Measurement of Folates in Human Plasma and Erythrocytes by a Radiometric Microbiologic Method

Marianne F. Chen, Patricia A. McIntyre, and Judith A. Kertcher

The Johns Hopkins Medical Institutions, Baltimore, Maryland

A radiometric microbiologic assay for the determination of folic acid in human plasma and red blood cells is described. The assay is based upon the measurement of ¹⁴CO₂ produced from the metabolism of $[1-^{14}C]$ gluconate by Lactobacillus casei. The ¹⁴CO₂ evolved was shown to be proportional to the amount of added DL-N-5-methyltetrahydrofolate (DL-N-5methyl FH₄).

A total of 26 normal plasma and 57 blood hemolysates were assayed in parallel by this radiometric and the standard (turbidimetric) microbiologic assay. The correlation coefficients for the two assays were r = 0.96 for plasma and r = 0.98 for red-cell folate.

Lyophilization of L. casei was found to simplify this radiometric assay by eliminating routine maintenance and culture of this microorganism.

J Nucl Med 19: 906-912, 1978

The measurement of the folate content in serum and red cells by the microbiologic method using *Lactobacillus casei* has been well validated (1-9). The microbiologic assay is both sensitive and specific, but is tedious and time-consuming.

In recent years, several competitive and noncompetitive protein-binding radioassays for measuring folates have been described (10-19). The competitive protein-binding radioassays that have been compared with the *L. casei* assay gave comparable values in the assay of human sera. The noncompetitive protein-binding radioassay gave half the serum folate values when compared with the *L. casei* assay (17). Neither of these radioassay techniques gave folate values for red blood cells in agreement with the microbiologic assay (14,19). It has been shown that the red-cell folate value is more indicative of tissue folate stores than is the serum folate value, since the latter fluctuates according to dietary intake (3,20-24).

We recently developed a radiometric microbiologic assay for measuring vitamin B_{12} in human serum (25). In the present study, we describe a radiometric microbiologic assay for the measurement of folate content in both plasma and red blood cells. The folate values obtained by this radioassay correlated well with those obtained by the standard microbiologic assay.

MATERIALS AND METHODS

Preparation of blood samples. Heparinized venous blood was taken from normal subjects at least three hours after breakfast using either disposable syringes and needles or greentop vacutainer tubes. Informed consent was obtained from each subject. The whole blood was mixed well and the hematocrit was determined with a microhematocrit.

For the determination of red-cell folate, 1 ml of whole blood was diluted with 9 ml of deionized distilled water, vortexed to ensure complete hemolysis of red cells, and then further diluted with 10 ml of 0.05 M phosphate buffer (pH 6.1) containing 200 mg% of freshly added ascorbic acid. The resulting hemolysate was incubated at 37°C for 20 min and then stored in aliquots in folate-free vials* at

Received Nov. 7, 1977; revision accepted Feb. 11, 1978. For reprints contact: Marianne F. Chen, The Johns Hopkins Medical Institutions, 615 N. Wolfe St., Baltimore, MD 21205.

 -70° C. On the day of assay, the hemolysate was thawed and further diluted 1:5 with 0.05 *M* phosphate buffer containing 200 mg% of freshly added ascorbic acid. For the radiometric microbiologic assay, 0.25 ml and 0.5 ml of the diluted hemolysate were added to duplicate vials. The remaining hemolysate was autoclaved for 2–3 min at 15 psi and the coagulated proteins removed by centrifugation (400 g for 10 min). For the turbidimetric microbiologic assay, 0.25 ml and 0.5 ml of this protein-free hemolysate supernatant were added to triplicate tubes. Results were expressed as folate per milliliter of packed red blood cells, based on the prior determination of the sample hematocrit.

