such as a meningioma with extracranial metastases and a
couple of cases of Hodgkin's disease of the orbit.

The book opens with a very brief, incomplete, and per-
haps slightly misleading discussion of the technical aspects
of computed tomography. This section is followed by a
relatively short presentation of normal anatomy and normal
and post-surgical variants. The remaining 200-odd pages
are devoted to the presentation of various abnormalities.

The technical quality of the book itself is adequate, and
the quality of the illustrations is comparable to that seen
in the better radiographic journals, but not quite up to the
best that can be achieved. The CT scans presented are all
from an EMI head scanner with a 160 x 160 matrix. Most
of the arteriographic illustrations are of good to excellent
quality. The radionuclide images shown are of adequate
quality generally, although in several cases the views illus-
trated are not those that would best demonstrate the lesion.

I believe this book lives up to its author's stated goals—
to provide a "basic handbook to serve as an introduction
to the technique and provide an elementary knowledge of
computed tomography." Whether the book will meet the
needs of the individual reader depends upon what those
needs are. It is adequate in the presentation of a broad
range of illustrative examples with correlations to more
conventional imaging techniques, and can be read in less
than 2 hr, or studied in depth more leisurely.

JOHN W. KEYES, M.D.
University of Michigan
Ann Arbor, Michigan

AN INTRODUCTION TO THE PHYSICS OF NUCLEAR MEDICINE.
Paul N. Goodwin and Dandamudi V. Rao. Springfield, Ill., Charles
C. Thomas, Publisher, 1977. 150 pp, $18.50.

This short volume is a good elementary presentation of
the physical principles involved in nuclear medicine. In a
very basic and brief manner, the authors introduce the
reader in 12 chapters to the following: elementary mathe-
matics, the structure of matter and the nature of radio-
activity, nuclear decay processes, the interaction of radia-
tion with matter, scintillation detectors, scanners, gamma
cameras, other imaging devices (including positron cam-
eras, semiconductor and gas-filled detectors, multwire pro-
portional chambers, and transmission and fluorescent im-
aging), radionuclides in medicine, statistics of radiation
measurements, radiation safety, and radiation dosimetry.
Each chapter concludes with four to 14 multiple-choice type
problems and questions, the answers to which are found
in Appendix IV. The figures and tables are very nicely done
and adequate for the discussion. Appendix I (alphabetical
list of the elements), Appendix II (conversion factors), and
Appendix III (physical data for some useful radionuclides)
supplement the text and should be useful to the beginning
student. The index is all-inclusive.

Perhaps even an elementary text such as this could either
have included or expanded the following areas: electro-
magnetic spectrum, biologic effects of radiation, personnel
monitoring, radiation protection to include regulations, bene-
fits vs. risks, and radiation units. Undoubtedly each chapter
should have referenced additional reading.

The book is recommended for those interested in an
introduction to nuclear medicine. It could well serve as a
basic text for nuclear medicine technologists, to be supple-
mented by either additional reading or lecture material.

JOHN A. DAPOLITO, MS, CHP
Albany Medical Center Hospital
Albany, New York

BOOKS RECEIVED

The receipt of the following books is acknowledged:

New York, June 1977. $22.50.

Medicina Nuclear, Antonio Fernando Goncalves da Rocha. 473 pp, illustrated. Guanabara Koogan, Rio de Janeiro,
1976

Ichiban: Radiation Dosimetry for the Survivors of the Bombings of Hiroshima and Nagasaki, John A. Auxier. 120 pp,
illustrated. Oak Ridge, Tennessee, Technical Information Center, Energy Research and Development Administra-

Volume 18, Number 11 1149