Biochemistry of Metalocenes. I. Distribution of 59Fe or 103Ru-Labeled Metalocene Carboxylic Acid in Mice

Martin Wenzel, Ewald Nipper, and Wolfram Klose

Pharmazeutisches Institut der Freien Universität Berlin

Metalocene carboxylic acids labeled with 59Fe or 103Ru were administered to mice and the organ distributions and amounts of label excreted were determined. Both metalocenes were excreted approximately 90 times faster than the respective inorganic chlorides 59FeCl$_3$, or 103RuCl$_3$. The metalocenes showed an extremely high kidney-to-muscle ratio (up to 1,000). 99mTc-labeled renal agents, tested for comparison, showed lower ratios. Retention of radioactivity in blood and the presence of free iron in urine indicate that the ferrocene derivative is degraded in vivo, but the ruthenocene analog is not.

For the development of radiopharmaceuticals it is desirable to select independently the physical characteristics of the radionuclide (e.g., energy and half-life) and the chemical nature of the compound. Since most useful gamma-emitting nuclides are metals, it is difficult to synthesize radiopharmaceuticals with controllable chemical properties. This problem can be overcome by the use of chelating agents, although only to a very limited extent. A more favorable combination of both factors can be achieved with radioactive metalocenes, since in this class of compounds a metal atom is strongly linked to two cyclopentadienyl rings (I). The aromatic character of metalocenes (I) makes possible a considerable number of derivatives.

Another advantage is the simple one-step procedure for labeling metalocene derivatives with radioactive metals (I). The emitters used in this study, 59Fe and 103Ru, were selected because they are gamma-emitters with main energies of 1.1 MeV and 0.498 MeV, respectively. Although these gamma energies are not ideal for clinical applications, 103Ru at least does offer possibilities for preliminary clinical trials. Moreover, the beta emission of 103Ru (0.21 MeV) is suitable for whole-body autoradiography.

Metalocene carboxylic acids labeled with 59Fe or 103Ru were administered to mice to determine the in vivo stability of the compounds, their excretion pattern, and the organ distribution. For comparison, inorganic 59FeCl$_3$ and 103RuCl$_3$ were also administered.

Materials and Methods

Radioactive Materials. We obtained 99mTc-Sn-glucoheptonate,* 99mTc-Fe-ascorbate,† 99mTc-ascorbate-DTPA,‡ 67Ga citrate,‡ 59FeCl$_3$ (1.5 Ci/mmole),¶ and 103RuCl$_3$ (0.5 Ci/mmole)¶ commercially.

Synthesis of radioactive metalocenes. The desired carboxylic acids were prepared by heating the radioactive metal chloride (103RuCl$_3$ or 59FeCl$_3$) with either ferrocene carboxylic acid or the methylester. The former necessitated additional hydrolysis to the carboxylic acid. Approximately 20 mg of the methylester of the ferrocene carboxylic acid was heated at 180°C for 2 hr in an evacuated vial containing 2 mg (50–500 μCi) of 103RuCl$_3$. The contents of the vial were dissolved in acetone, and inorganic halides were separated from the radioactive and inactive metalocene by absorption on a column (12×1 cm) of basic aluminum oxide. Further separation of the products was achieved by thin-layer chromatography on Kieselgel-Fertigplatten using 8:1 benzene–ethanol. Both metalocene carboxylic acids have a R_f of 0.33 in this system. Final yields varied between 10% and 50% of the added radioactivity.

The specific activities obtained were 0.5 μCi/μmole for 59Fe-ferrocene carboxylic acid and 22

Received Oct. 7, 1975, revision accepted Nov. 5, 1976.
For reprints contact: M. Wenzel, Freie Universität, #D 1
Berlin–Dahlem, Königin-Luise-Str. 2–4, Germany.
μCi/μmole for 103Ru-ruthenocene carboxylic acid. Since the final products of ruthenocene and ferrocene carboxylic acids could not be separated, a mixture of both compounds with a 1:12 molar ratio (Ru:Fe) was obtained.

