mird / DOSE ESTIMATE REPORT NO. 5

SUMMARY OF CURRENT RADIATION DOSE ESTIMATES TO HUMANS FROM 123 I, 124 I, 125 I, 126 I, 130 I, 131 I, and 132 I AS SO-DIUM IODIDE September 1975

	Maximum thyroid uptake	Absorbed dose (rads/mCi of radioiodine administered)								
Target organ	(%)	1 28	¹²⁶	¹²⁵	136	¹⁸⁰	181	128		
Liver	5	0.029	0.36	0.087	0.25	0.32	0.20	0.14		
	15	0.028	0.45	0.22	0.45	0.30	0.35	0.13		
	25	0.027	0.55	0.36	0.65	0.29	0.48	0.13		
Ovaries	5	0.036	0.33	0.029	0.14	0.34	0.14	0.14		
	15	0.034	0.31	0.033	0.15	0.31	0.14	0.14		
	25	0.031	0.30	0.039	0.15	0.29	0.14	0.13		
Red marrow	5	0.030	0.27	0.044	0.16	0.23	0.14	0.09		
	15	0.030	0.36	0.077	0.26	0.23	0.20	0.09		
	25	0.030	0.46	0.12	0.37	0.23	0.26	0.09		
Stomach wall	5	0.25	2.4	0.27	1.5	2.4	1.7	1.2		
	15	0.23	2.2	0.26	1.4	2.2	1.6	1.2		
	25	0.21	2.0	0.26	1.3	2.0	1.4	1.1		
Testes	5	0.013	0.18	0.015	0.088	0.18	0.084	0.07		
	15	0.012	0.18	0.018	0.094	0.17	0.085	0.07		
	25	0.012	0.17	0.024	0.10	0.16	0.088	0.07		
Thyroid	5	2.4	180.0	140.0	320.0	22.0	260.0	2.3		
	15	7.5	530.0	450.0	960.0	68.0	800.0	7.4		
	25	13.0	890.0	790 .0	1,600.0	120.0	1,300.0	13.0		
Total body*	5	0.025	0.36	0.11	0.28	0.25	0.24	0.10		
	15	0.027	0.59	0.29	0.61	0.27	0.47	0.10		
	25	0.029	0.83	0.49	0.95	0.29	0.71	0.11		

RADIOPHARMACEUTICAL

Sodium iodide as a radiopharmaceutical is supplied in a basic solution to prevent volatilization of the iodine and contains a reducing agent to minimize the conversion to iodate. Liquid and solid forms are available for oral administration as well as sterile solutions for intraveonus use; however, most radioiodide is administered orally. The biologic availability of iodide from some solid dose forms may be less than 100%. All production methods for radioisotopes of iodine yield carrier-free products except for ¹³¹I. In the case of ¹³¹I, the very small quantity of stable iodine does not affect the biologic distribution. For purposes of these dose calculations, the radionuclidic and radiochemical purity of the pharmaceutical have been assumed to be 100%.

NUCLEAR DATA

Nuclear data for the radioisotopes of iodine considered in this report are given in Table 1.

BIOLOGIC DATA

The human tissue distribution data for radioiodine administered as iodide on which this report is based were obtained from the literature and from studies by Henry N. Wellman and his associates at the Nuclear Medicine Laboratory, University of Cincinnati School of Medicine. These data were evaluated by Mones Berman and his associates at the National Institutes of Health and were used as the input data for Berman's model of iodide kinetics (2). The thyroid iodide uptake rate constant was then adjusted

