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The scintillation camera developed by Anger
(1â€”3)has been used widely to image the distribution
of radionuclides in vivo. Some theoretical studies
(4â€”11) have been made to improve the intrinsic
spatial resolution and reduce the edge effect. The
average spatial resolution and the average coordinate
linearity in an overall field of view are related to
light-guide thickness (9) . This thickness is the per
pendicular distance between a scintillation site and
the photocathode plane. Linearity in the central por
tion of an image, however, cannot be estimated accu
rately from the averaged linearity, because the latter
is mainly affected by the edge effect ( 10) . Investiga
tions of linearity and spatial resolution at the central
region of an image appear not to have been made to
date.

Tanaka Ctal. (1 1) investigated position-computing
arithmetics. They defined the â€œcontributingfactorâ€•
of a photomultiplier (PM) to a positioning signal
as the increment of change in the positioning signal
corresponding to an infinitely small change in the
output of the PM. When the contributing factors of
all PMs are given for any scintillation point, spatial
resolution and coordinate linearity are calculated
for a given light-distribution model. They have cx
pressed mathematically the optimum set of the con
tributing factors that attain both the theoretical
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The statistical spatial resolution and coordinate linearity at the central
portion of an image detector are investigated theoretically in relation to
the â€œcontributing factor of a photomultiplier (PM) to a positioning signalâ€•
and light-guide thickness. The â€œcontributing factorâ€• is the increment of
change in the positioning signal corresponding to an infinitessimal change
in PM output. The â€œcontribution function to a positioning signalâ€• of a
PM group with equal x or y coordinates is defined by this â€œcontributing
factorâ€•and expressedas a function of the relativeposition betweenthe PM
group and a scintillation point. When the â€œcontribution functionâ€• is deter
mined, the statistical spatial resolution and coordinate linearity can be cal

culated for a given light-guide thickness.
The ideal contribution functions, which are two.dimensional, minimize

the resolving distance when light-guide thickness is in the range of 0.6-0.7
times the PM radius. The contribution functions of the matrix and threshold
preamplifier methods, which are approximately one-dimensional, cannot
correct the coordinate nonlinearity, which increases as light-guide thickness
decreases, although the threshold-preamplifier method improves resolving
distance. Modification of the one-dimensional contribution functions
which reduce the nonlinearity to one half or less accompanied by only a
slight increase in resolving distanceâ€”are proposed. If the acceptable non
linearity is Â±4%, the resolving distance decreases by 26 and 14% over the
matrix and threshold-preamplifier methods, respectively, by using the modi

ftcation for thin light guides.
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minimum resolving distance and perfect coordinate
linearity for a given light distribution. A position
computation method based on delay-line time con
version (11â€”14) has been developed, and some im
provements in spatial resolution and linearity have
been achieved by experimental optimization of the
contributing factors. An improvement in spatial reso
lution using threshold preamplifiers (15) is also con
sidered a modification of the contributing factors.

Experimental work has been carried out using the
delay-line position-computing method. As a result,
a large-area, high-resolution scintillation camera has
been developed (16â€”20),which visualizes a 2.0 mm
bar phantom using Co-57 (1 22 keV) gamma pho
tons in a field 330 mm in diameter. First, however,
this required the investigation of the contributing fac
tors. In the present work, the spatial resolution and
coordinate linearity for the central portion of the
image detector are discussed in terms of the contrib
uting factors and light distribution.

A diagram of the optical systems under considera
tion is depicted in Fig. 1, where the radius of all
PMs is normalized to I . The range of scintillation
point coordinates is limited to 0 < x@, 1 and
0 ;@Yo< V3, sothatperformancesarenotaffected
by the edge effect that results from the limited array
ofPMs.

