jnm/editorial

What is the Purpose of Emission Computed Tomography in Nuclear Medicine?

Is radionuclide emission computed tomography (ECT) a mathematical and physical concept, an instrument, a radionuclide tracer technique, a research or diagnostic procedure, a new or old concept? Is it a,b, etc., none of the above, or all of the above? To a greater extent it is or will be all of the above.

Computed tomography (CT) goes by many names composed of combinatons of words: section, tomography, transverse, transverse-axial, transaxial, computed, computerized, reconstruction, etc., but probably the most important terms are reconstruction and tomography. This can be appreciated from the fact that the fundamental approach of CT is exact (or near exact) three-dimensional reconstruction of a tomographic section from a series of one-dimensional projections of an object. Reconstruction can be accomplished in the transaxial or longitudinal direction or at any angle between these two extremes. The mathematical techniques (algorithms) and assumptions of reconstruction tomography are common to both x-ray and radionuclide CT and are reviewed elsewhere (1-3).

The important physical factors which must be taken into account in ECT are: (i) the requirement of uniform or near uniform detector resolution and response (efficiency) with depth; (ii) accurate correction for photon attenuation; (iii) removal or significant reduction of scatter radiation to assure detector response represents the linear sum of activity viewed and provides high contrast and sensitivity: (iv) accurate detector positioning and sampling (both linear and angular) to provide optimum reconstructed image quality; and (v) detection system with high efficiency to meet the demanding statistical requirements of CT. While these factors have been presented in the literature, the explicit and quantitative relationships among them and the manner in which they affect the quality of the ECT image have yet to be determined.

A number of ECT systems have been or are being constructed at this time (Table 1). These systems can be separated into two categories: (a) systems which employ single photon counting (SPC) such as scanners and cameras for ^{99m}Tc, ¹³¹I, ¹²³I, etc., and (b) systems which employ annihilation coincidence detection (ACD) of positron-emitting radionuclides. During the

past several years there have been many discussions, presentations, and published papers which have discussed advantages and disadvantages of each of these techniques. From all of this there are several points which appear to be more clear than others. Approximately an equal number of investigators and commercial companies have chosen to pursue each approach. To date, in human subjects, SPC systems have been used primarily for brain, whereas ACD has been used for whole-body studies. This primarily results from the fact that the methods for maintaining a relative constant resolution with depth (e.g., summing or geometric mean of opposing views) and approximation methods for attenuation correction with SPC have so far been demonstrated only in small, uniform, and symmetrical objects like the head (1, 4-6). Theoretical methods that may prove acceptable have been developed for the attenuation correction problem (1). The ACD provides a method in which attenuation is fundamentally a slow varying function, correctable by an exact or near exact technique even as object size and local variation in attenuation become large (7,8). Annihilation concidence detection also provides resolution and high contrast that is depth independent as the object size increases (7-10). The unique capability of ACD to collect data with the high geometric efficiency (7-11) of a fan beam (transaxial CT; data collection in x, θ) or a cone beam (direct three-dimensional tomography; data collection in x, y, θ , and ϕ , where ϕ is perpendicular to angle of rotation, θ) consistent with the assumptions of reconstruction tomography is also advantageous.

On the other hand, SPC has the advantage, as discussed by Kuhl et al. (4), Keyes et al. (5), Jaszczak et al. (6), and others, that it can be used with either existing or new radiopharmaceuticals labeled with 99m Tc and other commercially available radionuclides. This is contrasted to the disadvantage of ACD of requiring an on-site accelerator for studies employing 11 C, 13 N, and 15 O. As has been discussed earlier (12), this disadvantage may be offset to some degree by the availability of a commercial generator system of 68 Ge- 68 Ga, the generator system of 82 Sr- 82 Rb, and 18 F (commercially available). These positron-emitting radionuclides could be used to label a wide variety of presently uti-

