at least some of the oxine leaves the cells subsequently, and (c) the majority of the radioactivity changes in the cells in its initial chemical form, binds to various intracellular components, and provides a stable label. Attempts have been made to obtain as much information as possible on quantitation and intracellular location of the radioactivity. The various figures quoted, however, should be taken only as a guide, since much more work will be needed for their absolute quantitation and for the determination of some of the intracellular components to which the radioactivity is bound.

ACKNOWLEDGMENTS

This work was supported partly by the Leukaemia Research Fund and the SCOR in thrombosis, Grant No. HL 14147.

REFERENCES

ERRATA

The authors of the article "Pharmacokinetics of Technetium-99m Diphosphonate" (J Nucl Med 18: 809–814, 1977) wish to point out that Table 2, appearing on p 812, is mislabeled. In the first column under the heading "Population" "NP" should read "PP," and in the last footnote, "NP: Patients with normal bone" should be replaced by "PP: patients with positive bone scans."

In the article "Quantification of Flow in a Dynamic Phantom Using 81Rb–81mKr and a NaI Detector" (J Nucl Med 18:570–578, 1977), the top section of the right-hand column of p 572 should appear as follows:

$$S(H) = S_0 \exp \left[-\frac{(H - \bar{H})^2}{2\sigma^2} \right] + (BH + D),$$

where the Gaussian term of standard deviation \(\sigma\) represents the distribution of pulse heights \(H\) about the mean \(\bar{H}\), and the linear term \(BH + D\) represents the contribution from the Compton continuum due to higher-energy photons. Thus, the area under the Kr-81m photopeak at 190 keV may be approximated by a sum over pulse heights of the total counts less the Compton contribution

$$C_2 = \sum_{n=\Delta H}^{\bar{H}+\Delta H} [S(H) - (BH + D)]. \quad (7)$$