For the determination of plasma folate, the remaining blood was centrifuged (400 g) for 10 min. The plasma was stored at -70°C in aliquots with 5 mg ascorbic acid added per milliliter of plasma. On the day of assay, the plasma was thawed and diluted 1:50 with the phosphate-ascorbate buffer and 0.5 ml, 1 ml, and 2 ml were added to duplicate vials for the radiometric microbiologic assay. The remaining diluted plasma was autoclaved in the same way as the diluted hemolysate and the coagulated proteins removed by centrifugation. For the turbidimetric microbiologic assay 0.5 ml, 1 ml, and 2 ml of this protein-free plasma supernate were added to triplicate tubes.

Glassware. For cleaning glasswares, the same procedure was followed as in the radiometric microbiologic assay for vitamin B_{12} (20), but the serum vials used were 20 ml instead of 50 ml.

Maintenance of stock cultures and preparation of inoculum. Lactobacillus casei (ATCC 7469a) was obtained commercially[†]. Stock cultures were prepared monthly by stab inoculation of assay culture agar. Tubes were incubated at 37°C for 24 hr, then stored in the refrigerator (2-4°C). The day before the assay, bacteria were transferred from the agar to 10 ml of Bacto Micro Inoculum Broth[‡]. The broth culture was incubated for 16-18 at 37°C. On the morning of the assay, 0.5 ml of the broth culture were transferred to another 10 ml of Bacto Micro Inoculum Broth and incubated for 6-7 hr. The bacteria were centrifuged, washed three times with 10 ml of sterile Folic Acid Casei Medium and resuspended in 10 ml of this medium. This suspension was further diluted 1:100, and one drop of the final dilution was delivered to each turbidimetric assay tube using a sterile Pasteur pipette. One-tenth ml of the same suspension delivered from a sterile 1-ml tuberculin syringe was used to inoculate each radiometric assay vial.

Lyophilization of L. casei. A 6-hr growth culture of L. casei was washed three times with sterile single-

strength assay medium. The final bacterial pellet was resuspended in 1 ml of the same medium. Aliquots (0.1 ml) of the bacterial suspension were lyophilized in 1-ml ampoules in an automatic freezedryer for 3-4 hr under a high vacuum $(5-10 \mu \text{ Hg})$. The ampoules were flame-sealed and stored at 4°C. On the day of assay, the lyophilized culture was resuspended in 1 ml of the assay medium and 0.2 ml were added to 10 ml of the assay medium. Each radiometric assay vial was then inoculated with 0.1 ml of this dilution.

Standards. Twenty milligrams of dried pteroylmonoglutamic acid (PGA)|| were suspended in 100 ml solution containing 10 ml ethanol and 90 ml distilled water. The pH was adjusted to 10.0 with 0.1 N sodium hydroxide to dissolve the folic acid, and then brought to pH 7.0 with 0.05 N hydrochloric acid. The stock solution was stored frozen in aliquots at -70° C. The working standard, pteroylmonoglutamic acid, prepared on the day of assay, was diluted in 0.05 M phosphate buffer to contain 1 ng PGA/ml.

DL-N-5-methyl FH₄ (barium salt) was purchased in 10-mg ampoules, of the same lot number. The contents were dissolved in 100 ml of 0.05 M phosphate buffer, pH 6.1, containing 200 mg% of as-

	Radio- activity	¹⁴ CO ₂ Production (metabolic index units)*		Net ¹⁴ COs productior (meta- bolic
	added (µCi)	0 ng PGA	1 ng PGA	index units)
L-[U- ¹⁴ C] arginine L-[guanido- ¹⁴ C]	1	2	2	0
arginine	1	0	0	0
[L-14C] glycine	1	0	2	2
L-[U- ¹⁴ C]				
histidine	1	2	4	2
DL-[carboxyl- ¹⁴ C]				
histidine	1	0	0	0
L-[U- ¹⁴ C] valine	1	2	2	0
[2- ¹⁴ C] propionate L-[U- ¹⁴ C] glutamic	1	0	1	1
acid L-[U- ¹⁴ C]	1	0	0	0
isoleucine L-[U- ¹⁴ C] aspartic	1	0	0	0
acid	1	0	0	0
L-[U- ¹⁴ C] malic acid	i i	16	30	14
[1,5-14C] citric acid		10	15	5
[U-14C] glycerol	1	0	0	0
D-[1-14C] glucose	2	0	47	47
D-[U-14C] gluconate	e 1	8	60	52
D-[1-14C] gluconate	. 1	0	234	234