Institution or company	Application		Detection† mode
Univ. of Penn. (MARK IV)	Head	Sq. array scanner	SPC
Univ. of Aberdeen	Body	Single head camera	SPC
Mark IV	Head	Sq. Array Scan	SPC
Univ. of Michigan	Body	Single head camera	SPC
Donner Lab., Univ. of Calif.	Body	Single head camera	SPC
Univ. of Aberdeen	Body	Sq. array scanner	SPC
Univ. of Aberdeen & J & P Engineering Co.	Body	Dual array scanner	SPC
Searle & Baylor Univ.	Head	Single head camera	SPC
UCLA & Ortec Inc. (ECAT)	Body	Hexagonal array	ACD
Washington Univ. (PETT III, IV)	Body	Hexagonal array scanner	ACD
Massachusetts Gen. Hosp. & Cyclotron Corp.	Body	Dual head multiple detector	ACD
UCLA (CRTAPC)	Body	Circ. array scanner	ACD
Brookhaven Natl. Lab.‡	Head	Circ. array scanner	ACD
Donner Lab., Univ of Calif.	Body	Circ. array scanner	ACD
Searle & Univ. of Chicago	Body	Dual head camera	ACD

lized radiopharmaceuticals and for development of new labeled compounds to be used with the imaging advantages of ACD.

Cost is certainly another factor which must be considered. Keyes et al. (5) state that one of the reasons for using a camera for ECT is the lower cost resulting from the use of conventional technology (5). But as if a complete systems are considered, there may be no cost differences between SPC or ACD tomographs, since the majority of cost factors are common to both systems. Cost does become a significant factor when one considers the desire to have an on-site capability for producing ¹¹C, ¹³N, ¹⁵O, etc. This matter must be resolved by clearly and definitively establishing the true bottom-line cost for a compact, self-shielded, reliable, simple-to-use cyclotron (or some other type of accelerator) consistent with the criteria and needs of a clinical environment (e.g., not a flexible research machine).

Keyes et al. (5) discuss the advantage of being able simultaneously to record multiple slices with the gamma camera. This is a cost design decision, however, as to whether the total system efficiency is oriented to maximize it in the two-dimensional projection (e.g., like the camera) or the transaxial plane (e.g., like most specifically designed transaxial tomographs). The latter has the potential advantage of being able to perform a single slice rapidly to minimize movement artifacts and the general advantage of maximizing the detector efficiency to the organ of interest (e.g., much of a camera field of view includes regions above and below the organ that may not be important and thus a portion of system efficiency is lost). Even though all ECT systems have the capability (or potential) to provide a conventional two-dimensional projection image also (e.g., two-dimensional scan), the camera systems typically provide a higher efficiency and a stationary full field view in this imaging mode.

At this point there still remain advantages and disadvantages to SPC and ACD tomography and more definitive data are needed to clarify the individual points of concern. If we assume that the physical factors, instrument design, and cost factors have been resolved, however, one must ask what is the objective of ECT. Is it to produce a better instrument, improve image contrast and spatial description of lesions, improve detection rates, etc.? The answer to this question may rest in the understanding of what ECT allows one to do that couldn't be done before. Probably the most important factor is the capability to section an organ tomographically into a map of quantitative tracer concentration with high resolution and accuracy. This, added to image improvement from the removal of the superimposition of information in two-dimensional imaging and improvement in image contrast, is a means to measure physiologic

function that has not existed in the past. Emission computed tomography can be thought of as a technique for performing "in vivo autoradiography." The physiologic ECT models for this technique can be derived from autoradiographic and other existing models that can be put into a form consistent with the criteria of ECT.

The question of whether ECT can perform dynamic studies has arisen frequently. In the conventional approach to dynamic studies such as blood flow with rapid time sampling, the answer is probably negative because of statistical limitations. It should be remembered that in tomography one is trying to detect accurately the activity in very small volumes (e.g., 1- or 2-cm cubes). In a conventional cerebral blood flow study with a scintillation camera, the image of the whole organ is severely limited statistically without imposing the added requirement of approximately an equivalent number of counts for each selected transaxial slice of the organ. If tomographic studies of dynamic processes are to be accomplished by rapid time sampling, the ECT must be able to (i) collect all necessary angular and linear samples in a time short compared to tracer clearance rate, (ii) collect the required number of counts per plane to form an acceptable image, and (iii) simultaneously record all planes required or subject patient to multiple isotope injections.

