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The statistical spatial resolution and coordinate linearity at the central
portion of an image detector are investigated theoretically in relation to
the “contributing factor of a photomultiplier (PM ) to a positioning signal”
and light-guide thickness. The “contributing factor” is the increment of
change in the positioning signal corresponding to an infinitessimal change
in PM output. The “contribution function to a positioning signal”® of a
PM group with equal x or y coordinates is defined by this “contributing
factor” and expressed as a function of the relative position between the PM
group and a scintillation point. When the “contribution function” is deter-
mined, the statistical spatial resolution and coordinate linearity can be cal-
culated for a given light-guide thickness.

The ideal contribution functions, which are two-dimensional, minimisze
the resolving distance when light-guide thickness is in the range of 0.6-0.7
times the PM radius. The contribution functions of the matrix and threshold-
preamplifier methods, which are approximately one-dimensional, cannot
correct the coordinate nonlinearity, which increases as light-guide thickness
decreases, although the threshold-preamplifier method improves resolving
distance. Modification of the one-dimensional contribution functions—
which reduce the nonlinearity to one half or less accompanied by only a
slight increase in resolving distance—are proposed. If the acceptable non-
linearity is =49, the resolving distance decreases by 26 and 14%, over the
matrix and threshold-preamplifier methods, respectively, by using the modi-

fication for thin light guides.
J Nucl Med 19: 825-835, 1978

The scintillation camera developed by Anger
(1-3) has been used widely to image the distribution
of radionuclides in vivo. Some theoretical studies
(4-11) have been made to improve the intrinsic
spatial resolution and reduce the edge effect. The
average spatial resolution and the average coordinate
linearity in an overall field of view are related to
light-guide thickness (9). This thickness is the per-
pendicular distance between a scintillation site and
the photocathode plane. Linearity in the central por-
tion of an image, however, cannot be estimated accu-
rately from the averaged linearity, because the latter
is mainly affected by the edge effect (10). Investiga-
tions of linearity and spatial resolution at the central
region of an image appear not to have been made to
date.
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Tanaka et al. (1) investigated position-computing
arithmetics. They defined the “contributing factor”
of a photomultiplier (PM) to a positioning signal
as the increment of change in the positioning signal
corresponding to an infinitely small change in the
output of the PM. When the contributing factors of
all PMs are given for any scintillation point, spatial
resolution and coordinate linearity are calculated
for a given light-distribution model. They have ex-
pressed mathematically the optimum set of the con-
tributing factors that attain both the theoretical
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minimum resolving distance and perfect coordinate
linearity for a given light distribution. A position-
computation method based on delay-line time con-
version (I1-14) has been developed, and some im-
provements in spatial resolution and linearity have
been achieved by experimental optimization of the
contributing factors. An improvement in spatial reso-
lution using threshold preamplifiers (/5) is also con-
sidered a modification of the contributing factors.

Experimental work has been carried out using the
delay-line position-computing method. As a result,
a large-area, high-resolution scintillation camera has
been developed (16-20), which visualizes a 2.0 mm
bar phantom using Co-57 (122 keV) gamma pho-
tons in a field 330 mm in diameter. First, however,
this required the investigation of the contributing fac-
tors. In the present work, the spatial resolution and
coordinate linearity for the central portion of the
image detector are discussed in terms of the contrib-
uting factors and light distribution.

A diagram of the optical systems under considera-
tion is depicted in Fig. 1, where the radius of all
PMs is normalized to 1. The range of scintillation-
point coordinates is limited to 0 < x, =< 1 and
0 =y, = V3, so that performances are not affected
by the edge effect that results from the limited array
of PMs,

A simple assumption is applied with regard to light
distribution, which is that the mean output of a PM
is proportional to the solid angle subtended at the
scintillation point by the photocathode (21). Refrac-
tion and scatter of scintillation light at interfaces is
not taken into account. This simple model is one that
has been widely applied (4,9). Furthermore, the
main purpose of the work is to compare different
position-computing arithmetics and to make a gen-
eral investigation of linearity correction, since this
is the first time an investigation of ‘“contribution
function” (defined below) has been conducted.