corbic acid, and aliquots were stored at -70°C. The exact concentration of N-5-methyl FH₄ was determined spectrophotometrically using the extinction coefficient of $30.8 \times 10^3 M^{-1}$ cm⁻¹ at 290 nm, according to Gupta and Huennekens (26). A working standard, corrected for the measured concentration and the DL racemic mixture, was prepared on each day of assay and diluted in 0.05 M phosphate buffer to contain 1 ng/ml of L-N-5-methyl FH₄.

For each assay, six to seven different volumes of the working standard containing from 0 to 1.2 ng of folic acid, each in duplicate tubes or vials, were prepared. Five milliliters of assay medium containing 1 mg ascorbic acid/ml were added to each tube or vial, and the volume was made up with the 0.05 Mphosphate buffer.

Radioactive compounds. The following C-14labeled compounds were purchased commercially: L-[U-14C] arginine monohydrochloride, 270 mCi/ millimol; L-[guanido-14C] arginine monohydrochloride, 55.3 mCi/millimol; [1-14C] glycine, 55 mCi/ millimol; L-[U-14C] histidine, 330 mCi/millimol; DL-[carboxyl-14C] histidine, 20 miC/millimol; L-[U-14C] valine, 240 mCi/millimol; [2-14C] propionic acid sodium salt, 31.4 mCi/millimol; L-[U-14C] glutamic acid, 270 mCi/millimol; L-[U-14C] isoleucine, 290 mCi/millimol; L-[U-14C] aspartic acid, 232 mCi/ millimol; L-[U-14] malic acid, 50 mCi/millimol; [1,5-14C] citric acid monohydrate, 27 mCi/millimol; D-[U-14C] gluconic acid sodium salt, 3.9 mCi/millimol; D-[1-14C] gluconic acid sodium salt, 56.6 mCi/ millimol; [U-14C] glycerol, 46 mCi/millimol; D-[1-¹⁴C] glucose, 60 mCi/millimol. All the C-14-labeled compounds were prepared using sterile techniques with deionized water to contain 10 μ Ci/ml. D-[1-¹⁴C] gluconate was prepared to contain 5 μ Ci/ml.

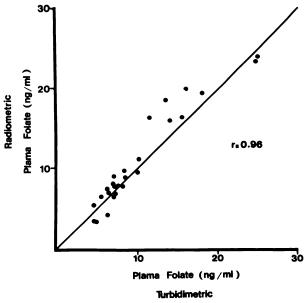
Turbidimetric microbiologic assay. Triplicate tubes were prepared for each plasma or hemolysate sample, one of which was kept as a plasma or hemolysate blank (no bacteria added). These tubes contained 5 ml of Folic Acid Casei Medium, and the volume was made up to 10 ml with 0.05 M phosphate buffer. The tubes were autoclaved $(2\frac{1}{2}-3 \text{ min at } 10 \text{ psi})$ and, after cooling, 0.5 ml, 1 ml, and 2 ml of plasma supernate, and 0.25 ml and 0.5 ml of hemolysate supernate, were added aseptically. The bacteria were added last and the tubes were incubated at 37°C for 20 hr. Bacterial growth was measured using absorbance at 640 nm. With the proper blanks subtracted, the standard curve was plotted, and the amount of folate activity in the sample was calculated.

