
Processing radionuclide image data in an at
tempt to improve its diagnostic usefulness in
evitably changes both the noise and the resolu
tion of structures in the image. Although at
present little conclusive evidence exists to mdi
cafe whether or not image processing is bene
ficial, an understanding of the quantitative
effects of various processing techniques on pa
rameters of resolution, noise magnitude, and
noise texture seems to provide a useful begin
ning towards solution of the more difficult
problem of understanding the effects of image
processing on diagnostic image quality. Quan
titative effects of stationary linear image process

ing procedures, which include all convolutions
and â€œfilteringâ€•operations, can be predicted
rather simply. In the present work, expressions
for predicting these quantitative effects are de
veloped and are applied to computer-synthesized
image data to provide illustrative examples of
the effects of typical noise-smoothing and reso
lution-enhancing operations.

Image processing changes both the noise and the
resolution of structures in images. Smoothing the
image of a radionuclide distribution to reduce noise,
for example, also tends to degrade resolution and
to change the â€œtextureâ€•of the remaining noise. Simi
larly, processing to improve spatial resolution tends
to increase image noise and to change its texture.
In order to understand the effects of various image
processing techniques on image quality, it seems
reasonable to expect that we must understand their
quantitative effects on both resolution and noise.
Although the relationship between image quality in
the clinical sense and quantitative measures of reso
lution and noise is not at all clear at present, an un
derstanding of the quantitative effects of various
processing techniques seems to be a useful beginning
towards solution of the more difficult problem of

understanding the effects of image processing on
diagnostic image quality.

It is the purpose of this paper to point out funda
mental mathematical relationships which enable one
to predict the effects of stationary linear processing
procedures on measures of spatial resolution, noise
magnitude, and noise textureâ€• or â€œcharacter.â€•
Stationary linear image processing techniques (1â€”
11 ) include all operations on the data describ
ing the image that can be achieved by replacing
each image element value by a weighted linear
combination of the element of interest and sur
rounding elements (linearity), in which the com
bination rule employed (involving addition, sub
traction, and/or differentiation) is independent of
position on the image plane (stationarity or shift
invariance). Such techniques are particularly amena
ble to theoretical analysis because Fourier techniques
can be used to evaluate resolution and because their
effects on image noise statistics can be computed
rather simply. For this reason, stationary linear proc
essing techniques have been studied extensively
compared with nonstationary and nonlinear radionu
clide image-processing techniques, despite the fact
that the latter methods appear promising because
of their versatility and adaptability to local condi
tions of noise level and object structure (12). Un
fortunately, analysis and generalization of the effects
of nonlinear and nonstationary operations on spatial
resolution and noise are difficult and will not be
attempted here.

The following discussion will be directed primarily
to the case of digital image processing, in which the
unprocessed image data are available in the form of
a two-dimensional matrix of discrete image elements,
since digital computers appear to afford the most
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versatile means for quantitative image processing
research. All of the results to be presented here can

be applied also to the case of stationary linear analog
image processing (e.g., optical spatial filtering), how
ever, in the limit as the digital image element size
is reduced essentially to zero (13â€”15).

FORMULATION

The data corresponding to any single digital radio
nuclide image can be described by a two-dimensional

matrix of random variables b : @,each representing
the observed density of counts in the square image
element (i,j) having side â‚¬and area @2.Hence b:1j
= n :@ where n :@ is a random variable represent

ing the observed number of counts in the (i,j)
element of the spatially quantized image. The image
will be described here in terms of count density
rather than counts per element to facilitate the anal
ysis for variable image element size and for the lim
iting case of@ â€¢-*0.

If the detected counts are statistically independent,
then the random variables n :@ will obey the Poisson
probability distribution (16), with mean and van
ance flij. Consequently, the image matrix count den

sity variables b : Ii will have mean values b,@= n,j/e@
and variance b1@/â‚¬2= flij/â‚¬4.