An applied model of position computation is as
follows. When a positioning signal for the x direction
is to be calculated, the output of PMs with equal x
coordinates is first summed. The PM group in a
line is termed the x-coordinate line, and the sum of
their outputs is termed the x-coordinate-line signal.
Then the x-coordinate-line signal, expressed as a
function of relative positions of an x-coordinate line
and a scintillation point, is termed the “line-signal
function.” In the same manner, the “contributing
factor” to the positioning signal of an x-coordinate
line, expressed as a function of the same relative po-
sitions, is termed the ‘“contribution function.”

First we will show that when the “contribution
function” is determined, statistical spatial resolution
and coordinate linearity can be calculated for a given
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“line-signal function.” Next, the ideal contribution
function and the theoretical minimum resolving dis-
tance are discussed. Then performances obtained by
the conventional position computations of the matrix
and threshold-preamplifier methods are compared.
Finally, modifications of one-dimensional contribu-
tion functions, which reduce the nonlinearity, are
considered and the resulting performances are dis-
cussed.

Ideal contribution function for position computa-
tion. A position signal, X, obtained by position com-
putation, is a function of PM outputs [z; (j = 1,
..., N)], where z; is a function of the position co-
ordinates (X,Yy,) for the scintillation point. X =
X[z;(x%5,¥,), j = 1, . . . N]. The number of photo-
electrons, ny, reaching the first dynode of the j-th PM
is assumed to fluctuate according to the Poisson dis-
tribution law. Signals from different PM tubes are
assumed not to influence each other. The gains, G,
of all PMs are assumed to be equal. Therefore the
standard deviation o of the X is given by
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FIG. 1. Diagram of PM array for a 61-tube system.
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in which o,;(= G\/n;) is the standard deviation of z;,
and k;(= 9X/9z) is the “contributing factor” of
the j-th PM to the position signal.

The calculation of the positioning signal in the
x direction is considered. The relative position (u,v)
between an x-coordinate line, where the x coordinate
is Xm, and a scintillation point (x,,y,) is

ox(X6,¥0) = [?— (—

° nj)l/z,

(1

U= Xp — Xo, (2)
|y for even x,,,
v= { V3 —y, foroddxy,, 3)

where v represents the absolute of the difference be-
tween y, coordinate of the PM that is nearest the
scintillation point on the x-coordinate line. It is sug-
gested that when 0 = y, = V/3 (see Fig. 1), the
y coordinate of this PM is O for an even value of x,,
and /3 for an odd value.

When the line-signal function is denoted by
Z,(u,v), N;(u,v) in the following formula is the
sum of photoelectrons reaching the first dynode of
PMs with equal x coordinates:

N;(u,v) = —— * Zy(u,v). (4)
The contribution function K,( u,v) is then defined as
_oX
Ki(u,v) = 3Z. (5)
Therefore Eq. 1 can be rewritten as
”x(xoyYo) = G(Z Kx2 * Nx)l/2~ (6)

The summation in Eq. 6 is made for all x,, values,
that is, —8, —7, ..., +7, +8, for the model in
Fig. 1. Position sensitivity S,(X,,y,) is expressed as

X _ . oON;
axo_—G S K, 0"
Position sensitivity, expressed as a function of the
coordinates of scintillation points, is equivalent to
coordinate linearity. Accordingly, the statistical re-
solving distance—in terms of standard deviation,
normalized by the position sensitivity—is expressed
as

S:(X0Yo) = (7)

2 1/2
Reroy) == EEERIE - 5)
—SK, e

It follows that both coordinate linearity and statistical
resolving distance are determined by the combination
of the line signal and contribution functions. The
ideal contribution function, K;;(u,v), for the line-
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signal function, Z, (u,v), is defined so that R, is mini-
mized and S, is constant for any (x,y,). It is ex-
pressed (/1) as

€ 9N,
Ka(uy) = —I—N—a% (9)
2R (35)

where c is a positive constant. The theoretical mini-
mum resolving distance R,; obtained by K;; is ex-
pressed (/1) as

(-2 a”)
Ru(Xoyo) = (S 247 y-12 (10)

Note that the theoretical minimum resolving distance
is, in general, a function of the scintillation point’s
coordinates.