Radionuclide	15	1	¹³⁴ l		125	¹²⁵ I		128		180		¹⁸¹]		132	
Physical half-life	13.0 hr		r ⁻¹ 0.1650 days ⁻¹		60.2 days		13.0 days 0.0533 days ⁻¹ Beta minus, electron capture and beta plus		12.5 hr 0.0555 hr ⁻¹ Beta minus		8.06 days 0.0860 days ⁻¹ Beta minus		2.38 hr 0.2912 hr ⁻¹ Beta minus		
Decay constant					0.0115 days ⁻¹										
Mode of decay					Electron capture										
Equilibrium dose constant for nonpenetrating radiation (g-rad/µCi-hr)	0.04	610	0.46	560	0.04	434	0.31	116	0.63	155	0.40	085	1.0	651	
	E,	n:†	E,	n 1‡	E,	n:†	E,	nit	E,	nit	E,	n:†	E,	n:‡	
Principal photons:	0.0285	0.867	0.0285	0.562	0.0285	1.400	0.0285	0.420	0.0305	0.013	0.0305	0.046	0.506	0.05	
Ei, energy (MeV)	0.159	0.836	0.511	0.512	0.035	0.067	0.389	0.333	0.418	0.320	0.080	0.026	0.523	0.159	
nı, mean number per dis.	0.529	0.011	0.603	0.617			0.491	0.022	0.536	0.991	0.284	0.058	0.630	0.13	
			0.723	0.102			0.666	0.328	0.586	0.016		0.820	0.668	0.98	
			1.691	0.100			0.754	0.042	0.668	0.971	0.637	0.065	0.672	0.05	
									0.739	0.852	0.723	0.017	0.727	0.065	
									1.157	0.114			0.773 0.812	0.770	
													0.812	0.18	
													1.399	0.07	

to generate three selected levels for maximum thyroid uptakes of 5%, 15%, and 25% corresponding to 24-hr uptakes of 4.5%, 13.8%, and 23.6%, respectively. These values were considered to encompass the range of the current adult euthyroid population in the United States. The model used here does not apply to hypo- or hyperthyroid patients, to iodine-deficient patients, or to patients receiving therapeutic amounts of radioiodine or medications that directly or indirectly affect iodine metabolism.

The biologic parameters given in Table 2 were computed using Berman's model (2) and a fractional turnover constant of 0.0140 day⁻¹ for thyroid secretions. The values for $\alpha_h(t)$ calculated from data given in Table 2 describe the kinetics of iodine administered as iodide, and do not take into account physical decay of the nuclide. To obtain the quantity of radioactivity, $A_h(t)$, at any time, $q_h(t)$ must be multiplied by $e^{-\lambda t}$, where λ is the physical decay constant of the radioisotope of iodine. The computed biologic half-time of iodine in the thyroid was 52.1 days for a maximum uptake of 5%, 57.0 days for a maximum uptake of 15%, and 65.1 days for a maximum uptake of 25%. Maximum uptake of administered iodide by the thyroid occurs at approximately 2 days in the euthyroid subject. The maximum level of radioactivity in the thyroid will vary as well as the time at which this maximum is reached depending on the physical half-life of the radioisotope of iodine administered.

The biologic parameters given in Table 2 are for

a single intravenous injection. Oral administration will delay the appearance of radioiodine in the blood by 10–15 min, but it will have a minimal effect on the actual levels of activity in the blood, and relatively little effect on the final thyroid uptake.

The histogram shown in Fig. 1 was computed based on the values given in Table 2 and summarizes the biologic distribution of radioiodine after a single oral administration of radioiodide in a euthyroid adult with a maximum thyroid uptake of 15%. The values given for the stomach, intestine, blood, extracellular-extravascular space (ECEV), thyroid, liver, quantity excreted, and activity unaccounted for (other) are for 1 hr, 6 hr, 24 hr, 20 days, and 80 days after the radionuclide was administered.

ABSORBED-DOSE ESTIMATES

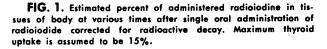
The cumulated activities for the radioisotopes of iodine in the five source organs for the three values of maximum thyroid uptake were computed using the distribution parameters in Table 2, and the physical half-lives of the isotopes of iodine in Table 1. It was assumed that the radioactivity in each source organ was uniformly distributed.

The masses used for computing the dose to the target organs were as follows: liver, 1,809 gm; ovaries, 8.3 gm; red marrow, 1,500 gm; stomach wall, 150 gm; testes, 37 gm; thyroid, 19.6 gm; and total body, 69,880 gm (3).

The absorbed fractions used for the dose estimate calculations in this report were obtained from special

TABLE 2. BIOLOGIC	PARAMETERS OI	F THE FRACTIONAL	DISTRIBUTION FUNCTION	DNS, $\alpha_{\rm h}$ (t), OF IODINE
IN A EUTHYROID	ADULT FROM A	SINGLE INTRAVEN	OUS ADMINISTRATION	OF SODIUM IODIDE*
	4-1 11 1		.	• •

$\alpha_{\rm h}(t) \equiv \sum \alpha_{\rm hj} \mathbf{e}$	$-\lambda_{j}^{t} \equiv \alpha_{h1} \bullet^{-1}$	$-\lambda_1 t + \alpha_{h2} e^{-1}$	$-\lambda_{s}t + \alpha_{hs}e^{-1}$	$-\lambda_{s}^{t} + \alpha_{h4}^{e}$	1 ² E