Radiometric microbiologic assay. Duplicate 20-ml vials were prepared for each plasma or blood hemolysate. The diluted plasma or hemolysate sample was autoclaved directly after adding to the assay medium and buffer. It was not necessary to remove the coagulated proteins. After cooling, 1 μ Ci (0.2 ml) of [1-¹⁴C] gluconic acid and 0.1 ml of the bacterial inoculum were added. The vials were incubated at 37°C for 16–17 hr. Bacterial growth was then measured by quantifying the amount of ¹⁴CO₂ released, using an ionization chamber§ as previously described (25).


RESULTS

Substrate selection and standard curve. All C-14labeled compounds were evaluated using PGA. This standard was used initially because it is stable and available in a pure form. As shown in Table 1, D-[1-¹⁴C] gluconate was the substrate best metabolized by *L. casei* in the presence of added folate, with significant release of ¹⁴CO₂ after 16–18 hr of incubation at 37°C. D-[U-¹⁴C] gluconate resulted in the production of approximately one-fourth of the amount of ¹⁴CO₂ that D-[1-¹⁴C] gluconate produced when 1 μ Ci of each was used.

A representative standard curve using N-5-methyl FH₄ and 2 μ Ci of D-[1-¹⁴C] gluconate is shown in Fig. 1. A linear relationship was observed from 0 to 0.8 ng of N-5-methyl FH₄.


Originally we used 2 μ Ci of D-[1-¹⁴C] gluconate in the radiometric assay system, but comparable values were obtained using either 2 μ Ci or 1 μ Ci. Thereafter 1 μ Ci was used for economy.

With a constant amount of folic acid (1 ng) and

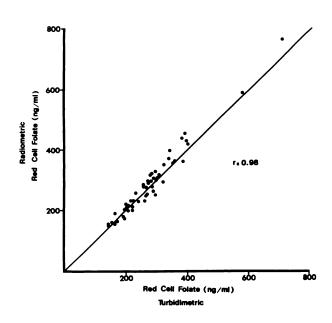

ng N.5.methyl.FH4

FIG. 1. Metabolism of 2 μ Ci of D-[1-¹⁴C] gluconate by *L. casei* with increasing concentrations of N-5-methyl FH₄. Incubation time 16–17 hr. Each point represents mean of triplicate determinations.

FIG. 2. Comparison of 26 plasma folate levels assayed by radioactive and turbidimetric procedures using *L. casei*. Correlation coefficient, r = 0.96. Each point represents mean of duplicate determinations. Line of identity is drawn in.

varying amounts of ascorbic acid (from 0–20 mg), we found that a minimum of 1 mg of ascorbic acid per tube (turbidimetric assay) and 3–4 mg of ascorbic acid per vial (radiometric assay) were required to protect folic acid during the autoclaving step. No differences in growth of *L. casei* were observed, however, in the range of 1–20 mg of ascorbic acid per turbidimetric assay tube or 3–20 mg of

FIG. 3. Comparison of 57 hemolysate samples assayed by radiometric and turbidimetric procedures using *L. casei*. Correlation coefficient, r = 0.98. Each point represents mean of duplicate determinations. Line of identity is drawn in.

Red-cell folate. Blood hemolysates from 57 normal volunteers were assayed by radiometric and

vial.

turbidimetric microbiologic methods in parallel. As shown in Fig. 3, the values obtained by the two methods correlated well (r = 0.98). The mean redcell folate value obtained by the radiometric assay was 270.0 ng/ml with a range of 149.4–769.2 ng/ml red cells. By turbidimetric assay, the mean red-cell folate value was 281.7 ng/ml with a range of 142.7– 707.1 ng/ml.

ascorbic acid per radiometric vial. Accordingly, we settled on 5 mg of ascorbic acid per assay tube or

Plasma folate. Plasma samples from 26 normal volunteers were assayed in parallel by the radio-

metric and turbidimetric microbiologic methods. Ex-

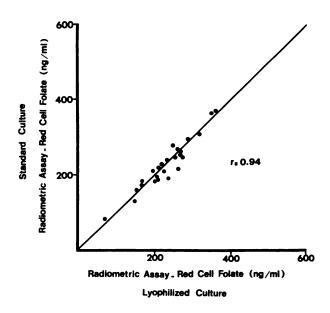
cellent correlation was obtained (r = 0.96, Fig. 2). Levels ranged from 3.3 to 24.3 ng/ml plasma (mean 10.9) for the radiometric assay, and 4.5 to 24.7 ng/

ml plasma (mean 10.2) for the turbidimetric assay.