Calculation of the y-direction position signal pro-
ceeds in the same manner as for the x direction.
That is, the line-signal function for the y direction,
Z.(u,v), and the contribution function, K,(u,v), are
defined for the parameters, u, v, in Eqs. 11 and 12:

__( %o, for even yp,
u—{I—X(,,foroddym, (1n
V=Ym — Yo (12)

The mean PM outputs are computed for a given
light-guide thickness by the method developed by
Masket et al. (22), on the assumption that the mean
PM outputs are proportional to the corresponding
solid angles. The range of the light-guide thickness,
d, under consideration is 0.2 = d = 2.0. Line-signal
and ideal contribution functions for the x and y di-
rections are obtained for a given light-guide thick-
ness, and typical results are shown in Figs. 2 and 3,
respectively.

The vibration in the ideal contribution functions
in Fig. 3 is attributed to the denominator in Eq. 10,
since the denominator, which is equal to 1/R?,
varies slowly. If the contribution function for the x
direction has the form

< oNs
N, 2u’
the theoretical minimum spatial resolution may be
obtained, but the corresponding position sensitivity
(S,) varies. This indicates a loss of coordinate lin-
earity. As light-guide thickness decreases, the vibra-
tion amplitude in the denominator in Eq. 10 in-
creases. Therefore, radical changes in the form of the
contribution function are required to adjust for a
slight change in the coordinates of scintillation points.

The theoretical minimum resolving distances, Ry
and R,,, given by Eq. 10 for various values of the

K:(uyv) = — (13)
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20 v : defined by Eq.3

solid angle
for one PM

——

A u defined by Eq.2 (normalized by PM radius )

u : defined by Eq.ll

20+

[¢)
B v defined by Eq.12 ( normalized by PM raodius )

FIG. 2. Line-signal functions for d = 1.0 in first quadrant for
x (A) and y (B) directions. Broken lines show solid angle for one
PM as function of distance between PM and scintillation point. Wave-
forms are symmetric with respect to longitudinal axis. Values of
line-signal functions are only weakly related to number of PMs
with equal x or y coordinates (Nj) in Fig. 1. Here, N is taken as
% 5 and 7 for x and y directions, respectively.

light-guide thickness, d, are plotted in Fig. 4. Note
that Ry, is maximum at (0,0) and minimum at (1,0),
whereas Ry, is also maximum at (0,0), but its mini-
mum is near (0, \/3/2). The difference between
R (0,0) and R,; (0,0 for a given d value is within
1%. These values are minimized when d is in the
0.6-0.7 region (Fig. 5).

Both the ideal contribution functions and the theo-
retical minimum resolving distance are determined
only by the light-distribution characteristics. They
therefore represent determinant features of optical
systems.

Position computation by the matrix method. In a
signal-matrix circuit, which is the conventional posi-
tion computer of Anger cameras, the position signal
X is given (9,10,12) by

Xm * Zx Xm * Nx
X(Xm)'o) =22 Zx :EENX

where the gains of all PMs are assumed equal. The
contribution function by a matrix circuit is derived
from Eqgs. 3, 4, and § as

»  (14)
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Xo— X

u (l + m )

G-3IN, °
For a well-designed scintillation camera of the ma-
trix type, K, is nearly proportional to u and nearly
independent of v, because 3> N; =< constant and
(X, — X)/u =~ 0 in the central portion of the image.
The position sensitivity and resolving distance are
derived from Egs. 8, 9, and 15 as follows:

-zu-(1425%) - 3

Ki(u,v) = (15)

Sx(XeYo) = SN U (16)
(3 u? .(1 + xoT“x)"' - N, Jv/2 i
Rx(xo)Yo) = .
% — X\ o\
() 2

The coordinate nonlinearity in the x direction is
taken as

__ max(S;) — min(S;) .
~ max(S;) 4 min(S;)

where max(S;) and min(S;) are the maximum and
minimum S, values for a given light-guide thick-
ness. The same treatment is applied to the y-direc-
tion position signal. The values of S,, Sy, R;, and
R, were calculated in the range of 0 = x, = 1 and
0=y=v3for0.2 =d=2.0.