The radioactivity on the chromatograms was measured directly by the DünnSchicht scanerit with an efficiency (3) of 45% for the beta and Auger-electron emissions.

Animals. All animals were adult CF-1 mice weighing 23–28 gm. To test the tumor affinity of the injected compounds, each mouse carried a solid Ehrlich carcinoma (diameter, ~10 mm) on the left hind leg. For in vitro experiments, Ehrlich ascites tumors (Stamm Dahlem) were used 8 days after intraperitoneal inoculation.

Administration of radioactive substances. All 99mTc-labeled compounds were produced from 99Mo generators according to the specifications of the supplier. Gallium-67 citrate was dissolved in 0.9% saline solution. For the comparisons, 99mTc-labeled compounds and 67Ga citrate were administered intraperitoneally.

The radioactive metalocenes were dissolved in 1,2-propylene glycol and 50 μl of the solution was injected intraperitoneally. Comparative experiments have shown that, 6 hr or longer after intravenous or intraperitoneal injection, no differences in the pattern of organ distribution could be detected. The dose of metalocene carboxylic acids administered was 3–12 μmole/kg. Separate experiments showed that mice can tolerate a dose of up to 50 μmole/kg of ferrocene carboxylic acid. There is no obvious reason to expect that the ruthenocene derivative would have a different toxicity.

Organ distribution. Immediately after injection of a radioactive solution, whole-body radioactivity was measured by placing the mouse in a plastic container which was then inserted into the well of a NaI scintillation counter. Excretion percentages were calculated from the decrease in radioactivity measured for each animal. All animals were killed with chloroform. Muscle samples were taken from the hind leg. Excised organs were blotted dry of blood, weighed, and assayed in an automatic gamma counter with an efficiency of 11% for 59Fe and 27% for 103Ru. All measurements were corrected for radioactive decay. For the isolation of Ru ion and of possible metabolites from urine, freshly collected urine samples (50 μl) were chromatographed on Kieselgel-Fertigplatten using n-butanol–glacial acetic acid–water solution (4:1:1).

RESULTS

Clearance of metalocene carboxylic acids. Administered metalocene carboxylic acid is eliminated faster than trifluorides of either ruthenium or iron (Fig. 1). The biologic half-time in animals was found to be 195 hr for 108RuCl3 and 2 hr for 103Ru-ruthenocene carboxylic acid (time interval, 0–10 hr).

After injection of 59Fe-ferrocene carboxylic acid, radioactivity was excreted only during the first 24 hr, after which no further excretion occurs. In contrast, after injection of the 103Ru-labeled compound, label was excreted throughout the experimental period (72 hr), mostly in the urine.

Thin-layer chromatography of the urine from animals receiving 103Ru-ruthenocene carboxylic acid showed that most radioactivity co-chromatographed with ruthenocene carboxylic acid. No inorganic ru-
Table 1. Distribution of 103Ru in Mice 24 hr After Intraperitoneal Administration of Labeled Ruthenocene Carboxylic Acid and RuCl$_3$.

<table>
<thead>
<tr>
<th>Group</th>
<th>Muscle</th>
<th>Blood</th>
<th>Heart</th>
<th>Lung</th>
<th>Kidney</th>
<th>Adrenal</th>
<th>Spleen</th>
<th>Kidney-to-muscle ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (n = 7)</td>
<td>0.015</td>
<td>0.042</td>
<td>0.029</td>
<td>0.06</td>
<td>6.92</td>
<td>16.4</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>±0.005</td>
<td>±0.02</td>
<td>±0.02</td>
<td>±0.01</td>
<td>±1.6</td>
<td>±2.6</td>
<td>±0.35</td>
<td>±0.07</td>
</tr>
<tr>
<td>Female (n = 7)</td>
<td>0.0071</td>
<td>0.013</td>
<td>0.018</td>
<td>0.03</td>
<td>1.17</td>
<td>3.2</td>
<td>0.18</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>±0.003</td>
<td>±0.005</td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.38</td>
<td>±1.1</td>
<td>±0.03</td>
<td>±0.02</td>
</tr>
<tr>
<td>RuCl$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (n = 7)</td>
<td>1.58</td>
<td>6.32</td>
<td>2.4</td>
<td>3.8</td>
<td>6.6</td>
<td>9.9</td>
<td>5.7</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>±0.2</td>
<td>±0.6</td>
<td>±0.2</td>
<td>±0.3</td>
<td>±0.8</td>
<td>±1.4</td>
<td>±0.6</td>
<td>±1.1</td>
</tr>
</tbody>
</table>