Accuracy of the radiometric microbiologic method. Both the reproducibility and sensitivity to the addition of folate of the radiometric method were evaluated. Four hemolysates were assayed 8-10 times over a period of 6 mo, and the coefficients of variation were 8.6%, 12.9%, 11.5%, and 8.5% (Table 2).

Recovery studies were performed by adding 5 ng of N-5-methyl FH₄ to seven plasma samples, and 50 ng and 100 ng of N-5-methyl FH₄ to seven hemolysates (Table 3). The mean recovery percentage for the seven plasma samples was $102.7 \pm 8.7\%$ (s.d.). The mean recovery percentage for the hemolysates was $107.5 \pm 13.5\%$ (s.d.) when 50 ng was added, and $106.0 \pm 4.5\%$ (s.d.) when 100 ng was added.

Lyophilization of L. casei. Twenty-six hemolysates were compared by the radiometric assay using lyophilized and standard cultures (Fig. 4). A correlation coefficient of 0.94 was obtained when samples were assayed in parallel using previously lyophilized and stored *L. casei* and using conventional serial cultures of this organism.


DISCUSSION

The development of this radiometric microbiologic assay for plasma and red-cell folate levels was based on the measurement of ${}^{14}CO_2$ produced by *L. casei* in the presence of human plasma or whole-blood hemolysates (or folate standard) and D-[1- ${}^{14}CO_2$ gluconate. The ${}^{14}CO_2$ produced was proportional to the amount of folate present.

Buyze et al. (27) showed that *L. casei* possesses the enzyme 6-phosphogluconate dehydrogenase. When this microorganism was grown with gluconate

Assay	Folate (ng/ml)				
	Sample 1	Sample 2	Sample 3	Sample 4	
1	217.7	76.9	226.1	200.0	
2	232.9	92.3	261.1	181.7	
3	201.5	67.1	263.1	170.4	
4	234.8	72.1	223.5	195.4	
5	227.5	70.4	223.5	188.1	
6	206.1	62.3	189.6	172.1	
7	194.9	71.0	210.6	180.6	
8	185.4	83.8	193.4	188.8	
9	_		218.4	223.3	
10	—	—		171.5	
Aean ± s.d.	219.6 ± 18.4	74.5 ± 9.6	223.3 ± 25.6	187.2 ± 16	
	8.6%	12.9%	11.5%	8.5%	

Sample	Plasma 5 ng	Hemolysate		
No.		50 ng	100 ng	
1	102.5	92.1	112.6	
2	110.8	103.0	110.2	
3	110.8	116.3	102.8	
4	86.2	119.7	108.2	
5	99.2	126.7	104.6	
6	109.0	92.4	100.1	
7	100.5	102.8	103.3	

FIG. 4. Comparison of 26 hemolysate samples assayed by the radiotracer procedure using standard and lyophilized cultures of *L. casei.* Correlation coefficient r = 0.94. Each point represents mean of duplicate determinations. Line of identity is drawn in.

as the sole carbon source, the compound was metabolized through the hexosemonophosphate shunt with release of CO_2 .

gluconate
$$\xrightarrow{+ \text{ ATP}}_{\text{glucokinase}} 6$$
 phosphogluconate
 $\xrightarrow{6 \text{ PG}}_{\text{dehydrogenase}}$ ribulose-5-PO₄ + CO₂

This pathway has been shown to exist also in *B. subtilis* (28), *E. coli* (29), *Acetobacter* (30), and many other microorganisms. Production of ¹⁴CO₂ by *L. casei* in the presence of folate was greater from D-[1-¹⁴C] gluconate than that from D-[U-¹⁴C] gluconate because a) the 1-¹⁴C-compound has a higher specific activity (\times 14.5), and b) ¹⁴CO₂ is produced by this enzyme by cleavage of the carbon at the one position of gluconate.