L, 100 (%), (18)

—~ 10
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]
> g
- ~ v=V3
ey 5t AN r\\/
- N ,
© N/ p -~
- s N \
4 N “ P
; /I pa— - ~.
K ]
0 I i 1 1 1 1 1
0o 2 4 6 8
A u defined by Eq.2 ( normalized by PM radius )
10
2 u: defined by Eq.ll
.g ,,\\\/u,l
> \ u=0
o
< sl <
2 N\~ \\ =
3 /’
=
X
0 1 L 1 1 1
o 3 273 33 473

B v defined by Eq.12 ( normalized by PM radius )

FIG. 3. Ideal contribution functions for d = 1.0 in first quad-
rant for x (A) and y (B) directions. Waveforms are symmetric with
(0,0). |deal contribution values are only weakly related to N;. Here,
Np = 5 and 7 for x and y directions, respectively.
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Dependence of the resolving distance on scintilla-
tion position is similar to that of the theoretical mini-
mum. The dependence of the resolving distance and
position sensitivity turns out to be the reverse. That
is, R, and Ry are maximum and Sy, S; minimum at
(0,0). R, will be minimum and S, maximum at (1,0);
R; is minimum and S, maximum near (0, /3/2).
The values, max(R,), max(R;), L,, and L; are

(arbitrary units)

RXI

0 1
0] 05 |

A Xo (normalized by PMradius )

(arbitrary units)

Ryi

J3

B Yo (normalized by PM radius)

FIG. 4. Theoretical minimum resolving distance for x direction
(A) where yo = 0, and y direction (B) where x, = 0.

Volume 19, Number 7

BASIC SCIENCES

INSTRUMENTATION
40 40
v
‘é 30t 130
3
>
—
(o]
=
=
0
-
2
= 20} _j20
o max(Ry) ~” =
< -7 o\
g \\ ’,’,",nx(Rx‘) tf'
Py \\\ -~ o mox(RYi) >
0;( S———— -
= 10t 110 2
x
] 3
£
0 "
(o] 1.0 20

d (normalized by PM radius )
FIG. 5. Resolving distance and nonlinearity for matrix method.

shown as a function of d in Fig. 5. The nonlinearity
inherent in this position computation increases rap-
idly as light-guide thickness decreases, and is dis-
cussed later.

Threshold-preamplifier method. If a set of non-
linear preamplifiers is adopted for each x-coordinate
line signal before a signal-matrix circuit, Eqs. 19 and
20 hold true instead of Eqs. 14 and 15, respectively:

_ X Xm - 8(2)
=S ez) (19)
8y o (14 22X)
K.(uv) = dz, @ "¢ (“’ AR
>e(z)

where g(z) is the output of a nonlinear preamplifier
for an input signal z;. The contribution function for
this circuit is derived as ’

(1 +25%)

sE-m o rEED

(21

K (u,v) =
0,forZ, < T,

where T is the threshold level for each x-coordinate
line signal.

A contribution function, in a pyramidal form pre-
sented by Eq. 22, is assumed here as a simplified
model for the threshold-preamplifier method, be-
cause a characteristic threshold-preamplifier curve
generally has a tail below the threshold level (23):
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FIG. 6. Resolving distance and nonlinearity for x direction by
pyramidal contribution functions, which are simplified models of
threshold-preamplifier method.

o, for IUIfé P
—u,forp=u=2p,

e o —2p = = _p, (22)
0, for |u| = 2p.

The p value where K, is maximum is related to T as
Z(p,v) =T.

The resolving distance and nonlinearity were cal-
culated, for various d and p values, from Egs. 7, 8,
18, and 22. The results are shown in Figs. 6 and 7.
These figures suggest that spatial resolution may be
improved to approximately that of a small detector
employing only 19 PMs, by the reduction in the p
values from 8 to 4 for K, and from 4v/3 to 2\/3 for
K,. Further reduction of p to 2-3 and /3 — 2v/3
regions for the x and y directions may improve the
resolving distances to values that are 5% over the
theoretical minimum. In these cases, however, some
linearity is lost.

Thus, the threshold-preamplifier method is adapta-
ble to thick light guides, which achieve good linearity
and may be effective in improving the spatial resolu-
tion of large-area detectors. This method, however,
cannot make the best use of thin light guides, because
it cannot correct the inherent nonlinearity.

One-dimensional contribution functions that im-

K, (u,v) =

830

prove nonlinearity. First let us consider the correc-
tion of the nonlinearity along the x axis (i.e., y, = 0)
by adjustment of the one-dimensional contribution
function, Ky(u). The nonlinearity over the xy plane
is evaluated later. The position sensitivity along the
X axis, Sx(X,,0), can be expressed as

- . ON;

sx(xo:o) —_ E Kx au .