A simple assumption is applied with regard to light
distribution, which is that the mean output of a PM
is proportional to the solid angle subtended at the
scintillation point by the photocathode (21 ) . Refrac
tion and scatter of scintillation light at interfaces is
not taken into account. This simple model is one that
has been widely applied (4,9). Furthermore, the
main purpose of the work is to compare different
position-computing arithmetics and to make a gen
eral investigation of linearity correction, since this
is the first time an investigation of â€œcontribution
functionâ€•(defined below) has been conducted.

An applied model of position computation is as
follows. When a positioning signal for the x direction
is to be calculated, the output of PMs with equal x
coordinates is first summed. The PM group in a
line is termed the x-coordinate line, and the sum of
their outputs is termed the x-coordinate-line signal.
Then the x-coordinate-line signal, expressed as a
function of relative positions of an x-coordinate line
and a scintillation point, is termed the â€œline-signal
function.â€• In the same manner, the â€œcontributing
factorâ€• to the positioning signal of an x-coordinate
line, expressed as a function of the same relative p0-
sitions, is termed the â€œcontributionfunction.â€•

First we will show that when the â€œcontribution
functionâ€• is determined, statistical spatial resolution
and coordinate linearity can be calculated for a given

â€œline-signalfunction.â€•Next, the ideal contribution
function and the theoretical minimum resolving dis
tance are discussed. Then performances obtained by
the conventional position computations of the matrix
and threshold-preamplifier methods are compared.
Finally, modifications of one-dimensional contribu
tion functions, which reduce the nonlinearity, are
considered and the resulting performances are dis
cussed.

Ideal confribution function for position computa
lion. A position signal, X, obtained by position com
putation, is a function of PM outputs [zj (j = 1@
. . . , N)], where Zj is a function of the position co

ordinates (x0,y0) for the scintillation point. X =
X[z@(x@,,y0),j = 1, . . . N]. The number of photo
electrons, flj, reaching the first dynode of the j-th PM
is assumed to fluctuate according to the Poisson dis
tribution law. Signals from different PM tubes are
assumed not to influence each other. The gains, G,
of all PMs are assumed to be equal. Therefore the
standard deviation r@of the X is given by

F@sition computing circuit
,@ for x direction

@,â€” â€”.@ _ .,@

@t-@ @7'@7'

1@
Region of
scintillationpoint

V
Fbsitioncomputingcircuit
for y direction

Â¶\ (Xo@o)@ WI:solidangle
I \ \\_ ScintiIlationpoint

Lightguidethickness

FIG.1. DiagramofPMarrayfora 61-tubesystem.
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i@:i@x \2]I/2
rx(Xo,Yo) = [T@@ . â€œzi) ]

= G(@ k@2. flj)1/2, (1)

in which u5j(= G\/flj) is the standard deviation of Zj,
and k@(= @X/@zj)is the â€œcontributingfactorâ€•of
the j-th PM to the position signal.

The calculation of the positioning signal in the
x direction is considered. The relative position (u,v)
between an x-coordinate line, where the x coordinate
is Xm,and a scintillation point (x.,,y0) is

U = Xm

vâ€” y0 forevenxm,
â€” V 3 â€” y0 for odd Xm,

where v represents the absolute of the difference be
tween yÂ°coordinate of the PM that is nearest the
scintillation point on the x-coordinate line. It is sug
gested that when 0@ Yo@ V 3 (see Fig. 1) , the
y coordinate of this PM is 0 for an even value of x@,,
and V3 for an odd value.

When the line-signal function is denoted by
Z,@(u,v), N@(u,v) in the following formula is the
sum of photoelectrons reaching the first dynode of
PMs with equal x coordinates:

1
N1(u,v)=@ .Z@(u,v).

The contribution function K@(u,v) is then defined as

K@(u,v) =

Therefore Eq. 1 can be rewritten as

o!x(Xo,Yo) = G(@ K@2.

