
LETTERS TO THE EDITOR

ANGER CAMERA DEADTIME

In a paper by Adams and Zimmerman (1 ) the
statistical nature of the decay process has not been
taken into account. Therefore, the deadtime of the
systemappearsto dependon the input rate. The
following reasoning makes this an unnecessary state
ment.

The following notation will be used: n is true in
put rate, r represents measured input rate, @r= r
â€” n is error of the measurement, and c = ar/n rep

resents relative error of the measurement.
From the fact that the decay process is a Poisson

process,the following frequencydistributionof time
intervals between p decay events can be derived (T
mean interval) (2):

g(p,t) _ pP (nt)P_le_P(@@t)
n

methods on a digital computer. A first guess can be
obtained as follows : if two sources of almost equal
rates are used and the background is omitted, Eq. 5
reduces to

r12e2@= 2renT;@@ n2= n;n@, 0 and

r12 2rTo=@ â€”ln â€”-
r12

(6)

The following results have been obtained with a
gamma camera (Picker) linked to a computer (DEC
PDP 11/20). Four point sources (2 mCi @@mTc)in
about a 2-ft distance were measured for 20 sec in
the following combinations:

rA= 243,323counts
rB 208,257 counts

(rA+.rB) = r1= 363,189counts
(r1. + r0) = r2 = 380,913 counts

(r1+ r2)= 503,895counts
. rb = 1 ,082 counts/ 100 sec

rA,rB: @I-o=15.518@ssec @= 15.584@sec

r,,r2:T@ 14.l9Ozsec @=14.l93psec
Method 2 from the article by Adams and Zimmer

man would give the following results:

rA,rB: .rC 21.5 @sec

r1,r2:T@ 25.6psec
It should be pointed out again that the complexity

(3) of data acquisitionequipmentmay influencestrongly
(3a) these calculations.If some intermediatestorageof

only a few events (p = 3;5) should allow queuing
and, therefore, averaging of time intervals, Eq. 1
mustbe evaluatedaccordingly.Deadtimeof a device
should not depend on its imput signal.
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For p = 1, i.e., for every two adjacent events the
formula reduces to

(@@-@-@dt=1.
n Jo n (la)

If such a signal enters a system with deadtime r, the
following amount of events is lost:

Therefore

c= __J:!!@c@._) dt= â€”(1 _e@T).

r=n(1 +c)
r = ne@T

n = re@@T.
A first order approximation of the exponential

function leads to

r@n(1 â€”nr).

This might be the link to the relations given in the
paper by Adams and Zimmerman.

Now the deadtime may be calculated using Eq. 3a
in combinationwith the two-sourcemeasurement
described by

n,2@ nb n, + n2
r,2ef12T + rbeâ€•bT@ + r2e@.

This equation must be solved using numerical
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insensitive for an elapsed â€œdeadtimeâ€•r after each

â€œtrueâ€•event. The response time T to an initial event
is further extended for an additional time r by any
additionaltrue eventswhichoccurbeforefull recov
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ery takes place. This type of equipment is character
ized by Poisson statistics. For such paralyzable sys
tems the true counting rate is

n = re@.

where r is the measured counting rate, and r is the
deadtime as defined for a paralyzable system. The
maximum measured counting rate occurs when nr
= 1 , or when r = 1 /re. For large values of true

counting rate the observed counting rate decreases
and approaches zero.

2. Nonparalyzable. This type of equipment re
mains insensitive for an elapsed deadtime T after
each observed event. The deadtime is not affected by
any additional true events which occur before full
recovery takes place. For such nonparalyzable sys
tems the true counting rate is

r
n=

lâ€”rT

where T is the deadtime as defined for a nonpara
lyzable system. The above expression is exact and
not an approximation. At very large true counting
rates the measured counting rate plateaus and ap
proaches 1/T.

Most scintillation cameras and associated data
processing equipment provide overall performance
somewhat intermediate between the limits of para
lyzable and nonparalyzable systems (2) . Although
at very low countingrates Eq. 1 and Eq. 2 yield
nearly identical values, deadtime must be precisely
defined and measured for the correction of rapid
dynamic quantitative studies performed at high count
ing rates.

Because of the mathematical simplicity of Eq. 2,
we have chosen to treat deadtime performance as a
nonparalyzable system (3). In order to do so, how
ever, the deadtime must be considered a dependent
variable of the measured counting rate r. This type
of treatment results in quite precise correction of
histogram curves for deadtime losses.

We congratulate Mr. Huttig on his excellent
method to calculate, from two-source data, the dead
time of a paralyzable system. We have written a

BASIC program which includes his first approxima
tion equation (6) and a five-dimensional Newton
Raphson iteration method to converge on the four
true counting rates and the deadtime of two-source
method data, as contained in Eq. 5. This program
precisely verifies Mr. Huttig's numerical results. We
have also applied this program to data from a num
ber of scintillation camera systems and find that
deadtime values so obtained are more nearly mdc
pendent of counting rate than with the quadratic

Eq. 3. However, once the value of deadtime is cal
culated by this method, correction of counting rate
data must be performed by Eq. 1, solution of which
is complicated by the presence of the unknown quan

(1) titynappearingintheexponential.
Assume a system measuring a true counting

rate n = 30,000/sec and a measured rate r =
20,000/sec. For a nonparalyzable system, the dead

- nâ€”rtime T = rn = 16.667 1Lsec.For a paralyzable

system the deadtime r in (n/r)@@@@ sec.

If n is unknown and is to be calculated from r:
For the nonparalyzable system:

r
n= =

1 â€”rT

1 â€”20,000 X16.667 x 10@ 30,000.

For the paralyzable system, n can be approached
by iteration:

n1= re@= 20,000e(20,000X13.515X106)

n2 = Re@ = 28,500

etc.
n9 = Re@ = 29,996.

(2)

= 26,207

Other mathematical schemes are available to con
verge on the answer more rapidly.

The foregoing discussion, in which we have dis
cussed two equally valid but quite different definitions
of deadtime, illustrates the present ambiguity of the
term â€œdeadtimeâ€•.â€œDeadtimeâ€•is quite meaningless
unless the definition, measurement parameters, and
method of calculation are prescribed.

We urge that a committee of the Society of Nu
clear Medicine define â€œdeadtimeâ€•and standardize
methods for its measurement.

On request, the authors will be pleased to pro
vide a listing of the BASIC Newton-Raphson itera
tion program.
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