Assume a function, h,(u), that is defined over |u| =

w and is symmetric about the origin. If h,(u) satis-
fies the following equations:

(23)

—S(Ke(w) + he(w)) - 2

= S:» = constant, (24)
hy(0) = hy(W) = hy(—w) =0, (25)
K:(u) +hi(u) =0,at0=u=w, (26)

where w is a constant, then a contribution function,
K;n(u), can be obtained that realizes perfect linearity
along the x-axis:

Kun(u) = Kx(u) + he(u). (27)

This function, K,,(u), obtained under conditions
where w = 2, is investigated here. This is because it

o—o max(Ry)

25}
d=20 — Ly
.8\\\-/

- 20+—20
@
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S —1.8
z 14
g —16 !
g ISk—14 |5 30
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ot -
o I0F ¢ 420
S o
: —
E 2
+1
>
Sr J
n n i N o
% = 25 3T a3

p (normalized by PM radius )

FIG. 7. Resolving distance and nonlinearity for y direction by
pyramidal contribution functions, which are simplified models of
threshold-preamplifier method.
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can be calculated as follows, and approximated by
the delay-line position compuiation (12). The value
K;»(1) is determined first for a given d value aad an
initial condition of K,,(2) by

Kwu(1) =Ki(1)

$:(1,0) — S:(0,0)
Ny oN: o a0 Y
2(—(1,0) ~Su a1, 3))

\ Ju

Then, for a given X, {u) for 1 < u < 2, K;n(u)
values for 0 < u < 1 are determincd, and the whole
K:x(u) can be obtained as shown in Fig. 8. Note
that K;,(u) for |u] = 2 is a function of K;(u) for
fu] > 2, as well as [u| = 2, since $,{1,0) and S,(0,9)
in Eq. 28 are functions of K;(u). The details of the
computation are shown in Appendix 1.

A distinctive feature in this figure is that ¥.,(1)
decreases as d decreases. The value C,. is defined
here as

+ (28)

Kun(2) — 2Ku(1)

K (2) ’

which represents the deviation of K,(1) from the
contribution function obtained by the matrix and
threshold-preamplifier methods. Examples of C, are
shown in Fig. 9. The va'ue appears sensitive to the
d value but rather insensitive to the p value that deter-
mines the original waveform of K,u(u) for ju| = 2.
Since nonlinearity depends primarily on K (1)/
K.(2) for given values of d and K. (u) for |u| = 2,

(29)

(arbitrary units)

KXh

U (normalized by PMradius )

FIG. 8. Examples of corrected one-dimensional contribution
functions for x direction. Waveforms are symmetric with (0,0).
Functions of Kxn are obtained under the condition where Kx(x) =
sin(rx/5) for |[x| = 5, because this condition is approximately real-
ized by delay-line position computation (12).
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d (normalized by PM radius)

FIG. 9. Valves of C; and C,, obtained when Kxn{u) = sin(ru/
2p) for 2 = |u| = 2p, and Kyn(v) = sin(xv/2p) for 3 = |v| = 2p.
Here, p is v or v valve at which Kxu(u) or Ksn(v) is maximum,

a critical adjustment of K;(u) is required as the dif-
ferential coefficient defined by Eq. 30 increases:

oLx

K«(1)
° K,(z))
The differential coefficient, E,, can be given (see
Appendix 2) as:

E:= $:(0,0) =S:(1,0).  (30)

— oL - .
Br= o2 | K1) = Ka(1) - Ka(2)
2N, Ny, )2
ke (Tean -Teavs)’
- aNx aNX
8.(1,0) T2 (1,v3) — 8,00 2L (1,0)

3D
Examples of E; are shown in Fig. 10, and will be
discussed later.

The contribution function for the y direction,
which attains perfect linearity along the y-axis at
first, seems obtainable by similar procedures only if
hy(v) is confined to the range of |v| = 2v/3. It is
difficult, however, to attain both perfect linearity and
good spatial resolution for the y direction. The dif-
ficulty results because the PMs in a y-coordinate line
contact one another, and therefore N,(u,v) and
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FIG. 10. Values of E; and E,, obtained under same conditions
as in Fig. 9.