The summation in Eq. 6 is made for all x,,, values,
that is, â€”8, â€”7, . . . , +7, +8, for the model in
Fig. 1. Position sensitivity S@(x0,y0)is expressed as

Ct \ 1-' V @â€˜@@x@Xo,yoj_ ;@â€”â€” â€” %_J K@x
Qo u

Position sensitivity, expressed as a function of the
coordinates of scintillation points, is equivalent to
coordinate linearity. Accordingly, the statistical re
solving distanceâ€”in terms of standard deviation,
normalized by the position sensitivityâ€”is expressed
as

â€” o.x _ (@ KX2NX)â€•2
R5(x0,y0) _ @;â€”

It follows that both coordinate linearity and statistical
resolving distance are determined by the combination
of the line signal and contribution functions. The
ideal contribution function, K11(u,v), for the line

signal function, Z@(u,v), is defined so that R@is mini
mized and S@is constant for any (x0,y0). It is cx
pressed (11) as

c@

K@1(u,v)=@ (@\2' (9)

@ \@u)

where c is a positive constant. The theoretical mini
mum resolving distance R@1obtained by K@1is cx
pressed ( I 1 ) as

(2) (@)2

R@1(x0,y0)=@ @u )_1/2 (10)
(3)

Note that the theoretical minimum resolving distance
is, in general, a function of the scintillation point's
coordinates.

Calculation of the y-direction position signal pro
ceeds in the same manner as for the x direction.
That is, the line-signal function for the y direction,
Z@(u,v), and the contribution function, K@(u,v), are
defined for the parameters, u, v, in Eqs. 11 and 12:

â€” I xo@ for even Ym, 1 1)

U â€”@@ _ @0,for odd y@,

v=y,,,â€”y0. (12)
(4)

The mean PM outputs are computed for a given
light-guide thickness by the method developed by
Masket et al. (22), on the assumption that the mean

(5) PM outputs are proportional to the corresponding
solid angles. The range of the light-guide thickness,
d, under consideration is 0.2 < d 2.0. Line-signal

6 and ideal contribution functions for the x and y di
( ) rections are obtained for a given light-guide thick

ness, and typical results are shown in Figs. 2 and 3,
respectively.

The vibration in the ideal contribution functions
@iIFig. 3 is attributed to the denominator in Eq. 10,

(7) since the denominator, which is equal to l/R@12,
varies slowly. If the contribution function for the x
direction has the form

K@(u,v)=â€”@--@ (13)

the theoretical minimum spatial resolution may be
obtained, but the corresponding position sensitivity
(Sr) varies. This indicates a loss of coordinate un
earity. As light-guide thickness decreases, the vibra
tion amplitude in the denominator in Eq. 10 in
creases. Therefore, radical changes in the form of the
contribution function are required to adjust for a
slight change in the coordinates of scintillation points.

The theoretical minimum resolving distances,@
and R@1,given by Eq. 10 for various values of the

(8)
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u(1 +@cÃ§@o)
K1(u,v)= G@N1@ (15)

For a well-designed scintillation camera of the ma
trix type, K@is nearly proportional to u and nearly
independent of v, because@ N@ constant and
(Xc, X)/u@ 0 in the central portion of the image.

The position sensitivity and resolving distance are
derived from Eqs. 8, 9, and 15 as follows:

_@u.(iÂ±'@Â°;'@)@

{@u2 .(i + x@@-_-X)2. N@)â€•2

_@u(i+'@Â°;@ @.

The coordinate nonlinearity in the x direction is
taken as

max(S@)â€” min(S@)
@max(S1)+min(S@) 100(%), (18)

where max(S@) and min(S@) are the maximum and
minimum S@values for a given light-guide thick
ness. The same treatment is applied to the y-direc
tion position signal. The values of S@,S@,R@,and
R0 were calculated in the range of 0@ x@, 1 and

0@y@ V3forO.2@

U,

C

>â€˜

a

.0
0

â€˜C

) 2 4 6
A u defined by Eq.2 ( normalized by PM radius

U,

C

>@

0

.0
0

B v defined by Eq.I2 C normaLized by PM radius

FIG.3. Idealcontributionfunctionsford 1.0 infirstquad
rant for x (A) and y (B) directions. Waveforms are symmetric with
(0,0). Ideal contribution values are only weakly related to N@. Here,
N@= S and 7 for x and y directions, respectively.