If we assume that the image elements are small
enough relative to the width of the imaging system
point-spread function to allow spatial frequency alias
ing errors to be neglected (4), then the expected
or mean count density b1@in element (i,j) of the

M X M image matrix will be given by (4,17):

M
1_ C' P
(-â€˜Ii=@ ak,ls iâ€”k,jâ€”1

k.i=1

in which S@represents plane sensitivity of the imag
ing system, r represents imaging time (for a fixed
detector) or imaging time per unit area (for a mov

ing detector) , aki represents the effective two-dimen
sional radioactivity distribution or object to be
imaged, 5mis represents the imaging system point
spread function (17), which we assume to be inde
pendent of position on the image plane, and the
summation expression represents convolution of the

point-spread function with the activity distribution.
Essentially, then, the expected count density distri
bution is proportional to the activity distribution
blurred by the system point-spread function. The
discrete Fourier transform (4) of the expected
image count density matrix is given by

B(v1,v@)= @:
k, 1=1

= S0rA(v@,v@)S'(v@,v@)

in which S'(@1,@7)and A(v@,@7)represent the imaging
system transfer function (18) and the discrete Fou

nier transform of the radioactivity distribution, re
spectively. Note that two-dimensional fast Fourier
transformation (19,20) of the matrices (b1@}and
{a1j) yields ( 1/@2) times the functions B(v@,v@)and
A(@1,@@)evaluated at the discrete frequency values
â€œN= Â±m/M@x and v@= Â±n/M@x (m and n = 0,
1, . . . , M/2).

One can show that any stationary linear image proc
essing operation is equivalent to a convolution of the
observed noisy image {b:â€˜j)with an appropriate
processing point-spread function {tm,,) or weight
matrix (w,,,,,). Hence one can write

c:ij = f: b:kltI_k,J_12
k,i=1

= @:b:klwI_k,J_1 (3)
k.1=1

for the noisy processed image matrix {c : @)after
â€œcorrectionâ€•by any stationary linear processing pro
cedure. In this expression, the matrix (tmn) repre
sents relative count density dispersal per unit area

and for digital processing equals a relative weight
matrix (w,,,,) divided by @2If the radionuclide image
data are subjected to a sequence of stationary linear
procedures, then the processing point-spread func
tion matrix (t,,,,,) or weight matrix {w,,,,,) in the above
expression should be interpreted as the joint con
volution of the individual processing spread func
tions or weight matrices. The result will be inde
pendent of the order in which the procedures are

(1 ) applied since convolution operations are commu
tative.

RESOLUTION AFTER PROCESSING

It is convenient for the purposes of the present
discussion to evaluate the resolution of structures in
the processed image in terms of resolution in the
expected or mean processed image matrix (which

can be thought of either as the â€œnoiselessâ€•image pro
portional to a processed image produced with an

arbitrarily large number of counts or the average of

repeated similar images), and to discuss separately*
the statistical fluctuations, or â€œnoise,â€•in any single
image.

Using Eqs. 1 and 3, one can show (4) that
the expected processed image {cIj} is given by con
volution of the radioactivity distribution (ajj} with

. C This is in contrast to the approach taken by Vetter and

Pizer (21) in which â€œresolutionâ€•is defined as a Euclidean
sum of â€œgeometricâ€•and â€œstatisticalâ€•terms. We discuss â€œgeo(2) metricâ€•resolutionhere.
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an overall processed point-spread function {Ujj)
which is the joint convolution of the processing and
imaging system spread functions:

cjj = :@: bkitjk,j_12
k,i=1

= k,@1 bklwI_k,@_l

= SOT @:aklul_k,j_iE2
k, 1=1

Uji @:S'kItj_k,j_1r2
k,1=1

= @:sklwl_k.j_I.
k,1=1

In the spatial frequency domain, the discrete Fourier
transform C (@ ) of the expected processed image
is given by

C(v@,v@)= B(v@,v@)T(v1,v@)

= SOTA(PX,V@) [S'(v1,@5)T(@1,@@)]
= So-rA(v1,v5)U(v1,v@).

Hence resolution in the expected processed image
can be evaluated in terms of either the overall proc
essed point-spread function (uu) or the overall proc
essed transfer function U(v1,@@).