Thus it would appear that conventional dynamic studies and ECT are somewhat at odds. The term "dynamic studies" refers, however, to a broader category of function measurements accomplished by approaches which are consistent with ECT. This can be achieved by (a) rearranging the present dynamic models (differential equation rate models) to an accumulation (integral equations) model. Many of these models exist in the field of quantitative autoradiography and others can be developed by reformulation of existing dynamic models. For example the MARK IV tomograph has been successfully used to measure the crosssectional distribution of the cerebral glucose metabolic rate in milligram units of glucose utilized/min/ 100 gm with 18 F-2-deoxyglucose (13.14); (b) using labeled compounds which accumulate and are retained in tissue in proportion to blood flow, metabolism, etc., in which tissue concentration is static or slowly changing at time of measurement; (c) maintaining a static distribution with steady-state infusions; (d) using dynamic models when the rate of the process is slow compared to ECT measurement time; and (e) using multiple short time sampling of repetitive motion of the heart.

The advent and rapid growth of transmission CT has posed a significant challenge to nuclear medicine. The approach to CT can be divided into two categories: (1) morphologic tomography with transmis-

sion CT and (2) physiologic or function tomography with ECT. Useful application of the former is advanced well ahead of the latter and efforts should be put forth to develop the unique capabilities of ECT to provide quantitative information about blood flow and volume (vascular perfusion, vasodilation, vasoconstriction, vasoparalysis, autoregulation, etc.), metabolism (cell viability, metabolic shunts, aerobic/ anaerobic ratios, metabolic acidosis, etc.), substrate and ion transport, and a wide variety of other function indicators. The success of this approach is very much dependent on the availability of labeled compounds whose properties are consistent with the above objectives. This aspect lends support to the concept of developing an accelerator-based generator system for routine production of ¹¹C, ¹³N, and ¹⁵O because of the capability to synthesize chemically a wide variety of labeled natural substrates, analogs, drugs, etc., with biosynthetic (enzymatic and photosynthetic) and organic reactions. Thus, the chemical labeling capabilities and the types of labeled compounds produced will also play a determining role in the success of ECT and the selection of SPC or ACD.

Emission computed tomography is a mathematical and physical concept, an instrument, a radionuclide tracer technique, and a research procedure and it is certainly both an old (Kuhl began his work in the late 1950s) and a new concept. It also has great and unique potential as a diagnostic technique. The concept of "physiologic or function tomography" provides a technique to advance the original charter of nuclear medicine in the use of radionuclides for the measure of metabolism and physiologic function.

> MICHAEL E. PHELPS, Ph.D. Center for the Health Sciences University of California, Los Angeles Los Angeles, California

REFERENCES

1. BUDINGER T, GULLBERG GT: Three-dimensional reconstruction in nuclear medicine by iterative least squares and Fourier transform techniques. *IEEE Med Sci* NS-21: 2-20, 1974

2. PHELPS ME, HOFFMAN EJ, GADO M, et al.: Computerized transaxial transmission reconstruction tomography. In Non-Invasive Brain Imaging, Computed Tomography and Radionuclides. DeBlanc H, Sorenson J, eds. New York, Society of Nuclear Medicine, 1975, pp 111–146

3. BROOKS RA, DICHIRO G: Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. *Phys Med Biol* 21: 689-732, 1976

4. KUHL DE, EDWARDS RQ, RICCI AR, et al.: The MARK IV system for radionuclide computed tomography of the brain. *Radiology* 121: 405-413, 1976

5. KEYES JW, ORLANDEA N, HEETDERKS WJ, et al.: The Humongotron A scintillation-camera transaxial tomograph. J Nucl Med 18: 381-387, 1977

6. JASZCZAK RJ, MURPHY PH, HUARD D, et al.: Radionuclide emission computed tomography of the head with ^{99m}Tc and a scintillation camera. J Nucl Med 18: 373-380, 1977

7. PHELPS ME, HOFFMAN EJ, MULLANI NA, et al.: Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210-224, 1975

8. PHELPS ME, HOFFMAN EJ, MULLANI N, et al.: Considerations for a whole body positron emission transaxial tomograph (PETT III). IEEE Nucl Sci NS-23: 516-822, 1976

9. BROWNELL GL, BURNHAM CA, CHESLER DA, et al.: Transverse section imaging of radionuclide distributions in heart, lung, and brain. In Reconstruction Tomograpy in Diagnostic Radiology and Nuclear Medicine. Ter Pogossian MM, Phelps ME, Brownell G, et al., eds., University of Park Press, in press