Each mouse received 50 μl of a propylene glycol solution of a 1:12 molar mixture of 103Ru-ruthenocene and 59Fe-ferrocene derivatives.

Doses: 12 μmole metalocene carboxylic acid/kg (19 μCi 59Fe/kg); RuCl$_3$: 4 μmole/kg (4 μCi 103Ru/kg).

* Each value is mean for 7 mice ± s.d.

Thenium ion could be detected, whereas ionic iron was detected with 59Fe-ferrocene carboxylic acid.

Organ distribution. The distribution of radioactivity in mice 24 hr after injection of 103Ru-ruthenocene carboxylic acid and 103RuCl$_3$ is summarized in Table 1, in which the concentrations are expressed in percent of the injected dose per gram of organ. After administration of 103RuCl$_3$, the concentration of radioactivity in the organs tested was rather high and showed no great differences.

With the ruthenocene derivative, however, the radioactive content of all organs tested except liver and kidney was low (Table 1). The highest 103Ru concentration was found in the kidney, especially in male mice. This result was confirmed by autoradiography (Fig. 2). High uptake in the kidney was also found after injection of 59Fe-ferrocene carboxylic acid (Table 2). But at 24 or 72 hr after administration, spleen and blood showed an increase in the 59Fe concentration, which may be due to in vivo degradation of ferrocene-liberating iron.

We compared the renal uptakes of the labeled metalocene carboxylic acids with those of radiopharmaceuticals currently used for renal scanning. Since the literature data (4–7) involved different methods and animal types, a direct comparison of them with our values for metalocene carboxylic acid is not reliable. Accordingly, 99mTc-Sn-heptogluconate and 99mTc-Fe-ascorbate were administered to CF-1 mice under the same conditions as for the labeled metalocenes.

Results from these experiments showed that the percent administered dose per gram of kidney reached the same order of magnitude with 99mTc-Fe-ascorbate as with the metalocene carboxylic acid. The 99mTc-Sn-heptogluconate, however, showed considerably higher kidney concentrations (Table 3). When the results were expressed as kidney-to-muscle concentration ratios, the labeled metalocenes had higher values than either of the 99mTc-labeled renal agents.

In vivo stability. Figure 3 shows the 59Fe/103Ru radioactivity concentration ratio in different tissues after administration of equimolar amounts of the corresponding metalocene derivatives. The high ratio for the spleen after 24 hr and especially the high ratio for blood (370) after 24 and 70 hr suggest that the ferrocene carboxylic acid is partly degraded to ionic iron. Consistent with this interpretation, the rate of excretion of 59Fe (beginning 8 hr after injecting 59Fe-metalocene) shows the same slope as that found after administration of 59FeCl$_3$ (Fig. 1). This view is further confirmed by the rise in the 59Fe concentration in the blood after 24 hr, which is then 20–30 times the concentration in muscle (Table 3). These findings (e.g., high spleen and blood concentration) are similar to the organ distribution data.
TABLE 2. ORGAN DISTRIBUTION OF \(^{59}\text{Fe}\) IN MICE AFTER INTRAPERITONEAL ADMINISTRATION OF \(^{59}\text{Fe}\)-FERROCENE CARBOXYLIC ACID

