theless, some estimates of the effect on resolution in an imaging system can be made by considering typical values of the width of the angular distribution. Stewart (5) measured this width for positrons annihilating in 34 different elements and found a mean FWHM of about 0.5° with a range of 0.2°-0.7°.

The effect of these angular distributions, as discussed by Muehllehner, is to add additional width to the best resolution attainable with annihilation coincidence detection. This width is directly proportional to the separation distance of the pair of coincidence detectors (2). If one takes 0.5° to be the mean angular distribution around 180°, then this produces a line spread distribution with a FWHM of 4.8 mm and 2.7 mm for detector separation distances of 111 cm [e.g., PETT III (6-9)] and 62 cm [e.g., Cho et al. (10)], respectively. In support of Muehllehner's conclusions, this effect is typically greater than that of β range and, whereas these effects play some limits on the highest resolution possible with annihilation coincidence detection, they do not pose significant problems with the realistic system resolutions of 8-10 mm. Depending on the particular detector separation distance, system design, and radionuclides employed, the combination of positron range and annihilation error will typically contribute 1-3 mm FWHM to the total system resolution. Since the several factors that affect resolution are not simply added together, but are convoluted together, a slower changing loss in resolution is obtained than the simple sum would (incorrectly) indicate.

It is important to point out that this discussion and that of Muehllehner are in reference to only two factors affecting spatial resolution. There are obviously many other factors (which are, in fact, typically more important) that determine the overall system resolution: statistics, depth-dependence and resolution of collimated detector response, sampling frequency, detection efficiency, photon attenuation, scattered radiation, random coincidence rate, object motion, display resolution, etc. All of these physical considerations must be carefully analyzed before a system can be optimally designed, since there are many trade-offs among these factors. For example, as the detector separation distance is increased, one achieves more uniform detection efficiency and resolution, better scatter coincidence rejection, and other improvements that are beyond the scope of this letter (6-12). On the other hand, this is done at the expense of an increase in the annihilation angulation errors, lower efficiency (although effective design can remove this to a major degree), and the need for more or larger detectors to cover the field of view of the object. Discussions of the above design considerations are given in Refs. 2 and 6-12.

Lastly, one must contain one's scientific enthusiasm by making some effort to include cost-effective constraints in the design.

M. E. PHelps
E. J. HOFFMAN
Hospital University of Pennsylvania
Philadelphia, Pennsylvania

REFERENCES

Reply No. 2

Dr. Muehllehner's letter "Resolution Limit of Positron Cameras" seems to be an interesting observation. Measuring the finite spread of the 180° back-to-back radiation has been a classical physics problem in the nuclear physics community. In addition to the "finite range" of the positron, the angular uncertainty deserves mention in any discussion of expected improvements in resolution in future positron cameras.

Z. H. CHO
Laboratory of Nuclear Medicine and Radiation Biology
University of California
Los Angeles, California

Measurement of Unbound 99mTc in 99mTc-Labeled Human Serum Albumin

In a paper by Lamson et al. (1), a rapid method was reported for the estimation of unbound 99mTc in preparations of 99mTc-labeled human serum albumin (99mTc-HSA). Their method was based on protein precipitation using trichloroacetic acid (TCA), followed by filtration through a 0.22-μm disposable membrane filter. Their main problem was the retention of unbound reduced 99mTc on the filter membrane.

We wish to report an alternative method, namely, centrifugation, for the separation of the precipitated protein from its supernatant. The 99mTc-HSA is added to a centrifuge tube containing 0.1 ml of HSA carrier solution (7.5 mg/ml).
The protein is precipitated with 1 ml of 10% TCA solution and separated by centrifuging for 20 min. The radioactive content of the supernatant, determined by comparing the count rate with that of a reference sample, indicates the total unbound \(^{99m}\text{Tc}\) activity (both \(^{99m}\text{TcO}_4^-\) and reduced \(^{99m}\text{Tc}\)).

As shown in Table 1, our results with this technique agree favorably with those obtained using conventional techniques, such as paper or instant thin-layer chromatography and 85% methanol for the detection of \(^{99m}\text{TcO}_4^-\) (2) and paper chromatography (in which the paper has been saturated with HSA) and nitrogen-purged saline for the detection of reduced \(^{99m}\text{Tc}\) (3). The analyses were performed on numerous \(^{99m}\text{Tc}\)-HSA samples prepared from several vials of the same HSA kit (lot No. SA-2314, Diagnostic Isotopes, Upper Saddle River, N.J.) The Na\(^{99m}\text{TcO}_4\) was eluted from a New England Nuclear generator (Boston, Mass.).

Table 1. Measurement of \(^{99m}\text{TcO}_4^-\) and Reduced \(^{99m}\text{Tc}\) in \(^{99m}\text{Tc}\)-HSA by Various Analytic Techniques

<table>
<thead>
<tr>
<th>Analytic Technique</th>
<th>Material Measured</th>
<th>Amount Detected (%)</th>
<th>No. of Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper chromatography with 85% methanol</td>
<td>(^{99m}\text{TcO}_4^-)</td>
<td>1.5 ± 0.6</td>
<td>5</td>
</tr>
<tr>
<td>HSA-saturated paper chromatography with 0.15 M NaCl</td>
<td>Reduced (^{99m}\text{Tc})</td>
<td>1.4 ± 0.8</td>
<td>17</td>
</tr>
<tr>
<td>ITLC (Gelman silica gel) with 85% methanol</td>
<td>(^{99m}\text{TcO}_4^-)</td>
<td>2.3 ± 1.5</td>
<td>25</td>
</tr>
<tr>
<td>TCA precipitation</td>
<td>(^{99m}\text{TcO}_4^-) + reduced (^{99m}\text{Tc})</td>
<td>3.7 ± 0.8</td>
<td>12</td>
</tr>
</tbody>
</table>

REFERENCES

The Difference Between \(t_1\) and \(t_{1/2}\)

In the Discussion section of their recent paper (1), Alpert et al. explain the difference between \(t_1\) and \(t_{1/2}\) by noting that \(t_{1/2}\) is computed on the basis of a single-exponential (and thus inexact) model. The actual difference between paired \(t_1\) and \(t_{1/2}\) values cannot be found in the text, nor can it be deduced from first principles since, while \(t_{1/2}\) is underestimated by the single-exponential analysis, \(t_1\) is also underestimated because the washout data are not collected until the counting rate is zero. It would not have disgraced this interesting paper, however, to point out that, barring those two types of error, if the data were truly single-exponential,