LETTERS TO THE EDITOR

REPLY

Drs. Moinuddin and Rockett call attention to the interesting parallel between our static images of a chemodectoma obtained with 99mTc-macroaggregated albumin and previously reported dynamic images of chemodectomas obtained with sodium pertechnetate. We do not think the pulmonary lesions in our case were chemodectomas since our reported findings show that the pulmonary lesions passed the albumin macroaggregates while the cervical lesion retained them. Furthermore, the pulmonary chemodectomas described by Korn et al, cited by Moinuddin and Rockett, were only large enough to be visible without the microscope in one case out of nineteen. In that one case, no lesions larger than 3 mm were described.

GALLIUM-67 UPTAKE IN THE REGENERATING RAT LIVER

Recently, Hill and Wagner (1) have reported that the uptake of 67Ga in regenerating liver is similar to that in normal liver; they suggest that "67Ga uptake is not related to hepatic cell proliferation associated with regeneration." While we do not disagree with this conclusion, we have observed considerable variation over the 72 hr after partial hepatectomy in 67Ga concentration in the regenerating liver. Studies were taken 2 hr after intravenous injection of 67Ga-citrate (2). Gallium-67 uptake was found to be maximal (about four times control levels) at 42 hr after operation and minimal (approximately 1.4 times control levels) during the period of stimulated DNA synthesis. Hill and Wagner confined their studies to this latter period.

In vitro studies with synchronized cultures of HeLa cells have also shown that 67Ga uptake reaches a nadir at the time of most rapid DNA synthesis; maximum uptake of the nuclide was observed in the G2 phase of the cell cycle.

Thus, while 67Ga uptake does not appear to be directly related to cell proliferation per se, there do appear to be significant variations in the nuclide uptake at different stages of the cell cycle. In regenerating rat liver, there is a good correlation between variations in 67Ga uptake and in lysosomal enzyme activity during the early regeneration period.

PETER A. G. HAMMERSLEY
MAUREEN A. ZIVANOVIC
Institute of Cancer Research
The Royal Marsden Hospital
Sutton, Surrey, England

REFERENCES

production to streptokinase and the possible loss of its therapeutic activity prevented us from administering it to humans.

TERENCE I. HALE
Kantonsspital Aarau
Switzerland

REPLY

We were happy to learn of Dr. Hale's great interest in labeling and testing 99mTc-streptokinase. At pH 12 we obtained a labeling yield of 0–10% using the gel chromatography method of analysis. None of the thin-layer and paper chromatography methods we have used could separate 99mTc-streptokinase from reduced hydrolyzed 99mTc. Therefore, we prefer to use gel chromatography with Sephadex as the analytic method. The enzyme activity of labeled streptokinase was analyzed both by means of thrombin coagulation and immunoelectrophoresis. The enzyme activity of streptokinase was decreased both at extremely high and at low pH values. Thus, the optimal pH value for preparation of 99mTc-streptokinase lies between 4 and 7. With very few exceptions streptokinase was not used simultaneously for therapy and diagnosis at the hospital in Ostersund. However, the small dose of streptokinase (15,000–50,000 IU) used for the diagnostic procedure is not believed to affect the therapy, especially if treatment is started immediately after the diagnostic procedure.

BERTIL PERSSON
Lunds University
Radiofysiska Institutionen
Lasaretet, Sweden

PREPARATION OF 68Ga RADIOPHARMACEUTICALS

The August 1975 issue of the Journal of Nuclear Medicine contained an article by Donald J. Hnatowich (1). I wish to congratulate the author for a job well done. However, I feel that something is missing in his publication. The article gives the impression that this is the first "practical way" to prepare 68Ga-labeled compounds from the 68Ge–68Ga generator, which it is not. The separation of 68Ga from its complexed form was achieved almost 7 years ago by a simple procedure (2,3) applied to prepare "in situ" labeled macroaggregates for lung tomoscin- tigraphy (4) and colloids for liver–spleen studies (5). Eight years ago, Anghileri presented a method to prepare a compound for liver studies (6). Also, a review of the preparation of 68Ga compounds for tomographic studies was published in January 1971 (7). The procedures described in the above-mentioned papers are quite simple and safe to carry out, and it is surprising to see that the author did not list any of these references. These procedures were used during the 1968 to 1970 period, in combination with a Pho/Gamma II camera with the positron detector attachment.

LELIO G. COLOMBETTI
Michael Reese Medical Center
Chicago, Illinois

REFERENCES

REPLY

The procedure referred to by Professor Colombetti has been used to prepare such labeled particles as 68Ga-ferric hydroxide macroaggregates for lung studies and 68Ga-ferric oxide colloids for reticuloendothelial imaging. The method is interesting in that the GaEDTA complex is separated not by anion