It has been shown that folate in human serum is mainly N-5-methyl FH₄, while that in erythrocytes is mainly conjugated derivatives of N-5-methyl FH₄ (31-33). To test the metabolic activity of *L. casei* for D-[1-¹⁴C] gluconate in the presence of different folates, we assayed both PGA and N-5-methyl FH₄ on a molar-equivalent basis by the radiometric method. *L. casei* had essentially identical metabolic activity with each of these folates (Fig. 5).

It has been pointed out that both ascorbic acid and phosphate can stimulate the growth of L. casei when the folate concentration is limiting (34). We therefore used phosphate buffer both to dilute all reference standards, plasma and hemolysate samples, and to make up the volumes for all assays. Each reaction tube or vial was similarly prepared to contain an excess (5 mg) of ascorbic acid.

Like Magnus (35) we elected to assay plasma folate rather than serum folate for several reasons. First, a single (3-ml) heparinized blood sample per-

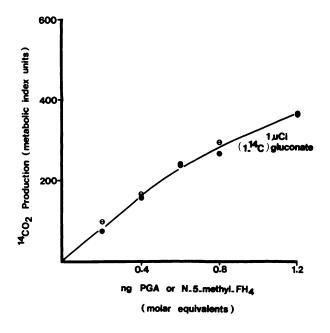


FIG. 5. Response of L. casei to PGA θ and N-5-methyl FH₄ \bigcirc on a molar basis in presence of 1 μ Ci of D-[1-¹⁴C] gluconate. Incubation time 16–17 hr. Each point represents mean of triplicate determinations.

mits determination of the hematocrit and the wholeblood and plasma folates. Second, with both plasma and RBC folate values determined, it is possible to differentiate transient dietary folate deprivation (low plasma with normal RBC folate values) from: a)

Standard technique	Lyophilization technique
Stock cultures of Lactobacillus	
casei are kept as stab inocu-	
lum in micro assay culture	
agar. These are subcultured monthly in micro assay culture	
agar.	
ugan. ↓	
Before day of assay, subcul-	
ture into micro inoculum broth	
and grow for 16–18 hr at 37°C.	
↓	
On morning of assay, subcul-	
ture from 16 hour growth to	
fresh micro inoculum broth.	
Grow for 6−7 hr at 37°C. ↓	
Centrifuge bacteria. Wash -	
three times with assay me- dium.	seal the ampoules. Store at 4°C.
Ļ	t
Resuspend, dilute and inocu-	On day of assay, break
late assay tubes or vials.	open ampoule, resuspend dilute and immediately in- oculate assay vials.

true folate deficiency (low plasma with very low RBC folate values); b) transient spurious elevation of plasma folate by recent ingestion of folate or folate-rich foods; and c) vitamin- B_{12} deficiency (plasma values normal to high, with moderately low RBC folate values) (3,7,36,37).

A significant reduction of the time required for each assay can be achieved by lyophilization of *L. casei.* This eliminates the need for much of the routine maintenance of the organism (Table 4). Also, a more reproducible standard curve is obtained (38) using lyophilized cultures, presumably because it is possible to prepare a large supply (6 mo to 1 yr) of homogeneous cultures at one time.

The radiometric microbiologic assay has several advantages over the turbidimetric assay. A separate plasma or hemolysate blank for each blood sample at each dilution is not required, as it is for the turbidimetric microbiologic assay. Coagulated proteins in the plasma and whole-blood extracts do not interfere with the radiometric assay. Further, this assay method is adaptable to automation.