U,

x
N

A u definedby Eq.2 ( normalizedby PM radius

U,

N

(16)

(17)

S1(x.@,,y0)=

R@(x0,y0)=

B v defined by Eq.l2 ( normalized by PM radius

FIG.2. Line-signalfunctionsford 1.0infirstquadrantfor
x (A) and y (B) directions. Broken lines show solid angle for one
PM as functionof distancebetween PM and scintillationpoint. Wave
formsare symmetricwith respectto longitudinalaxis. Valuesof
line-signal functions are only weakly related to number of PMs
with equal x or y coordinates (Np) in Fig. 1. Here, N@ is taken as
:@: 5 and 7 for x and y directions, respectively.

light-guide thickness, d, are plotted in Fig. 4. Note
that L1 is maximum at (0,0) and minimum at (1,0),
whereas R@1is also maximum at (0,0), but its mini
mum is near (0, \/3/2) . The difference between
R@1(0,0) and R@1(0,0 for a given d value is within
1% . These values are minimized when d is in the
0.6â€”0.7 region (Fig. 5).

Both the ideal contribution functions and the theo
retical minimum resolving distance are determined
only by the light-distribution characteristics. They
therefore represent determinant features of optical
systems.

Position computation by the matrix method. In a
signal-matrix circuit, which is the conventional posi

tion computer of Anger cameras, the position signal
x isgiven(9,10,12)by

V ( \ _@ Xm@ Zx@ Xm@ N@
@ _ @,7 â€” @â€˜XT

.â€˜@Â£@X@ 1@X

where the gains of all PMs are assumed equal. The
contribution function by a matrix circuit is derived
from Eqs. 3, 4, and 5 as
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l.0

d ( normalizedbyPMradius)

Dependence of the resolving distance on scintilla
tion position is similar to that of the theoretical mini
mum. The dependence of the resolving distance and
position sensitivity turns out to be the reverse. That
is, R@and R@are maximum and S,@,S,@minimum at
(0,0). R@will be minimum and S@maximum at (1,0);
R@is minimum and S,@maximum near (0, V 3/2).
The values, max(R@) , max(R@) , L1, and L@ are

20

C

>â€˜

@0

0

x

0

C

>â€˜

@0
0

a:

B Yo(normalized @1PM radius)

FIG.4. Theoreticalminimumresolvingdistanceforx direction
(A) where y. = 0, and y direction (B) where x, = 0.
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%;@ â€˜C
0
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FIG. 5. Resolvingdistanceand nonlinearityfor matrixmethod.

shown as a function of d in Fig. 5. The nonlinearity
inherent in this position computation increases rap
idly as light-guide thickness decreases, and is dis
cussed later.

Threshold-preamplifier method. If a set of non
linear preamplifiers is adopted for each x-coordinate
line signal before a signal-matrix circuit, Eqs. 19 and
20 hold true instead of Eqs. 14 and 15, respectively:

@@xm.g(zi) (19)

â€” @g(zj)

dg I x0â€”X\
K@(u,v)=clZ@@j@ -u@1+ u 1@ (20)

@g(zj)

where g(zj) is the output of a nonlinear preamplifier
for an input signal Zj. The contribution function for
this circuit is derived as

u(i+@@) for@>T
K@(u,v)= @(Z@â€”T)â€˜ =

(21)
0, for Z@< T,

where T is the threshold level for each x-coordinate
line signal.