10. HOFFMAN EJ, PHELPS ME, MULLANI N, et al.: Design and performance characteristics of a whole body transaxial tomograph. J Nucl Med 17: 493-503, 1976

11. BUDINGER TF, DERENZO SE, GULLBERG GT, et al.: Emission computed axial tomography. J Comput Assist Tomo 1:31-145, 1977

12. PHELPS ME, HOFFMAN EJ, COLEMAN RE, et al.: Tomographic images of blood pool and perfusion in brain and heart. J Nucl Med 17: 603-612, 1976

13. KUHL DE, HOFFMAN EJ, PHELPS ME, et al.: Design and application of the MARK IV scanning system for radionuclide computed tomography of the brain. IAEA SM-210/99, Vienna, in press

14. REIVICH M. KUHL DE, WOLF A, et al.: The quantitative measurement of local cerebral glucose consumption in man using ¹⁸F-fluro-dexoglucose. Circ Res: to be published

Accepted Articles To Appear in Upcoming Issues

Early Diagnosis of Myocardial Infarction in the Dog with ^{90m}Tc-Glucoheptonate. Accepted 11/30/76. Jerome G. Jacobstein, Daniel R. Alonso, Arthur J. Roberts, Paul R. Cipriano, John R. Combes, and Martin R. Post Unilateral Pyrogenic Ventriculitis (Letter to the Editor). Accepted

R. Cipriano, John R. Combes, and Martin R. Post
 Unilateral Pyrogenic Ventriculitis (Letter to the Editor). Accepted 11/30/76.
 H. Kyung Lee
 Radiographic Morphometry and Osteopenia in Spinal Osteoporosis.
 Accepted 12/1/76.
 John F. Aloia, Ashok Vaswani, Harold Atkins, Italo Zanzi, Kenneth Ellis, and Stanton H. Cohn
 Localization of ^{90m}Tc-Sn-Pyrophosphate in Left Ventricular Aneurysms. Accepted 12/1/76.
 Richard J. Kelly, Robert J. Cowan, C. Douglas Maynard, Robert N. Headley, and Frederic R. Kahl
 Gallium-67 Scanning at 6 Hr in Active Inflammatory Bowel Disease (Case Report). Accepted 12/6/76.
 Lawrence R. Kaplan, Robert J. Griep, Michael D. Schuffler, and Rebecca A. Silliman
 Pathologic Changes in the Lungs of Mice Following Injection of Human Albumin Microspheres. Accepted 12/17/76.
 J. Szymendera, Olga Mioduszewska, Iwona Licinska, Alina Czarnomska, and Barbara Lucka
 Inexpensive Scintillation Camera Study Device. Accepted 12/8/76. Henri M. de Brandt, Willem P. Baard. and Philip D. van Heerden Assessment of a Multi-Format Imager with a Gamma Camera (Letter to the Editor). Accepted 12/8/76.
 F. C. G. Southon, R. F. Palser
 Diagnosis of Osteoporosis: Usefulness of Photon Absorptiometry at the Radius. Accepted 12/8/76. Robert S. Haurence Riggs, and John W. Beabout Differentiation of Reversible Ischemia from End-Stage Renal Failure in Nephrotic Children with ¹³¹I-Hippurate Dynamic Scintigraphy. Accepted 12/8/76.
 Robert S. Hattner, Howard E. Maltz, and Malcolm A. Holliday Myocardial Anatomy with ²⁰¹II (Letter to the Editor). Accepted 12/13/76.

Myocardial Anatomy with 2-11 (Letter to the Editor). Accepted 12/13/76.
Martin Guter, Noel R. Zusmer, and Aldo N. Serafini Reply. Accepted 12/13/76.
Robert W. Parkey.
Scintiangiographic Visualization of an Occipitoparietal, Extradural Hematoma. Accepted 12/15/76.
John F. Rockett
Hand Images: Normal and Abnormal. Accepted 11/26/76.
Wilfrido M. Sy, Robert Bay, and Anthony Camera
"Hot Spots" in Lung Scans (Letter to the Editor). Accepted 11/30/76.
Emanuel Goldberg and Carl Lieberman
Reply. Accepted 11/30/76.
L. A. Perez and L. G. Lutzker
Radiographic Morphometry and Osteopenia in Spinal Osteoporosis.
Accepted 12/1/76.
John F. Aloia, Ashok Vaswani, Harold Atkins, Italo Zanzi, Kenneth Ellis, and Stanton H. Cohn