A general goal of various resolution enhancement
schemes is to make the overall processed spread
function {Uij) â€œnarrowerâ€•in some sense than the
imaging system spread function {S'@j)by proper
choice of the processing spread function {tmn) or
weight matrix {wm,j. In the spatial frequency do
main, the equivalent goal is to keep the overall trans
fer function U(@1,@@)approximately constant to
higher spatial frequencies than is S'(V@,Vy). This can
be accomplished by choosing T(v@,v@)@ I /S'(vx,vy),
at least over a range of frequencies, but the price paid
is a change in image noise texture and sometimes an
increase in the magnitude of image noise as we shall
show.

Alternatively, a general goal of noise-smoothing
schemes is reduction of image noise magnitude by
suppression of high frequency components through
appropriate choice of the processing point-spread
function (t,,,,,) or weight matrix (wmn). Such tech
niques tend to reduce response of the overall trans
fer function at high frequencies, however, and tend
to increase the width of the overall spread function
correspondingly.

NOISE MAGNITUDE AFTER PROCESSING

The magnitude or â€œintensityâ€•of statistical fluc
tuations in the processed image can be measured by

the â€œvarianceâ€•of observed count densities in any
image element in a large number of repeated images
of the same radioactivity distribution. The â€œstandard
deviationâ€• of statistical fluctuations in count density
is defined as the square root of count density van
ance and is equivalent to the root-mean-square fluc
tuation in count density in an element of repeated
images.

Because of the Poisson nature of unprocessed
(4) image statistics, count density variance in the proc

essed image may vary from point to point depending
upon local expected count density. In general, pnoc
essed count density variance is given by convolution
of the expected unprocessed image with the square
of the processing point-spread function or weight
matrix (4):

(5)

Var (c:1@)= :@: bkl[tI_k,j_1]2r2
k,I=1

= @:bkl[wI_k,j_,]2. (7)
k, 1=1

in regions where local expected count density is ap
(6) proximately uniform,

Van {c:1j} :::::b1@@ [tk,1]22
k, 1=1

= Van {bii}E [Wk,l]2. (8)

This result can also be expressed in terms of spatial
frequency response of the processing procedure by

+ 1/ @2e)

Var @c:jj)= b1@ff@

â€” 1 / (2@)

1 M/2

= Var {b:1@) .@ i: Wk.I@2 (9)
k,I=â€”(M/2â€”-1)

where {Wk.1) are the filter values used to multiply
the FFT of the original data before inverse fast
Fourier transforming to produce the processed image.
Note that the second forms of Eqs. 8 and 9 pro
vide simple means of predicting output variance
relative to input variance after digital processing.

We remark that linearly processed image statistics
tend toward the Gaussian probability distribution
due to the central limit theorem (22) and that in this
case the resulting standard deviation can be inter
preted in the conventional way as denoting approxi
mately 0.68 probability of fluctuations occurring
within Â±1 s.d., etc. Note, however, that processed
image statistics are not Poisson distributed.

One can see from Eqs. 8 and 9 that the use of
a processing spread function {tm,s) or digital weight

in which
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matrix (Wmn)corresponding to a processing transfer
function T(v@,v7) or filter {Wki) which assumes val
ues greater than unity may cause count density vail
ance in the processed image to be greater than
unprocessed variance, b,@/c2.Hence, processing to
enhance resolution using a transfer function or ifiter

@ 1/S'(s'@,v@)can increase noise magnitude. Simi
larly, use of a â€œlowpassâ€•processing transfer func
tion or filter which falls rather quickly to zero will
reduce noise magnitude*. Resolution enhancement
techniques which are practical for noisy image data
must combine enhancement at some (usually low)
frequencies with suppression at other (usually high)
frequencies; the effect on noise magnitude will de
pend on the chosen transfer function or filter through
Eqs. 8 and 9.

NOISECHARACTERAFTER PROCESSING

The character or â€œtextureâ€•of image noise can
be expressed in terms of count density â€œautocovari
anceâ€• which is defined as the expected product of
deviations in count density from the respective mean
values at any two points (4,12,22):

Covar (c:1j, c:,+,,,,j+,,} =

E( [C: @jâ€”Cli][c: I+m.j+n â€”Ci+mi+n]) . (10)

At zero separation of the two points [i.e., (m,n) =
(0,0)1, autocovariance reduces to variance.