Source organs		λ1		λ₂		λs		λ,
ኩ	an1	(hr-1)	ans	(hr-1)	ans	(hr-1)	Cfb4	(hr-1)
Maximum thyroi	d uptake of	5% yields a	24-hr uptake of	4.5%				
Intestine	0.169	0.0879	0.000502	0.0488	0.0000262	0.00492	0.0000579	0.000554
Liver	0.0156	0.0879	-0.000390	0.0488	-0.00109	0.00492	0.00139	0.000554
Stomach	0.149	0.0879	0.000459	0.0488	-0.0000245	0.00492	0.0000529	0.000554
Thyroid	-0.0517	0.0879					0.0519	0.000554
Total body†	0.944	0.0879	—			_	0.056	0.000554
Aaximum thyroi	d uptake of	15% yields	a 24-hr uptake a	of 13.8%				
Intestine	0.169	0.0994	0.000982	0.0488		0.00492	0.000152	0.000498
Liver	0.0159	0.0994	-0.00130	0.0488	-0.00313	0.00492	0.00408	0.000498
Stomach	0.149	0.0994	0.000882	0.0488	-0.0000629	0.00492	0.000140	0.000498
Thyroid	0.154	0.0994	_	_		_	0.154	0.000498
Total body†	0.836	0.0994		—	_	—	0.164	0.000498
Maximum thyroi	d uptake of	25% yields	a 24-hr uptake a	of 23.6%				
Intestine	0.169	0.114	0.00115	0.0488	0.0000962	0.00496	0.000221	0.000444
Liver	0.0159	0.114	-0.00206	0.0488	0.00506	0.00496	0.00667	0.000444
Stomach	0.149	0.114	0.00103	0.0488	-0.0000913	0.00496	0.000204	0.000444
Thyroid	0.255	0.114	_	_		_	0.255	0.000444
Total bodyt	0.729	0.114	_				0.271	0.000444

* The activity in the source region r_h at time t after administration of the radionuclide of activity A_0 is given by $A_h(t) = q_h(t)e^{-\lambda t}$, where $q_h(t) = A_0 \sum_{j} \alpha_{hj} e^{-\lambda_j t}$, and α_{hj} is the initial value of the jth exponential component of the fraction of the iodine

administered as iodide that appears in the source region r_h , λ_j is the biologic disappearance constant of the jth exponential component, and λ is the physical decay constant of the radionuclide. The cumulated activity in the source region r_h over an infinite period is given by $\tilde{A}_h(\infty) = A_0 \Sigma \alpha_{hj}/(\lambda_j + \lambda)$.

† Values for total body include all tissues.

80 DAYS 1 HOUR 6 HOURS 24 HOURS 20 DAYS 7.9 EXCRETED 23.12 OTHER LIVER 1.4 THYROID 1.5 37.6 EXCRETED 15.4 INTESTINE OTHER 2.0 LIVER 0.9 THYROID 14 BLOOD 76.1 EXCRETED 87.1 EXCRETED 93.7 EXCRETED 6.9 13.6 STOMACH 9.4 INTESTINE 9.0 BLOOD 11 STOMACH 8.3 OTHER 0.7 77 ECEV 13.8 THYROID ECEV NTEST. 1.6 12.2 THYROID 1.6 1.4 THYROID BLOOD 0.1 BLOOD 0.2

Monte Carlo computer calculations using the complete energy spectrum of penetrating and nonpenetrating radiations emitted by the radioisotopes of iodine instead of from the interpolated values of absorbed fractions published in MIRD Pamphlet No. 5 (4). The heterogeneous phantom used previously (4) has been modified (3) so that it is no longer necessary to consider the wall and the contents of an organ, such as the stomach, as a single unit. Instead they may be handled separately, usually with the contents as the source organ and the wall as the target organ. Red marrow is considered as a separate source organ in the revised heterogeneous phantom.

Radioiodine in the intestine is localized predominately in the small intestine and, for the purposes of dose estimation, is assumed to be entirely located in this section. The contribution of fecal radioactivity to the dose received by the walls of the large intestine is neglected.