<table>
<thead>
<tr>
<th>Hours after administration</th>
<th>Muscle</th>
<th>Blood</th>
<th>Heart</th>
<th>Lung</th>
<th>Liver</th>
<th>Kidney</th>
<th>Adrenal</th>
<th>Spleen</th>
<th>Bone</th>
<th>Kidney-to-muscle ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.076</td>
<td>0.37</td>
<td>0.16</td>
<td>0.33</td>
<td>8.36</td>
<td>12.2</td>
<td>0.62</td>
<td>0.33</td>
<td>0.24</td>
<td>160</td>
</tr>
<tr>
<td>24</td>
<td>0.044</td>
<td>0.88</td>
<td>0.25</td>
<td>0.42</td>
<td>11.6</td>
<td>12.2</td>
<td>0.41</td>
<td>2.19</td>
<td>0.42</td>
<td>277</td>
</tr>
<tr>
<td>72</td>
<td>0.056</td>
<td>1.83</td>
<td>0.40</td>
<td>0.55</td>
<td>10.5</td>
<td>6.0</td>
<td>0.60</td>
<td>1.07</td>
<td>0.31</td>
<td>107</td>
</tr>
</tbody>
</table>

Dose: 28 \(\mu\)moles of ferrocene carboxylic acid/kg (19 \(\mu\)Ci \(^{59}\text{Fe}\)/kg). Each value is mean for 7 female mice.

TABLE 3. ORGAN DISTRIBUTION OF \(^{99m}\text{Tc}\)-LABELED RADIOPHARMACEUTICALS FOR RENAL SCANNING IN MICE

<table>
<thead>
<tr>
<th>Substance</th>
<th>Hours after injection</th>
<th>Muscle</th>
<th>Blood</th>
<th>Heart</th>
<th>Lung</th>
<th>Liver</th>
<th>Kidney</th>
<th>Spleen</th>
<th>Kidney-to-muscle ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{99m}\text{Tc})-Sn-Glucoheptonate</td>
<td>2</td>
<td>0.62</td>
<td>3.7</td>
<td>2.4</td>
<td>6.6</td>
<td>57</td>
<td>1.8</td>
<td>92</td>
<td>27</td>
</tr>
<tr>
<td>(n = 7)</td>
<td>24</td>
<td>0.096</td>
<td>0.35</td>
<td>0.27</td>
<td>0.33</td>
<td>2.5</td>
<td>0.21</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>(^{99m}\text{Tc})-Fe-ascorbate-DTPA</td>
<td>2</td>
<td>0.11</td>
<td>0.33</td>
<td>0.28</td>
<td>0.76</td>
<td>6.9</td>
<td>0.33</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>(n = 7)</td>
<td>24</td>
<td>0.024</td>
<td>0.065</td>
<td>0.074</td>
<td>0.26</td>
<td>1.0</td>
<td>0.14</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>(^{99m}\text{Tc})-Fe-ascorbate</td>
<td>2</td>
<td>0.19</td>
<td>0.38</td>
<td>0.30</td>
<td>1.9</td>
<td>7.8</td>
<td>1.05</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>(n = 7)</td>
<td>24</td>
<td>0.04</td>
<td>0.076</td>
<td>0.43</td>
<td>0.43</td>
<td>1.3</td>
<td>0.54</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

The \(^{99m}\text{Tc}\)-labeled compounds, dissolved in 0.96 NaCl, were injected intraperitoneally into female mice (0.4 mCi/kg). All values are corrected for \(^{99m}\text{Tc}\) decay.

obtained after administration of \(^{59}\text{Fe}\)Cl\(_3\) (9,10). All these observations support the view that a slow metabolic degradation of a ferrocene derivative to ionic iron occurs, as described for another ferrocene compound by Edwards et al. (8).

For \(^{103}\text{Ru}\)-labeled ruthenocene carboxylic acid no such indications were found. The organ distribution of \(^{103}\text{Ru}\) after administration of the ruthenocene derivative is completely different from those found after administration of the \(^{103}\text{Ru}\) and \(^{59}\text{Fe}\) as metal chlorides. With \(^{103}\text{Ru}\)Cl\(_3\) a nearly equal distribution of \(^{103}\text{Ru}\) was found in all organs tested (Table 1),

![Image of a graph showing the ratio of \(^{59}\text{Fe}\) to \(^{103}\text{Ru}\) tissue concentrations after intraperitoneal administration of \(12 \mu\)moles/kg \((40 \mu\)Ci/kg\) of metalocene carboxylic acids to mice. Each column represents values from 7 female CF-1 mice for \(^{59}\text{Fe}\) and 7 mice for \(^{103}\text{Ru}\). Animals were killed after 2, 24, and 72 hr, and specific activity (cpm/gm) in organs determined. (Solid bars) 2 hr; (hatched bars) 24 hr; (clear bars) 72 hr.