Generally speaking, a noise autocovariance func
tion which drops rapidly to zero as the distance be
tween points increases indicates â€œsharpâ€•noise, with
deviations from respective means, or noise outcomes,
essentially independent except at small distances;
on the other hand, an autocovariance function which
falls slowly to zero as the distance between points
increases indicates the presence of broad noise un
dulations, with noise outcomes at neighboring points
highly correlated. Positive values of the autocovari
ance function at some separation distance indicate
that noise outcomes tend to be of the same sign (+
or â€”) at that separation. Negative autocovariance
values indicate expected noise outcomes of oppo
site sign at that separation distance, tending to cause
the noise to appear â€œraggedâ€•with somewhat regular
changes from positive to negative fluctuations at that

S One can show that any processing spread function EL.]
or weightmatrix (wm.1(other than the identityspread func
tion which leaves the data unchanged) which contains
only positive or zero elements must reduce relative noise
magnitude. Processing spread functions or weight matrices
which contain negative elements may increase or decrease
noise magnitude depending on the value of the second fac
tor of Eqs. 8 and 9. One can also show that any trans
fer function T(,'.,,',) or filter (WkI] assuming values greater
than the value at zero frequency (unity) must correspond
to a spread function EL.] or weight matrix [wmn) contain.
ing some negative elements.

separation distance. The count density autocovari
ance function plotted against separation distance
thus in a sense describes the â€œshapeâ€•of the noise
and hence the â€œshapeâ€•of possible processed image
noise artifacts. Note that since radionuclide image
noise is nonstationary except for uniform objects,
conventional â€œWienerâ€•or â€œpowerâ€•spectra (22,23)
cannot be used to describe noise character, except
qualitatively, to the extent that normalized autoco
variance functions are approximately shift invariant.

Radionuclide image count density autocovariance
resulting from the application of any stationary linear
processing procedure is given by the convolution of
the expected input (b1@}with the product of the proc
essing spread function matrix {tki) and the processing
matrix shifted appropriately (tk+m. I+n) ; that is,

Covar{c:ij,c:j+m.j+n)

f:b@i[ti_k,j_i.tI_k+m.j_I+nlâ‚¬@.(11)
k,i=1

In locally uniform regions of the expected input
image, output autocovariance is given approximately
by:

Covar (c:ij, ci+m,j+n}@ b1@@ tk.Itk+m.I+nt2
k,i=1

Si

= Vat (b:1@} @: WklWk+mI+n
k. 1=1

(12)

in which the second factor on the right represents
convolution of the processing spread function or
weight matrix with a version of itself, reflected about
its origin. Hence a measure of the texture of proc
essed image noise is provided by plotting Eq. 12
as a function of displacement (m,n), normalized to
unity at (0,0).

It should be clear from Eq. 12 that if the proc
essing spread function or weight matrix contains
only positive or zero elements, then the corre
sponding autocovariance function will be somewhat
broader and will contain only positive or zero ele
ments also. Hence, the noise texture will be rather
smoothly undulating with undulations comparable
in width to the autocovanance function width. If the
processing spread function contains some negative
elements, however, as any resolution enhancing
spread function must, then the corresponding auto
covariance function can assume negative values also,
causing the processed noise to appear â€œraggedâ€•with
somewhat regular positive to negative trends at the
displacement of the negative autocovariance values.

EXAMPLES

In order to illustrate the effects of stationary linear
image processing discussed above, an image of two
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point sources 1.4 cm apart was simulated using a
digital computer. The expected unprocessed image
was synthesized assuming a Gaussian imaging system
point-spread function with full width at half maxi
mum (FWHM) of 1 cm, a digital image element
size of 0.2 cm X 0.2 cm, a 128 X 128 element image
matrix, an expected background count density of
625 counts/cm2, and an expected count density
of 875 counts/cm2 directly over each point source.
Poisson-distributed random variables were generated
about the appropriate expected element values to
yield a simulated noisy image. Expected and observed
noisy image element values in a row passing through
the two point source locations are shown in Fig. 1A
together with the Â±1 s.d. bounds and, as an inset,
the unprocessed image autocovariance function nor
malized to unity at zero separation distance.