ACKNOWLEDGMENTS

The work on which this report is based was performed pursuant to Contract No. FDA 223-74-6044 with the Public Health Service, Food and Drug Administration, Department of Health, Education and Welfare.

The Committee wishes to acknowledge the efforts of Henry N. Wellman, Indiana University, who searched the literature and evaluated the available data on iodine metabolism relevant to radiation dose estimation; to Mones Berman, National Institutes of Health, who analyzed the above data and computed the biologic parameters necessary to estimate the radiation dose; to W. S. Snyder and his associates, Oak Ridge National Laboratory, for computing the absorbed fractions for the various isotopes of iodine, and to Robert H. Rohrer who assisted in making the radiation dose estimates.

TASK GROUP

M. Berman, National Institutes of Health, Bethesda, Md. L. E. Braverman, St. Elizabeth's Hospital, Brighton, Mass.

J. Burke, Cook County Hospital, Chicago, Ill.

L. De Groot, Billings Hospital, Chicago, Ill.

K. R. McCormack, Mt. Zion Hospital and Medical Center, San Francisco, Calif.

T. H. Oddie, Harbor General Hospital, Torrance, Calif.

R. H. Rohrer, Emory University, Atlanta, Ga.

H. N. Wellman, Indiana University, Indianapolis, Ind.

E. M. Smith, Editor of Dose Estimate Reports, University of Miami, School of Medicine, Maryville, Tenn.

REFERENCES

1. DILLMAN LT, VON DER LAGE FC: Radionuclide decay schemes and nuclear parameters for use in radiation dose estimation. MIRD Pamphlet No 10: to be published

2. BERMAN M: Iodine kinetics. In Methods in Investigative and Diagnostic Endocrinology, vol 1, Berson, SA, ed, Amsterdam, North Holland, 1972, pp 172-203

3. SNYDER WS, FORD MR, WARNER GG: Specific absorbed fractions for photon, beta-particle and electron sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet: to be published

4. SNYDER WS, FORD MR, WARNER GG, et al: Estimate of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No 5, J Nucl Med 10: Suppl No 3, 8, 1969

New MIRD Committee Publications

Pamphlet #10—Radionuclide Decay Schemes and Nuclear Parameters for Use in Radiation-Dose Estimation—Approx. 125 pp.

Provides essential radioactive decay scheme information in convenient form on more than 120 medically important radionuclides. This publication updates and supercedes Pamphlets 4 and 6 which provided data for 54 radionuclides. In loose-leaf binder format for ease of updating and adding additional radionuclides.

Available September, 1975.

\$8.75 with binder; \$6.50 without binder.

Pamphlet #11—"S" Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs—Approx. 255 pp.

The tabulated values of "S" in this publication simplify dose calculations. Instead of requiring separate consideration of each radiation of the decay scheme and its associated absorbed fraction, the "S" tabulation permits dose calculations by simply referring to a single table entry for each organ combination. This pamphlet provides "S" values for 117 radionuclides plus 6 parent and short-lived daughter combinations as a uniformly distributed source in 20 source organs irradiating 20 target organs which include ovaries, red bone marrow, testes, and total body. In loose-leaf binder format for ease of updating and adding additional radionuclides and source and target organs.

Available October, 1975

\$10.20 with binder: \$7.95 without binder.

Extra binders available at \$3.75 each.

Other Publications Available from the MIRD Committee

SUPPLEMENT NUMBER 1-\$1.50

Pamphlet #1—A Schema for Absorbed-Dose Calculations for Biologically Distributed Radionuclides Pamphlet #2—Energy Deposition in Water by Photons from Point Isotropic Sources Pamphlet #3—Absorbed Fractions for Photon Dosimetry

SUPPLEMENT NUMBER 3-\$1.50

Pamphlet #5—Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom

SUPPLEMENT NUMBER 5-\$1.50

Pamphlet #7—Distribution of Absorbed Dose around Point Sources of Electrons and Beta Particles in Water and Other Media

Pamphlet #8—Absorbed Fractions for Small Volumes Containing Photon-Emitting Radioactivity Pamphlet #9—Radiation Dose to Human from ⁷⁵Se-L-Selenomethionine—\$3.00

Please address all orders to:

MIRD Committee 404 Church Avenue, Suite 15 Maryville, Tn. 37801

CHECKS MADE PAYABLE TO THE "SOCIETY OF NUCLEAR MEDICINE" OR A PURCHASE ORDER MUST ACCOMPANY ALL ORDERS.