certain points may be in order.

The Nyquist sampling theorem (/), which is the basis of modern
communication theory, states that in order to completely char-
acterize a waveform that contains a maximum frequency com-
ponent of fr, (cycles/mm), it is necessary to take at least 2f;, (cy-
cles/mm) samples. If fewer samples than this are taken, “aliasing™
may occur in which high frequency components appear as erro-
neous low frequency components. Aliasing results in permanent
distortion of the data that cannot be removed by later processing.
This fact may be demonstrated by the images shown in the above
paper (2).

If we first pay attention to the case in which the bar phantom
is oriented at right angles to the coordinates of the data matrices
(Fig. I: Da, Db, and Dc), we first note that the sampling intervals
arc said to be 2, 4, and 8 mm, respectively, for 128 X 128, 64 X 64,
and 32 X 32 element data matrices. The bar phantom images may
be vicwed in cross section as a train of square waves. Fourier
analysis of such a waveform would show a basic spatial frequency
of 0.125 cy/mm for the 4-mm wide bars. Based on the assumption
that the frequency response described by the modulation transfer
function of the gamma camera limits the frequency content of the
resulting image to about 0.25 cycle/mm, the Nyquist theorem
would require a sampling interval of no larger than 2 mm for the
quadrant containing the 4-mm bars.

We see then that the 128 X 128 matrix should properly digitize
and display frequency components at least as high as the second
spatial harmonic of the 4-mm bars whereas the 64 X 64 matrix will
do this for the 9.5 mm bars only. The 32 X 32 matrix will be ca-
pablc of digitizing only the basic frequency of the 9.5-mm quad-
rant. These facts suggest that errors due to aliasing may very well
occur in all quadrants of the 32 X 32 image and in all but the
9.5-mm quadrant of the 64 X 64 image.

If the phantom is oriented at 45° to the coordinates of the
sampling matrix (Fig. 1: Ba, Bb, and Bc), the sample intervals are
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reduced by a factor of 1/v/2 as described by Shearer, and now will
properly sample waveforms whose periods are 2.8, 5.6, and 11.2
mm, respectively. This suggests that the 6.4-mm bars will be im-
aged better, since the second spatial harmonic is now properly
sampled but that little or no reduction in artifact may be expected
in cither the 32 X 32 matrix or in the remaining quadrants of the
64 X 64 matrix.

In conclusion, the sampling interval and coarseness of colli-
mation chosen for digitizing an image should be based on a
knowledge of the spatial frequency content of the object being
imaged. Failure to properly sample the data will result in artifacts
that may not be removed later.

CHARLES M. KRONENWETTER
EN-LIN YEH

VA Medical Center

Wood, Wisconsin
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Calculation of Radioactive Decay with a Pocket
Calculator

A short letter under the above title by James S. Robertson (/)
prompts me to remark that much more sophisticated calculations
can be made with only a few steps on a programmable pocket
calculator (e.g., HP 25). The decay of a simple radioactive sub-
stance can be modeled by the discrete time analogue (Fig. 1) in
which the value of the multiplier a is just exp (—A7), 7 being any
convenient unit time interval. To take the simplest case, if the
numbers 0,0, 1,0,0,0, . . . are used as the input sequence {x}, the
output sequence {y} will be the numbers 0, 0, 1, exp(—Ar),
exp(—2A7), exp(—3A7) ... and these represent the activity at
successive intervals, 7, generated by a single unit activity. To re-
alize the model for say Tc-99m (half-life 6.05 hr) it would be ap-
propriate to calculate exp(—0.6932/6.05) and enter this result into
STO 1. The following program should be keyed in:

01 X2y
02 RCL 1
03 X

04 +

05 GTO 00

To use the program, all that has to be done is to enter a sequence
of numbers (starting with a zero), alternating with the R/S com-
mand. Step 01 in the program inserts a newly entered x value into
the Y register, transferring the previous output into the X register.
Step 02 recalls the contents of Store 1, i.e., exp(—0.6932/6.05),
and step 03 multiplies this by the contents of the X register. Step
04 adds on the contents of the Y register. Step 05 halts the calcu-
lator with the total displayed in the X register, and the calculator
is then ready to receive the next input. Each cycle therefore in-
troduces a multiplication by the exponential factor and an addition
of a new input. The displays then show the activity accumulated
at 1-hr intervals.

The advantage of the technique is that it enables one to calculate
the amount of activity available not only from a single initial source
of any strength, but also from any arbitrary set of sources gener-
ated at intervals, such as might be produced from a reactor or other
machine, or from decay of a parent source.

For a radionuclide with decay constant X,, generated from a
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FIG. 1. One-component discrete time analogue.
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FIG. 2. Two-component discrete time analogue.

parent with decay constant A; a model such as that of Fig. 2 can
be used.

In this the factors a, b, ¢ are given by a = exp (—A,), b = exp
(—=A2), ¢ = t; (a — b)/(t; — t2), where t,, t; are the respective
half-lives.

A program for an HP 25 calculator based on this model occupies
about 27 steps. (Copies will be sent to anyone interested.) The
program is operated in the same way as the one-component pro-
gram, allowing convolutions to be performed with any arbitrary
input sequence. If the input sequence represents parent activity
in any unit (e.g., mCi), the output will give the daughter activity
in the same unit.

K. F. CHACKETT
Dudley Road Hospital

Birmingham, England
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