ON;/ov(u,v) are almost independent of u (see Fig.
2B). As a result, S;(0,0) and S;(0,v/3) can be writ-
ten as

$,(0,0) = —2 - K;(V3) %‘j’ (1,V3) — A (32)

5,(0,v3) = =2 - K:(v3) 2 (0,v3) — B, (33)

where A and B values are nearly equal. In order to
attain S;(0,0) = S;(0,v/3), one must maintain
K;(Vv3) at approximately zero, which may cause a
considerable loss of spatial resolution. It should be
accepted, therefore, that the following inequality re-
mains uncorrected when y, is near zero:

Sy(OsYO) < S)(O,\/3 - Yo)- (34)

In this paper, correction of K;(v) to obtain im-
proved linearity is instead considered in the range
of [v| = V/3, because it is possible to adjust most
S,(0,y,) values to within the range of

§,(0,0) < S8s(0,y,) <8,(0,v3).  (35)

It appears fairly effective in practice, because the
difference between S;(0,v/3) and S;(0,0), by the
matrix method is, in most cases, considerably smaller
than that between S,(0,0) and S,(0,V/3/2).

In this method, the value of K;,(1/3/2) that
makes S,(0,0) = S,(0,1/3/2) can be determined as
follows (see Appendix 3):

832

Kn(V3/2) =K;(V3/2)

oN oN :
a—vy(o,\/3/2) + avy A19V3/2)

The values C; and E; should be defined as follows
(see Appendix 3):

c. — Kan(v3) — 2 - Kn(v3/2)
T Kmn(V3)

(36)

(37)

E.— aLy * Kyh(\/3)
T oK (Vv3/2) | Ky(V3/2) =K;n(V3/2)

Kn(v3) D 0,v3/2) + B (1,v3/2)
- —4-5,(00) '

(38)

Examples of C; and E; are shown in Figs. 9 and 10,
respectively. With a thick light guide, the value C;
is affected mainly by the v value at which Ky,(v) is
maximum, rather than by the light-guide thickness.
Therefore, the request that S;(0,0) = S;(0,v3),
may be met by a suitable adjustment of the y value
mentioned above. This type of adjustment is rela-
tively easy to realize by the delay-line position com-
putation (12-14).

On the other hand, since C; is only slightly affected

25
o—o max (Ry ) S0
L
e \\o*:-c x
20f 18 o lao
»
= 1.6 oQ
S
> 1.4 0\_0___0__,0/0
©
= I5¢ 1.2 o\_o__—-w’o/o 130
5 & e
o}
=
1 4
- 10 120
:
P
5 10 H
x
-
408 \._.
8 = =
0 : - = 0
| 2 3 4 5

p (normalized by PM radius )

FIG. 11. Resolving distance and ity for x direction by
Kxn(v), obtained under same conditions as in Fig. 9.
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FIG. 12. Resolving distance and nonlinearity for y direction
by Kyn(v), obtained under same conditions as in Fig. 9.

by the u value at which K, (u) is maximum, a large
amount of K (1) correction is required, in most
cases, as the light-guide thickness decreases. When
the light-guide is thin, the amount of correction re-
quired for K;(\’3/2) is always less in comparison
with K;(1), although C; is also determined mainly
by the light-guide thickness.

Critical adjustment of the contribution function
should be made according to decreases in either the
light-guide thickness or the values, u and v, that
maximize K,(u) and K;(v), respectively (Fig. 9).

The nonlinearity and resolving distance attained
by K.n(u) and K;,(v) were calculated over the xy
plane. The results are shown in Figs. 11 and 12. The
nonlinearity in the x direction appears to be markedly
reduced compared with the value attained by the
matrix method. The remaining nonlinearity results
from the fact that K, (u) is one-dimensional.

The nonlinearity in the y direction may be reduced
to about half the value obtained by the matrix
method. On the basis of Eq. 34, the main part of
the remaining nonlinearity is inherent. From the com-
parison of Figs. 7 and 12, and Figs. 6 and 11, the
nonlinearity is reduced and accompanied by no in-
crease in max(R;), and only by a slight increase in
max(R;). Although the resolution loss in the x di-
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rection increases as the light-guide thickness de-
creases, it remains within =10% for d = 0.8.