A contribution function, in a pyramidal form pre
sented by Eq. 22, is assumed here as a simplified
model for the threshold-preamplifier method, be
cause a characteristic threshold-preamplifier curve
generally has a tail below the threshold level (23):

Volume 19, Number 7 829
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prove nonlinearity. First let us consider the correc
tion of the nonlinearity along the x axis (i.e., y0 = 0)
by adjustment of the one-dimensional contribution
function, K@(u). The nonlinearity over the xy plane
is evaluated later. The position sensitivity along the
x axis, S@(x.@,,0), can be expressed as

S1(x@,,0) = â€”@K@.@ (23)

Assume a function, h@(u), that is defined over Iu@
w and is symmetric about the origin. If h@(u) satis
fies the following equations:

â€”@(K1(u) +h1(u))

= Sxh constant, (24)

h@(0)= h@(w)= h@(â€”w)= 0, (25)

K1(u) +h@(u) @0,at0@u@w, (26)

where w is a constant, then a contribution function,
K@11(u),can be obtained that realizes perfect linearity
along the x-axis:

K@h(u) = K@(u) + h@(u). (27)

This function, K@1,(u), obtained under conditions
where w = 2, is investigated here. This is because it

+1

0â€”0 max(Rx)

.â€”, Lx

d â€¢20

8
â€”20

â€”t8 .6

â€”1.6 4

â€”1.4 .2

â€”1.2

â€”1.0 08
th 08

x

0
E

\@ 2

25

20

15

to

5

C

>,

0

.0
0

â€˜C

a:
â€˜C
0
E

U@@@ 0

0 2 4 6 8

p (normalizedbyPMradius)

FIG.6. Resolvingdistanceandnonlinearityforx directionby
pyramidal contribution functions, which are simplified models of
threshold-preamplifier method.

{u,forIu@ p,
2pâ€”u,forp@u2p, (22)

K@(u,v)= â€”2pâ€”u,forâ€”2p@u@â€”p,
0,forlul2p.

30

20

+1

@ â€˜C
-J

@0)

C

>@

0

.0

0

a:
â€˜C
0
E

FIG. 7. Resolvingdistanceand nonlinearityfor y directionby
pyramidal contribution functions, which are simplified models of
threshold-preamplifier method.

The p value where K@is maximum is related to T as
Z,@(p,v) â€”@T.

The resolving distance and nonlinearity were cal
culated, for various d and p values, from Eqs. 7, 8,
18, and 22. The results are shown in Figs. 6 and 7.
These figures suggest that spatial resolution may be
improved to approximately that of a small detector
employing only 19 PMs, by the reduction in the p
values from 8 to 4 for K@and from 4V3 to 2\/3 for
K@.Further reduction of p to 2â€”3and @/3 â€”2@ 3
regions for the x and y directions may improve the
resolving distances to values that are 5% over the
theoretical minimum. In these cases, however, some
linearity is lost.

Thus, the threshold-preamplifier method is adapta
ble to thick light guides, which achieve good linearity
and may be effective in improving the spatial resolu
tion of large-area detectors. This method, however,
cannot make the best use of thin light guides, because
it cannot correct the inherent nonlinearity.

One-dimensional contribution functions that im

p (normalizedbyPMradius)
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can be calculated as follows, and approximated by
the delay-line position compu@ati@ (12). The value
K,@(l) is determined first for a given d vaLue @id @n

initial condition of K2b(2) by

K@(1) =K@(1)

S@(1,O)â€”S@(0,0)

2@â€”i (1,0) â€”â€”i (1,'@,'3)
\@u

Then, for a given Kxh(U) for 1 < ii < 2, K,@,(u)
values for 0 < U < 1 arc d@ternÂ±@,d,onÃ¸the whole
K@h(u) can be obtained @sshown in Fig. 8. Note
that KXh(u) for@ ;@ 2 is a function of K1(u) for

@ > 2,aswellaslul@2,sinceS@(1,O)andS1(O,0)
in Eq. 28 are functions of Kx(U). Tht@details of the
computation arc shown in Appendix I.