FIG. 3. Ratio of \(^{59}\text{Fe}\) to \(^{103}\text{Ru}\) tissue concentrations after intraperitoneal administration of \(12 \mu\)moles/kg \((40 \mu\)Ci/kg\) of metalocene carboxylic acids to mice. Each column represents values from 7 female CF-1 mice for \(^{59}\text{Fe}\) and 7 mice for \(^{103}\text{Ru}\). Animals were killed after 2, 24, and 72 hr, and specific activity (cpm/gm) in organs determined. (Solid bars) 2 hr; (hatched bars) 24 hr; (clear bars) 72 hr.
which is in good agreement to the results of Seidel (11) and Furchner et al. (12). The stability of the radioactive ruthenocene moiety in the body therefore appears established.

Affinity for tumor tissue. The tumor affinity of the radioactive metalocenes in mice carrying solid Ehrlich carcinomas was also explored. Since the concentrations of 59Fe or 103Ru in the tumor tissue were only 2–4 times that in muscle, no further data are presented. The possibility of increasing the tumor uptake of radioactive acids (13,14) was tried in vitro. The pH value of metalocene carboxylic acid was about 6.8 (15). In tumors, the application of large amounts of glucose provides a corresponding lowering of pH due to the high aerobic glycolysis associated with tumor cells (14). This phenomenon should depress the ionization of the metalocene carboxylic acid, thus facilitating the penetration of the uncharged molecule through the cell wall. Consequently, we compared metalocene carboxylic acids with 68Ga citrate regarding their uptake by Ehrlich ascites tumor cells in vitro at different extracellular pH values. In agreement with earlier calculations (13,14), an increasing penetration of the radioactive acids into the tumor cells was found at the lower pH values (Table 4). Although the differences are statistically significant, they are too small to have practical application.

DISCUSSION

The compounds 59Fe-ferrocene carboxylic acid and 103Ru-ruthenocene carboxylic acid are examples of the combination of gamma-emitting nuclides with an organic molecule capable of considerable variation. Unlike the radioiodinated pharmaceuticals, in which the radioactive nuclide is often labile (16), the central metal atoms of metalocenes are strongly attached to the molecule, leading to exceptional chemical stability of the aromatic system (2).

In vivo experiments with the metalocenes, however, showed that when 59Fe was the central atom, partial degradation of the molecule occurred, with the liberation of ionic 59Fe. With 103Ru as the central atom, the aromatic ring system was resistant to in vivo degradation. Although some metabolism of the ruthenocene carboxylic acid occurred, and metabolites with the ruthenocene moiety were excreted, no inorganic 103Ru was detected in the urine of animals treated with 103Ru-ruthenocene carboxylic acid. The ruthenocene derivatives appear more suitable for use as radiopharmaceuticals because of their greater in vivo stability.

With either 103Ru or 59Fe, the distribution in mice of the labeled metalocene carboxylic acid is very different from that of the metal halide. The kidney-to-muscle concentration ratio, especially with the ruthenocene carboxylic acid (Table 1), is high enough to warrant comparison with radiopharmaceuticals commonly used for renal scanning: 181I-Hippuric acid (16), 187Hg-neohydrin (4,5), and 99mTc-Fe-ascorbate (6,17).

Mice tolerated 50 µmole/kg doses of the ferrocene carboxylic acid, and our results were obtained with 10–25% of that dose. Further dose reduction may be achieved by using metalocene derivatives of higher specific activities.