DISCUSSION

For low-energy photons such as those emitted
from Tc-99m (140 keV), the d value is roughly
equivalent to the total optical thickness—the distance
between the photocathode plane and the scintillation
crystal surface where the photons enter—although
the approximation cannot be applied to nonflat
light guides. Typical d values have been 1.3 or more
for the matrix or threshold-preamplifier methods
(10,24,25). The limits of acceptable nonlinearity
should be assumed to be *=4%, because Fig. 5
suggests that this value is realized for d = 1.3 by
means of the matrix method. When d = 1.3, max(R;)
is 18.6 for the matrix method and 16.1 for the
threshold-preamplifier method. The latter value can
be obtained by interpolation in Fig. 6, in which the
minimum value of max(R,) is determined under the
condition d = 1.3 and Ly, = +=4%. Figure 12 sug-
gests that d can be decreased to 1.0 by applying
a corrected one-dimensional contribution function,
when Ly is =4%. According to Fig. 11, the mini-
mum value of max(R;) is 13.8 when d = 1.0. The
improvement in max(R,) attained by the d value
decrease is 26% for the matrix method and 14% for
the threshold-preamplifier method.

CONCLUSION

The statistical spatial resolution and coordinate
linearity at the central portion of the image detector
are investigated theoretically in relation to both the
‘“contribution function” and “line-signal function.”
The concept of these functions permits evaluation
of camera performance. Based on a simple light-
distribution model for PM solid angles, results have
been discussed for the “ideal,” matrix, and threshold-
preamplifier methods. In addition, modification of
contribution functions, which reduce the coordinate
nonlinearity, are presented.

The present work is the first study of the contri-
bution function. Further analysis of a practical delay-
line position-computation circuit will be reported in
a separate paper. Some problems with regard to
practical light distribution and edge-distortion com-
pensation require investigation to clarify these areas
more completely.

APPENDIX

1. Method for obtaining a solution for h,(u). Since
hy(—u) = —hy(u), and —3N,/2x(—u,v) = N,/
ou(u,v), Eq. 24 can be rewritten as

_ . ONx
th -_ Sx(xo,o) - hx(xo) au (XO,O)
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—he(1—x) - B (1 — x,v3)
(39)
—h(14x,) - aN (14 %, V3)

.a_Nx _
— he(2 — %) ou (2 —x,0).

Under the conditions in Eq. 25, the simultaneous
equations can be obtained by the substitutions of
X, = 0 and x, = 1 in Eq. 39. The values h,(1) and
S, are obtained as the solutions of simultaneous
equations, that is,

Sx(1,0) —8:(0,0)

he(1) =
2 aN\ _aNx ’\/3)

(40)

aN,

Sx(l,O)

V3) —sx(o,0>a—Ni(1,0)
th: °

(41)

Equation 28 is derived from Eqs. 27 and 40.

If hy(u) is given at 1 = |u] = 2, h(x,) and
h(1 — x,) for a certain value of x, may be ob-
tained from the simultaneous equations, Eq. 39 and
one obtained by substitution of 1 — x, for x, in Eq.
39. The procedure is applied repeatedly for each x,
in the range of 0 < x, < 0.5 to obtain the entire
h.(u).

2. Derivation of Eq. 31. On the assumption that
L, may be approximated to

S,(1,0) — S,(0,0)

L‘_S (1.0) 7 5.(0,0) <100 (=%), (42)
a combination of Egs. 23 and 42 leads to
oL
2K(1)
= 4{S(1,0) - oN, (1 Vv3)
—$,(0,0) - a—‘ (1,0)}
{8:(1,0) +5x(0,0)}*
(43)
Therefore, we obtain
_oL
aKx(l) K‘(l) =Kxh(l)
N (1,0)
= ou (44)
th

Equation 31 is derived from Eqgs. 41 and 44.
3. Derivation of Egs. 36 and 38. Expressions cor-
responding to Eqs. 23 and 39 are written as

834

5,050 =—SK,W ZL @y, @9
and
Sin = S;(0,¥5) — hy(yo) - N, v (0:o)
(46)
, aN.v
_h)(l - yo) av 1 = Yo),

respectively. Equation 36 is derived from Eq. 46,
since S,;, = S,(0,0) and K;.,(v) = K;(v) + hg(v).

On the assumption that L, may be approximated as
S,(0,v3/2) —S,(0,0)
5,(0,v3/2) + 5,(0,0)

we obtain the following from Eqgs. 45 and 47:

L= 100 (%), (47)

oL
2K, (V372)
—S,-(o,vs/z) :
(1,\/3/2)]
B SOV SOOE ’
(48)
and
oL | ~
T oK(V3/2) | K,(v3/2) =Ku(V3/2)
"0 v3/2) + 2% (1,v3/2)
B —4- 3(00) :
(49)

Equation 38 is derived from Eq. 49.
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