A distinctive feature in this figure is that Lb(1)
decreases as d decreases. The value C@ is defined
here as

K2h(2)2K@h 1),

(29)

which represents the deviation of K1h(1 ) from the
contribution function Obtained by the matrix and
threshold-prearnpliflez methods. Examples of C@are
shown in Fig. 9. The va!ue appears sensitive to the
d value but rather insensitive to the p value that deter
mines the original waveform of KXh(u) for tul@ 2.

Since nonlinearity depends primarily on K1(1 )/
K@(2) for given values of d and K1(u) for ui@ 2,

0

â€˜C
0

20

d (normalizedby PMradius)

FIG. 9. Valus of C. and C7,obtained when Kxh(U) sin(iru/
2p) for 2@ u!@ 2p, and Kyh(v)= sin(@rv/2p)for 3@ @vl@ 2p.
Here, p is u or v value at which K@,(u)or K@h(v)is maximum.

a critical adjustment of K@(u) is required as the dif
ferential coefficient defined by Eq. 30 increases:

E1 = (@@(1)\ S@(0,0) = S@(1,0). (30)

The differential coefficient, E@, can be given (see
Appendix 2) as:

E1= @K@(i)@ KX(l)=K1h(1) -K1h(2)

â€” K@h(2)

â€” S@(1,0) @@.@(1,V3) â€” S1(0,0)@ (1,0)

(31)

Examples of E@are shown in Fig. 10, and will be
discussed later.

6 The contribution function for the y direction,

which attains perfect linearity along the y-axis at
first, seems obtainable by similar procedures only if
h@(v) is confined to the range of Iv! < 2 \/ 3. It is
difficult, however, to attain both perfect linearity and
good spatial resolution for the y direction. The dif
ficulty results because the PMs in a y-coordinate line
contact one another, and therefore N3(u,v) and

U)

C

>â€˜

2
.0
0

x

U (normalized by PM radius

FIG.8. Examplesof correctedone-dimensionalcontribution
functions for x direction. Waveforms are symmetric with (0,0).
Functions of K,, are obtained under the condition where K.(x)
sin(rx/5)for xl@ 5,becausethisconditionisapproximatelyreal
ized by delay-line position computation (12).

0 2 4
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Kyh(V3/2) =K7(V3/2)

S7(0,V3/2) â€”S,(O,0) (36)
+ @-@(0,V3/2) +@A1N3/2)

The values C@and E1 should be defined as follows
(see Appendix 3):

C K@h(V3â€” 2. Kyh(V3/2)
7â€” K@h(V3)

E â€” @L, -KYh(V3)
7â€” @K@(V3/2) K@(V3/2) =Kyh(V3/2)

â€” Kyh(V3 !@(0,V3/2 +@ (1,V3/2)

â€”4. S7(O,0)
(38)

Examples of C@and E@are shown in Figs. 9 and 10,
respectively. With a thick light guide, the value C@
is affected mainly by the v value at which K7h(v) is
maximum, rather than by the light-guide thickness.
Therefore, the request that S@(0,O) = S@(0,V3),
may be met by a suitable adjustment of the y value
mentioned above. This type of adjustment is rela
tively easy to realize by the delay-line position corn
putation (12â€”14).

On the other hand, since C,@is only slightly affected

(37)

Lu

x
Lu

d (normalized by PM radius)

FIG. 10. ValuesofE1andE,,obtainedundersameconditions
asin Fig.9.

@N@/@v(u,v)are almost independent of u (see Fig.
2B ) . As a result, S@(0,0) and S@(O,â€˜@/3 ) can be writ
ten as

S@(0,O)= â€”2. K@(V3)@ (1,V3) â€”A(32)

S7(0,V3) = â€”2. K@(V3) @:(O,V3) â€”B, (33)

where A and B values are nearly equal. In order to
attain S@(0,0) = S@(O,V3), one must maintain
K@(V 3) at approximately zero, which may cause a
considerable loss of spatial resolution. It should be
accepted, therefore, that the following inequality re
mains uncorrected when y0 is near zero:

S@(0,y0) < S@(0,V3 â€”Yo).