The results described here and earlier experiments (18) show the potential of the metalocenes as radiopharmaceuticals. The existence of a simple labeling procedure (1), which converts a ferrocene derivative into the corresponding ruthenocene derivative, suggests that short-lived emitters could be used. For medical applications (studying renal functions) the ruthenocene derivative could thus be labeled with 97Ru instead of 103Ru. Ruthenium-97 is a gamma-emitter with its main peak at 215 keV and a half-life of 2.9 days.

ACKNOWLEDGMENTS

This work was supported by the Ministerium für Forschung und Technologie. We wish to thank Barbara Brüggener for technical assistance and Dr. Schulze, Schering AG, Berlin, for his help with autoradiography.

FOOTNOTES

* Squibb Radiopharmacia/von Heyden, Munich, Germany.
† New England Nuclear Corp., Dreieichenhain, Germany.
‡ Karl Thomae GmbH, Biberach, Germany.
¶ Isotopen-Dienst West, Sprendlingen, Germany.
§ Labor Prof. Berthold, Wildbad, Germany.

TABLE 4. INFLUENCE OF pH ON THE PENETRATION OF LABELED ORGANIC ACIDS INTO TUMOR CELLS

<table>
<thead>
<tr>
<th>Substance</th>
<th>cpm/mg cells pH 6.3 (average ± s.d.)</th>
<th>cpm/mg cells pH 7.2 (average ± s.d.)</th>
<th>cpm/mg cells pH 7.6 (average ± s.d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59Fe-Fe-COOH (n = 6)</td>
<td>1.46 ± 0.2</td>
<td>1.24 ± 0.2</td>
<td>1.14 ± 0.2</td>
</tr>
<tr>
<td>103Ru-Rc-COOH (n = 10)</td>
<td>1.77 ± 0.1</td>
<td>1.58 ± 0.1</td>
<td>1.23 ± 0.05</td>
</tr>
<tr>
<td>68Ga citrate (n = 6)</td>
<td>2.93 ± 0.1</td>
<td>1.05 ± 0.2</td>
<td>1.01 ± 0.2</td>
</tr>
</tbody>
</table>

Four milliliters of Krebs-Ringer phosphate buffer (with indicated pH), containing 7% of Ehrlich ascites tumor cells, was incubated at 37°C with 0.2 µmole/liter of metalocene carboxylic acid labeled with 59Fe or 103Ru. After 20 min cells and medium were separated by centrifugation.

Experiment was duplicated with carrier-free 68Ga citrate.
REFERENCES

1. LANGHEIM D, WENZEL M, NIPPER E: Herstellung radioaktiver Metallkomplexe mit \(^{55}\)Fe, \(^{198}\)Ru und \(^{125}\)Os als Zentralisomat. Chem Ber 108: 146–154, 1975

10. NAGARAJAN B, SIVARAMAKRISHAN VM, BRAHMANANDAM S: Distribution of \(^{55}\)Fe in albino rats after intravenous administration in the ionic or chelated form. Biochem J 92: 531–537, 1964

ANNUAL SPRING SYMPOSIUM
SIERRA VALLEY NUCLEAR MEDICINE ASSOCIATION

April 30, 1977

Sahara Tahoe Hotel
Lake Tahoe, Nevada

The Sierra Valley Nuclear Medicine Association, in conjunction with the Northern California Chapter of the Society of Nuclear Medicine is presenting its Annual Spring Symposium, Saturday, April 30, 1977. This years program is on "Pediatric Nuclear Medicine."

The speakers will include David L. Gilday, M.D., of Toronto, Hirsch Handmaker, M.D., of San Francisco, Philip Matin, M.D., of Roseville, Calif., and others.

Topics will include technical aspects of imaging, ventilation, skeletal, cardiovascular, renal, and testicular scanning.

A physicians workshop is planned for Friday afternoon, from 3-6 pm on "Computers in Nuclear Medicine," with John Verba, M.D., using M.D.S. and A.D.A.C. Varian. For further information contact:

Burton B. Butler, M.D.
2267 Hawthorne St.
Sacramento, California 95815

JOURNAL OF NUCLEAR MEDICINE