The detection of ${}^{14}CO_2$ evolved by *Lactobacillus* organisms has been shown, both in this radiometric assay for folates and the previously reported radiometric vitamin B₁₂ assay (25), to be unaffected by turbid or colored solutions, unlike the conventional turbidimetric assays. Accordingly, these radiometric assays seem to offer the opportunity to measure the content of these essential nutrients in other biologic materials, such as tissue homogenates and foodstuffs.

FOOTNOTES

* Wheaton, Millville, N.J.

† American Type Culture Collection, Rockville, Md.

‡ Difco Laboratories, Detroit, Mich.

|| Obtained from USP Reference Standards, USP-NF Reference Standards, Rockville, Md.

§ Bactec Model R301, Johnston Laboratories, Cockeysville, Md.

ACKNOWLEDGMENTS

This work was supported by U.S.P.H.S. Grant GM 10548. We are grateful to Dr. Min-Fu Tsan for obtaining many of the blood samples used in this study.

REFERENCES

1. HERBERT V: Aseptic addition method for Lactobacillus casei assay of folate activity serum. J Clin Path 19: 12-16, 1966

2. BAKERMAN HA: A method for measuring the microbiological activity of tetrahydrofolic acid and other labile reduced folic acid derivatives. *Anal Biochem* 2: 558-567, 1961

3. HOFFBRAND AV, NEWCOMBE BFA, MOLLIN DL: Method of assay of red cell folate activity and the value of the assay as a test for folate deficiency. J Clin Path 19: 17-28, 1966

4. CHANARIN I, KYLE R, STACEY J: Experience with

microbiological assay for folate using a chloramphenicolresistant L. casei strain. J Clin Path 25: 1050-1052, 1972

5. LIU YK: Microbiologic assay of erythrocytic folate content by the aseptic addition method. Am J Clin Path 62: 688-692, 1974

6. SCOTT JM, GHANTA V, HERBERT V: Trouble-free microbiologic serum and red cell folate assays. Am J Med Tech 40: 125-134, 1974

7. WATERS AH, MOLLIN DL: Studies on the folic acid activity of human serum. J Clin Path 14: 335-344, 1961

8. COOPER BA: Superiority of simplified assay for folate with *Lactobacillus casei* ATCC 7469 over assay with chloramphenicol-adapted strain. J Clin Path 26: 963-967, 1973

9. COOPERMAN JM: Microbiological assay of serum and whole-blood folic acid activity. Am J Clin Nutr 20: 1015–1024, 1967

10. SHAW W, SLADE BA, HARRISON JW, et al: Assay of serum folate: Difference in serum folate values obtained by *L. casei* bioassay and competitive protein-binding assay. *Clin Biochem* 7: 165-178, 1974

11. TAJUDDIN M, GARDYNA HA: Radioassay of serum folate, with use of a serum blank and nondialyzed milk as folate binder. Clin Chem 19: 125-126, 1973

12. WAXMAN S, SHREIBER C: Measurement of serum folate levels and serum folic acid-binding protein by ³H-PGA radioassay. *Blood* 42: 281–290, 1973

13. KAMEN BA, CASTON JD: Direct radiochemical assay for serum folate: Competition between ³H-folic acid and 5-methyltetrahydrofolic acid for a folate binder. J Lab Clin Med 83: 164–174, 1974

14. LONGO DL, HERBERT V: Radioassay for serum and red cell folate. J Lab Clin Med 87: 138-151, 1976

15. RUDZKI Z, NAZARUK M, KIMBER RJ: The clinical value of the radioassay of serum folate. J Lab Clin Med 87: 859-867, 1976

16. WADDEL CC, DOMSTAD PA, PIRCHER FJ, et al: Serum folate levels. Comparison of microbiologic assay and radioisotopic kit methods. Am J Clin Path 66: 746-752, 1976

17. ROTHENBERG SP, DA COSTA M, ROSENBERG Z: A radioassay for serum folate: Use of a two-phase sequential incubation, ligand-binding system. N Engl J Med 286: 1335-1339, 1972