In this paper, correction of K@(v) to obtain im
proved linearity is instead considered in the range
of v@@ @/3,because it is possible to adjust most
S@(0,y0)values to within the range of

S@(0,O)< S@(0,y0)< S@(O,V3). (35)

It appears fairly effective in practice, because the
difference between S@(O,V3) and S@(0,0), by the
matrix method is, in most cases, considerably smaller
than that between S@(0,0) and S@(0,V3/2).

In this method, the value of K@11(V3/2) that
makes S@(0,0) = S@(0,V3/2) can be determined as
follows (see Appendix 3):

0â€”0 max(R@)

d.20 .â€”. Ll@@ x

.6

.4

.2

d=0.6

?:@ I @-I

20

15

I0

5

40

30

20

I0@

U)

C

>@
0

0

(34)

I 2 3 4 5

p ( normalized by PM radius)

FIG. 11. Resolvingdistanceandnonlinearityforxdirectionby
K,@,(u),obtained under same conditionsas in Fig. 9.
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rection increases as the light-guide thickness de
creases, it remains within Â±10% for d = 0.8.

DISCUSSION

For low-energy photons such as those emitted
from Tc-99m ( 140 keV), the d value is roughly
equivalent to the total optical thicknessâ€”the distance
between the photocathode plane and the scintillation
crystal surface where the photons enterâ€”although
the approximation cannot be applied to nonflat
light guides. Typical d values have been 1.3 or more
for the matrix or threshold-preamplifier methods
(10,24,25) . The limits of acceptable nonlinearity

20 should be assumed to be Â±4% , because Fig. S

suggests that this value is realized for d = 1.3 by
;@ meansofthematrixmethod.Whend= 1.3,max(R1)
t.! is 18.6 for the matrix method and 16. 1 for the

10 j- threshold-preamplifier method. The latter value can

be obtained by interpolation in Fig. 6, in which the
minimum value of max(R@) is determined under the

condition d = 1.3 and L@= Â±4%. Figure 12 sug
gests that d can be decreased to 1.0 by applying
a corrected one-dimensional contribution function,
when L@is Â±4%. According to Fig. 11, the mini
mum value of max(R@) is 13.8 when d = 1.0. The
improvement in max(R@) attained by the d value
decrease is 26% for the matrix method an@114% for
the threshold-preamplifier method.

CONCLUSION

The statistical spatial resolution and coordinate
linearity at the central portion of the image detector
are investigated theoretically in relation to both the
â€œcontributionfunctionâ€•and â€œline-signalfunction.â€•
The concept of these functions permits evaluation
of camera performance. Based on a simple light
distribution model for PM solid angles, results have
been discussed for the â€œideal,â€•matrix, and threshold
preamplifier methods. In addition, modification of
contribution functions, which reduce the coordinate
nonlinearity, are presented.

The present work is the first study of the contri
bution function. Further analysis of a practical delay
line position-computation circuit will be reported in
a separate paper. Some problems with regard to
practical light distribution and edge-distortion corn
pensation require investigation to clarify these areas
more completely.

APPENDIX

1. Method for obtaining a solution for h,(u). Since
h@(â€”u)= â€”h@(u),and â€”@N@/@x(â€”u,v)=

@u(u,v), Eq. 24 can be rewritten as

C Ct A\ 1.( \ â€˜Iâ€œibâ€” @@x@Xo,U)â€” â€œx@@oJ@

@@â€”0max(R@)

.â€”..

@20

E
.@
â€˜- 15 L2

2
I.0

>. 0

a: 06

0 10
E

@0.6

@0.8

:
0 J@ zJ@: 3@ 41@0

p ( normalizedby PM radius)

FIG. 12. Resolvingdistanceandnonlinearityfory direction
by K,b(v),obtained under same conditionsas in Fig. 9.

by the u value at which K@11(u)is maximum, a large
amount of K@(1) correction is required, in most
cases, as the light-guide thickness decreases. When
the light-guide is thin, the amount of correction re
quired for K@( @â€˜3/2) is always less in comparison
with K@(1), although C, is also determined mainly
by the light-guide thickness.

