$$N_2 = D \cdot G \cdot (\eta_2 - g \cdot \eta_{12}), \qquad (4)$$

these being the single-energy peaks corrected for counts lost in their sumpeak [Eqn (a)]. Equations (3), (4), and (a) then yield Eqn (2).

K. J. VAN DAMME Institute for Radiopathology and Radiation Protection Leiden, The Netherlands

REFERENCES

1. HARPER PV, SIEMENS WD, LATHROP KA, et al: Production and use of iodine-125. J Nucl Med 4: 277-281, 1963

2. VAN DAMME KJ: A disregarded geometrical effect on an elegant method to measure the activity of a radio-isotope emitting two γ -rays in cascade. Int J Appl Radiat Isot 28: 675, 1977

3. BRINKMAN GA, ATEN AHW JR, VEENBOER JTH: Absolute standardization with a NaI(TI) crystal—I. Int J Appl Radiat Isot 14: 153-157, 1963

4. POLIC EF: Liquid scintillation counting equipment. In Instrumentation in Nuclear Medicine, vol 1, Hine GJ, ed. New York, Academic Press, 1967, p 236

5. ELDRIDGE JS, CROWTHER P: Absolute determination of I¹²⁵. Nucleonics 22: 56-59, 1964

6. BORDELL FL, SAYEG JA, WALD N: In vivo measured effective half-life of ¹³⁵I in human thyroids. *Phys Med Biol* 17, No. 3: 365-373, 1972

7. ACKERS JG: Routine thyroid monitoring in ¹²⁵I-production workers, Paper H6. Amsterdam, Third European Congress of the International Radiation Protection Association, May 1975

8. BRINKMAN GA, LINDNER L, VEENBOER JTH: Sumpeak calibration of ¹²⁹I. Int J Appl Radiat Isot 28: 271–275, 1977

Reply

The calculation of the activity of an I-125 source (1) from measurements of the pulse-height spectrum—in particular using the sum peak—was carried out using the classical coincidence-counting approach (2), since all observed photons are included in the photopeak and sum peak. The counting rates used were sufficiently low that random coincidences were negligible.

Let us consider $N_1 = A\epsilon_1$ (a), and $N_2 = A\epsilon_2$ (b), where A is activity, ϵ_1 and ϵ_2 are the probabilities of detecting an event following a disintegration, N_1 is the counting rate for one component of a coincident pair, and N_2 is the rate for the other. Let N_{12} be the coincidence rate. When the detection of two such coincident events is otherwise uncorrelated, the probability of detecting them in coincidence is the product of the individual detection probabilities. Thus, $N_{12} =$ $A\epsilon_1\epsilon_2$ (c). Combining expressions (a), (b), and (c), A = N_1N_z/N_{12} (d).

In the case of iodine-125, emission of the coincident photons is assumed to be isotropic without angular correlation, since the K-capture branch results completely from deexcitation of the atom, rather than directly from nuclear processes. Similarly, the events associated with the coincident decay from the 35-keV level ($T_{1/2} = 1.6$ ns), which follow the K capture, result in emissions that are 90.7% K fluorescent photons and 9.3% unconverted gammas. It appears impossible that any angular correlation could exist under such circumstances, and to the best of our knowledge, none has been reported.

In the spectrum of I-125 the single primary photopeak

contains the K fluorescent photons resulting from K capture and those from internal conversion in the K shell following K and L capture, as well as the unconverted gamma photons. These are not resolvable with NaI(Tl). The sum-peak counting rate, N_{uum}, represents events in which two coincident photons are detected simultaneously, i.e., N_{sum} \equiv N₁₂. The total detection rate, N_T, is thus equal to the photopeak rate plus twice the sum-peak rate.

Let η_1 be the number of K x-rays emitted per disintegration, following K capture. This is the product of the K-capture fraction, 0.813 (3), and the fluorescence yield, 0.855 (4). Let η_2 be the number of photons emitted during the coincident γ decay. This is the product of the K-capture fraction, 0.813, the K-conversion fraction 0.80 (5), and the K fluorescence yield, 0.855 (4), plus the product of the K-capture fraction 0.813 and the unconverted gamma abundance 0.0666 (6). The total number of emitted K and γ photons per disintegration is $\eta_T = 1.4669$ (5). Thus,

$$N_1 = \frac{\eta_1}{\eta_T} N_T$$
, and $N_2 = \frac{\eta_1}{\eta_T} N_T$.

Substitution in Eqn (d) gives the activity at the point where the coincident branching occurs, i.e., the product of total activity and the K-capture fraction:

$$0.813 \mathrm{A} = \frac{\eta_1 \eta_2}{\eta_T^2} \cdot \frac{\mathrm{N}_T^2}{\mathrm{N}_{\mathrm{sum}}},$$

and

$$A = \frac{\left(\frac{N_{a}}{2.04}\right)^{2}}{N_{anm}},$$

as reported previously, with a slight correction introduced by the more recent abundance figures (5). Under the conditions of I-125 decay, the independent detection probability of the two coincident photons permits the statement, objected to by van Damme, that $\eta_{12} = \eta_1\eta_2$ (van Damme's notation). Measurements in a deep well crystal, where the geometry approaches 4π , would remove even this theoretical objection.

> PAUL V. HARPER KATHERINE A. LATHROP Franklin McLean Memorial Research Institute Chicaao, Illnois

REFERENCES

1. HARPER PV, SIEMENS WD, LATHROP KA, et al: Production and use of Iodine-125. J Nucl Med 4: 277-289, 1963 2. CAMPION PJ: The standardization of radioisotopes by

the beta-gamma coincidence using high efficiency detectors. Int J Appl Radiat Isot 4: 232, 1959

3. DER MATEOSEAN E: Scintillation spectrometer determination of L-capture to K-capture in Cd¹⁰⁰ and Γ^{125} . Phys Rev 92: 938, 1953

4. NIJGH GJ, WAPSTRA AH, VAN LIESHOUT R: Nuclear Spectroscopy Tables, Amsterdam, North Holland Publishing Co, 1959, p 81

5. BOWE JC, AXEL P: Decay of Te^{125m}. Phys Rev 85: 858, 1952

6. DILLMAN LT, VON DER LAGE FC: Radionuclide Decay Schemes and Nuclear Parameters for Use in Radiation-Dose Estimates, MIRD Pamphlet No 10, New York, Society of Nuclear Medicine, 1975, p 71