18. MINCEY EK, WILCOX E, MORRISON RT: Estimation of serum and red cell folate by a simple radiometric technique. *Clin Biochem* 6: 274–284, 1973

19. ROTHENBERG SP, DA COSTA M, LAWSON J, et al: The determination of erythrocyte folate concentration using a two-phase ligand-binding radioassay. *Blood* 43: 437-443, 1974

20. GROSSOWICZ N, MANDELBAUM-SHAVIT F, DAVIDOFF R, et al: Microbiologic determination of folic acid derivatives in blood. *Blood* 20: 609–616, 1962

21. HERBERT V: Experimental nutritional folate deficiency in man. Trans Assoc Am Physicians 75: 307-320, 1962 22. DAWSON DW, GEARY C: Hepatic and serum folates in patients fasting and after oral folic acid. J Clin Path 24: 129–130, 1971

23. EICHNER ER, PIERCE HI, HILLMAN RS: Folate balance in dietary-induced megaloblastic anemia. N Engl J Med 284: 933-938, 1971

24. LEEVY CM, CARDI L, FRANK O, et al: Incidence and significance of hypovitaminemia in a randomly selected municipal hospital population. Am J Clin Nutr 17: 259-271, 1965

25. CHEN MF, MCINTYRE PA, WAGNER HN: A radiometric microbiologic method for vitamin B₁₃ assay. J Nucl Med 18: 388-393, 1977

26. GUPTA VS, HUENNEKENS FM: Preparation and properties of crystalline 5-methyl tetrahydrofolate and related compounds. Arch Biochem Biophys 120: 712-718, 1967

27. BUYZE G, VAN DEN HAMER CJA, DE HAAN PG: Correlation between hexose-monophosphate shunt, glycolytic system and fermentation-type in lactobacilli. Antonie Van Leeuwenhoek J Microbiol Serol 23: 345-350, 1957

28. GARY ND, BARD RC: Effect of nutrition on the growth and metabolism of *Bacillus subtilis*. J Bact 64: 501-512, 1952

29. COHEN SS, ROTH L: The phosphogluconate pathway of carbohydrate metabolism in the multiplication of bacterial viruses. J Bact 65: 490-495, 1953

30. DELEY J, STOUTHAMER AJ: The mechanism and localization of hexonate metabolism in Acetobacter suboxydans and Acetobacter melanogenum. Biochim Biophys Acta 34: 171-183, 1959

31. HERBERT V, LARRABEE AR, BUCHANAN JM: Studies on the identification of a folate compound of human serum. J Clin Invest 41: 1134-1138, 1962

32. NORONHA JM, ABOOBAKER VS: Studies on the folate compounds of human blood. Arch Biochem Biophys 101: 445-447, 1963

33. SHIN YS, BUEHRING KV, STOKSTAD ELR: Studies of folate compounds in nature. Folate compounds in rat kidney and red blood cells. Arch Biochem Biophys 163: 211-224, 1974

34. KAUFMAN BT, BAKERMAN HA: Methods for the microbiologic assay of folic acid. In *Hemoglobin, Its Precursors* and Metabolites, Sunderman FW, and Sunderman FW, eds, Philadelphia, JB Lippincott Co, 1964, chapter 23, p 187

35. MAGNUS EK: Folate studies. Folate vitamin B₁₂ values in relation to bone marrow pattern. Scand J Haematol Supplement 24: 1-111, 1975

36. SPRAY GH: Microbiological assay of folic acid activity in human serum. J Clin Path 17: 660-665, 1964

37. COOPER BA, LOWENSTEIN L: Relative folate deficiency of erythrocytes in pernicious anemia and its correction with cyanocobalamin. *Blood* 24: 502-521, 1964

38. NYMON MC, GUNSALUS IC, GORTNER WA: An application of the lyophile process to the maintenance of cultures for microbiological assays. *Science* 102: 125–126, 1945