Critical adjustment of the contribution function
should be made according to decreases in either the
light-guide thickness or the values, u and v, that
maximize K@(u ) and K@(v), respectively (Fig. 9).

The nonlinearity and resolving distance attained
by K@h(u) and K@1,(v)were calculated over the xy
plane. The results are shown in Figs. 11 and 12. The
nonlinearity in the x direction appears to be markedly
reduced compared with the value attained by the
matrix method. The remaining nonlinearity results
from the fact that K@11(u)is one-dimensional.

The nonlinearity in the y direction may be reduced
to about half the value obtained by the matrix
method. On the basis of Eq. 34, the main part of
the remaining nonlinearity is inherent. From the com
parison of Figs. 7 and 12, and Figs. 6 and 1 1, the
nonlinearity is reduced and accompanied by no in
crease in max(R@), and only by a slight increase in
max(R1) . Although the resolution loss in the x di
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â€”h1(1 â€”@) -@(1 â€”@,V3)
@u (39)

â€”h1(1+x@) @(1+x@/3)

â€”h@(2â€”x.@,)--@â€”-(2â€”x@,,0).

Under the conditions in Eq. 25, the simultaneous
equations can be obtained by the substitutions of
x0 = 0 and x,, = 1 in Eq. 39. The values h@(1) and
SN11are obtained as the solutions of simultaneous
equations, that is,

h 1 â€” S@(1,0)â€”S@(0,0)

@() â€”2{@@(l,0) _@ (1,V3) } (40)

S@(l,0)@@N@(l,V3)@
xhâ€” @N@11@@

@uâ€œ@@ @u â€œ

(41)

Equation 28 is derived from Eqs. 27 and 40.
If h@(u) is given at 1@ u@< 2, hX(x()) and

h@(1 â€” x0) for a certain value of@ may be ob
tamed from the simultaneous equations, Eq. 39 and
one obtained by substitution of 1 â€”x@for X,) @flEq.
39. The procedure is applied repeatedly for each x@,
in the range of 0 < x0 < 0.5 to obtain the entire
h@@(u).

2. Derivation of Eq. 3!. On the assumptionthat
L@may be approximated to

L@â€”S@(1,0â€” S@(0,0)@ ioo (-@-%)
..â€”S@(1,0)+ S@(0,0) â€”

a combination of Eqs. 23 and 42 leads to

S@(0,y0)= â€”@K7(v)@ (u,v), (45)

and

â€¢@N@
Syb S@(0,y0)â€”h7(y0) â€”@-(0,y0)

(46)
â€”h@(1â€”y0). @@(11 Yo),

respectively. Equation 36 is derived from Eq. 46,
since Syk S@(0,0) and K@.,,(v) = K@(v) + h@(v).

On the assumption that L@may be approximated as

L â€”S@(0,V3/2â€” S@(0>0)@ ioo (Â±%), (47)
y â€”S@(0,V3/2) + S7(0,0)

we obtain the following from Eqs. 45 and 47:

@K@(V 3/2)

â€”S@(0,V3/2) -

â€” (@@1(0@V3/2)+@@Y(1,V3I2)}
â€” S7(0,V3/2)+S@(0,0)2

(48)

and

@K@(V3/2)@ K@(V3/2) =K@hN/3/2)

@@O,V3/2)+i@g@(1,V3/2)
â€”4.S@(0,0)

(49)

Equation 38 is derived from Eq.49.ACKNOWLEDGMENTS@L

@K@(1)

= 4(S@( 1 ,0) -@@ i , V 3 )
@uThe
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0)@ â€”. , . (1,0))@ @u .
(S@(l,0) +Sx(0,0))2

(43)A

part of the present work was originally presented at
the 37th Annual Meeting of the Japan Society of Applied
Physics in October 1976.
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