The simulated noisy image was then processed by
two different stationary linear techniques using a
fast Fourier transform (FFT) algorithm. The two

processing methods and the associated processing
parameters were selected to produce results which
would clearly exemplify the results discussed above
and are not necessarily optimal in any sense.

Figure lB shows the noisy data of Fig. I A after
processing with a Gaussian point-spread function
having FWHM = 0.6 cm (3 elements). Also shown
in Fig. lB is the expected processed image corn
puted using Eq. 4, the Â±1 s.d. bounds computed
using Eq. 7, and, as an inset, the processed image
autocovariance given by Eq. 12 after normalization
to unity at zero separation distance. Clearly, noise
magnitude is reduced markedly, resolution of the
point sources is reduced somewhat, and noise tex
ture is made rather smoothly undulating, with un
dulations comparable in width to that of the normal
ized autocovariance function.

Figure lC shows the noisy data of Fig. 1A after
processing with the filter (4)

= 1â€” (1â€” ISF&x,vy)12)fl+1

â€” S'(@1,@7)

using n = 4 and the assumed imaging system transfer
function for S'(vx,Vy). Spatial frequency response of
this filter rises from unity at low spatial frequencies,
approximating the inverse of the imaging system
transfer function, reaches a maximum response of
about 1.5 near 0.5 cycles/cm; and then falls
smoothly toward zero, assuming a value of 0. 1 at the original imaging system with high frequency noise
1.1 cycles/cm. Hence this ifiter combines low suppression. Comparison of the original and the
frequency correction for resolution degradation by processed data in this case shows that noise magni
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FIG. 1. Countdensityprofilesthroughimage of two point
sources.(A) Unprocessedimage simulated assumingGaussian imag(13) ingsystempoint-spreadfunctionwithFWHM1.0cm(5image
elements). (B) Simulated data after processing with Gaussian
smoothing function with FWHM = 0.6 cm (3 elements). (C) Simu
lated data after processing with filter described by Eq. 13 with
n 4. In each case, expected image is shown as smooth solid
curve Â±1 s.d. bounds are shown as smooth broken curves; and
noisy observed image is shown as stepped curve. Image autoco
variance function given by Eq. 12, normalized to unity at its origin
and plotted against separation distance, is shown inset on each
graph.

C IMAGE COLUMN
T(v@,v@)= 0t@1(@1,v7)
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tude is reduced markedly, resolution, and in particu
lar, contrast in the image of the point sources is
increased slightly, and noise texture is made some
what oscillatory or â€œragged,â€•consistent with the
computed autocovariance function shown as an inset.
Use of a larger value of n in the ifiter of Eq. 13
tends to cause noise magnitude to be reduced less
and finally to be increased, to increase resolution of
the point sources, and to increase the oscillatory
nature of the processed noise texture. Note that this
enhancement procedure tends to emphasize noise
artefacts such as that centered near element 39 in
addition to real structure, as one might expect.

DISCUSSION

The degree to which image quality depends on
resolution, noise magnitude, and noise character
seems to depend in a complex way both upon the
source distribution and upon the information sought
from the image. If the activity distribution is inher
ently unsharp, for example, then high spatial reso
lution in data acquisition and processing may be of
little importance, and usefulness of the image will
depend primarily upon noise character and noise
magnitude in the final result. If the source structure
of interest is small, however, or if definition of edges
or boundaries is critical, then good resolution may
be required, and resolution enhancement may prove
beneficial, even at the expense of some noise en
hancement. If a processing procedure results in noise
of a certain texture, then usefulness of the method
will depend on whether or not that noise texture can
be confused with potentially relevant object structure;
â€œmottledâ€•noise might be interpreted as diffuse me
tastases or cirrhosis in a radionuclide image of the

liver, for example, but possibly not as real structure
in an image of the brain.

We have attempted here to point out methods for
computing the quantitative effects of stationary linear
image-processing techniques on such fundamental
parameters as resolution, noise magnitude, and noise
character. These methods may be used to compare
different techniques and thus to guide the design of
processing schemes for specific clinical situations.
The usefulness of rationally designed processing pro
cedures must ultimately be decided empirically by
carefully controlled and analyzed perception experi
ments involving human observers.
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