 Accepted 12/1/76. John F. Aloia. Ashok Vaswani, Harold Atkins, Italo Zanzi, Kenneth Ellis, and Stanton H. Cohn
 Gallium-67 Scanning at 6 Hr in Active Inflammatory Bowel Disease (Case Report). Accepted 12/6/76.
 Lawrence R. Kaplan, Robert J. Griep, Michael D. Schuffler, and Rebecca A. Silliman.
 Radionuclide Lymphangiography in the Evaluation of Pediatric Patients with Lower-Extremity Edema (Concise Communication). Accepted 12/8/76 cepted 12/8/76. Frank Vieras and Charles M. Boyd Differentiation of Reversible Ischemia from End-Stage Renal Failure

pear in Upcoming Issues
 in Nephrotic Children with ¹⁸¹I-Hippurate Dynamic Scintigraphy. Accepted 12/8/76.
 Robert S. Hattner, Howard E. Maltz, and Malcolm A. Holliday
 Whole-Body Retention of Radioxenon. Accepted 12/8/76.
 Herbert Susskind, Harold L. Atkins, Stanton H. Cohn, Kenneth J. Ellis, and Powell Richards
 Utility of Bone Scanning in Disseminated Coccidioidomycosis. Accepted 12/9/76.
 Thomas G. Armbuster, Thomas G. Goergen, Donald Resnick, and Antonio Catanzaro
 Radioactive Labeling of Protein Carboxyl Groups on Factor VIII: Use of Carbodinides for Nuclear Medicine. Accepted 12/13/76.
 Sally J. DeNardo, Edward J. Hershgold, Gerald L. DeNardo, Kenneth A. Krohn, and David R. Godin
 An Evaluation of ⁹⁹⁰TC-Labeled Hepatobiliary Agents. Accepted 12/13/76.
 Brian W. Wistow, Gopal Subramanian, Ronald L. Van Heertum, Robert W. Henderson, George M. Gagne, Robert C. Hall, and John G. McAfee
 Studies on the Labeling of Streptokinase with ^{90m}Tc for Use as a Radiopharmaceutical in the Detection of Deep-Vein Thrombosis (Concise Communication). Accepted 12/15/76.
 M. J. Duffy and G. J. Duffy
 Gonadal Radiation Dose and Its Genetic Significance in Radiation Therapy of Hyperthyroidism (Letter to the Editor). Accepted 12/15/76.
 James S. Robertson and Colum Gorman
 Direct Recording of Rectilinear Scan Images on 5 × 7-In. Film (Letter to the Editor). Accepted 12/15/76.
 Mobert Willvonseder and Rudolf Hofer
 Reply. Accepted 12/20/76.
 Thomas A. Verdon, Jr.
 Purity of the Adrenal-Scanning Agents, 19-Jodocholesterol and 6-Jodomethylinorcholesterol (Letter to the Editor). Accepted 12/28/76.
 Kahferine N. Scott, Margaret W. Couch, Thomas H. Mareci, and Clyde M. Williams

Reply. Accepted 12/28/76. Masaharu Kojima and Minoru Maeda

Masanaru Kojima and Minoru Maeda Quenching Curves: Solutions by 2nd Order Polynomial Regression (Letter to the Editor). Accepted 1/4/77. Claude Paquet Reply. Accepted 1/4/77. George H. Barrows Gallium Bone Scan in Myelofibrosis (Case Report). Accepted 1/5/77. C. L. Blei, M. L. Born, and F. D. Rollo Chromatography of ^{sym}Tc-Labeled Radiopharmaceuticals (Letter to the Editor). Accepted 1/19/77. Lobn Kunerus and Kenneth P. Lyong

 Ine Editor). Accepted 1/19/77.
 John Kuperus and Kenneth P. Lyons
 Reply. Accepted 1/19/77.
 Lelio G. Colombetti, Stephen Moerlien, Ghanshyam C. Patel, and Steven M. Pinsky
 Increased Salivary Gland Uptake of "Ga-Citrate Demonstrated 36
 Months After Radiation Therapy (Letter to the Editor). Accepted 1/19/77. Judith G. Rose Reply. Accepted 1/19/77. Carlos Bekerman and Paul B. Hoffer