jnm/concise communication

COMPARISON OF UPTAKE OF 67Ga-CITRATE AND 57Co-BLEOMYCIN

IN TUMOR USING A SEMICONDUCTOR DETECTOR

T. Higashi, M. Kanno, and K. Tomura

Kanagawa Dental College and Institute for Atomic Energy, Rikkyo University, Yokosuka, Japan

Distribution studies in Ehrlich's tumor-bearing mice were performed with ⁶⁷Ga-citrate and ⁵⁷Co-bleomycin. The tumor-to-nontumor ratios for ⁵⁷Co-bleomycin were always superior to those of ⁶⁷Ga-citrate. However, the absolute uptake in tumor of ⁶⁷Ga-citrate was greater than that of ⁵⁷Co-bleomycin. Similar results were obtained in bone, muscle, intestine, and liver. The accumulation of ⁶⁷Ga-citrate and ⁵⁷Co-bleomycin in tumor was greater than in inflammatory lesions.

In 1969 Edwards and Hayes reported that carrierfree 67 Ga-citrate exhibited marked uptake in malignant tumors (1). Since then, many tumor-scanning agents have been proposed for the scintigraphic detection of cancer. However, as yet, success has been limited. Cobalt-57-bleomycin (57 Co-BLM) has recently been introduced by Nouel and Maeda for detecting the localization and extent of tumors in humans (2,3). Grove and Hisada have compared the uptake of 57 Co, 111 In, and 67 Ga-labeled bleomycin is far superior to 111 In and 67 Ga-labeled bleomycin (4,5).

The purpose of this communication is to report the comparison of uptake of 67 Ga-citrate and 57 Cobleomycin in Ehrlich's tumor. The method used in this study is a previously reported one using a Ge(Li) semiconductor detector (6).

MATERIALS AND METHODS

The experimental animals were mice (DDN-strain) 10 days after transplantation of Ehrlich's tumor cells into the femoral region. The ⁶⁷Ga-citrate (carrierfree) used in this investigation was supplied by the Philips-Duphar Cyclotron and Isotope Laboratory and the ⁵⁷Co-bleomycin was supplied by the Daiich Radioisotope Laboratory of Japan.

Standard solutions were produced by mixing 10 μ Ci of each of the two radiopharmaceuticals (⁶⁷Ga-citrate and ⁵⁷Co-bleomycin). The standard solution (0.2 ml) was injected into the tail vein of mice. Four mice were sacrificed at 3, 6, 24, 48, 72, and 120 hr post-injection. The tumor, liver, bone (vertebra), muscle, kidney, small intestine, and blood (0.2 ml) were analyzed. The average percent dose per gram of tissue for the four mice was reported.

Yoshida sarcoma cells were injected into the right femoral region of a rat (Donryu strain). Ten days later croton oil (0.1 ml) was injected intramuscularly into the left paraspinous muscles of the same rat to produce the experimental inflammatory condition. Acute inflammation was simulated by taking measurements of uptake 5 hr after injection of croton oil whereas for subacute inflammation measurements at 48 hr were used. A mixture of ⁶⁷Gacitrate and ⁵⁷Co-bleomycin (0.2 ml) was injected intraperitoneally into the experimental animals 24 hr before they were sacrificed. Samples of inflammatory and tumor lesion were analyzed at necropsy for ⁶⁷Ga-citrate and ⁵⁷Co-bleomycin content.

The photopeaks of the ⁶⁷Ga and ⁵⁷Co radioisotopes in each organ were measured with a 4,000channel multianalyzer attached to a Ge(Li) semiconductor detector. The semiconductor detector used here is manufactured by the ORTEC Company and has a capacity of 50 cc with a full width at halfmaximum (FWHM) of 4.5 keV for the ⁶⁰Co gamma

Received April 23, 1974; revision accepted June 26, 1974. For reprints contact: Tomomitsu Higashi, Dept. of Radiology, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Japan.

ray (1.33 MeV). The photopeaks of the radionuclides were measured at 92 keV, 184 keV, and 300 keV in ⁶⁷Ga, and at 121 keV in ⁵⁷Co. The uptake of ⁶⁷Ga and ⁵⁷Co by each organ was measured by comparing the activity of the photopeaks of standard solutions with that of the corresponding photopeaks in the organs.

RESULTS

The distribution of ⁶⁷Ga-citrate and ⁵⁷Co-bleomycin into the different organs at 3, 6, 24, 48, 72, and 120 hr after injection is shown in Table 1. Figure 1 was obtained from the data in Table 1. The tumor uptake of ⁶⁷Ga-citrate reached a maximum at 24 hr after injection and then the activity gradually decreased. Cobalt-57-bleomycin, on the other hand, reached a maximum at 6 hr after injection and then the activity decreased rapidly. The accumulation of ⁶⁷Ga-citrate in tumor is always higher than that of ⁵⁷Co-bleomycin. Similar results were obtained in bone, muscle, intestine, and kidney (Fig. 1). The rapid decrease in activity of ⁵⁷Co-bleomycin is a result of its more rapid excretion through the kidney than that of ⁶⁷Ga-citrate.

The tumor-to-nontumor ratios for the ⁵⁷Co-bleomycin were always superior to those of ⁶⁷Ga-citrate as seen in Table 2.

Table 3 shows the uptake of ⁶⁷Ga-citrate and ⁵⁷Co-bleomycin in experimental inflammatory lesions compared with tumor lesions. In acute and subacute inflammatory lesions, ⁶⁷Ga-citrate always accumulates to a greater extent than ⁵⁷Co-bleomycin. With both agents mentioned above, the uptake in tumor was greater than in inflammatory lesions.

DISCUSSION AND CONCLUSIONS

In this experiment the authors could detect ⁶⁷Gacitrate and ⁵⁷Co-bleomycin in organs at the same time with a Ge(Li) semiconductor detector, which has a high resolution for gamma rays. This method made it possible to detect ⁶⁷Ga and ⁵⁷Co simultaneously and to estimate their relative uptakes and thus minimize the differences caused by individual variations in experimental animals as well as decrease the number of animals needed.

From these results, it was postulated that 57 Cobleomycin was more specific than 67 Ga-citrate for the detection of tumors. Cobalt-57-bleomycin disappears rapidly from blood and is excreted mainly through the kidneys so high tumor-to-nontumor ratios are obtained shortly after injection. This must be the best characteristic of this radiopharmaceutical. Recently, Grove and Tanaka reported similar results (4,7).

Although the mechanism of accumulation into the tumor cell is still unknown, the authors postulate that the gallium ion might pass through the tumor cell membrane much more easily than the other elements because the ionic radius of gallium (0.62 Å) is similar to that of magnesium (0.66 Å), which is abundant in the tumor cell membrane. Intracellular localization of 67 Ga-citrate in the cytoplasm was greater than in the nuclei. In the cytoplasm, most of the 67 Ga was seen in mitochondrial and microsomal fractions (8). Nelson, et al, using an electron-microscopic autoradiogram, reported that 67 Ga localizes in the lysosomes in tumor cells (9). On the contrary, twice as much 57 Co-bleomycin was found in the nuclei as in the cytoplasm with the 57 Co-

Time (hr)	Tumor		Liver		Kidney		Intestine		Bone		Blood		Muscle	
	⁶⁷ Ga- cit.	⁵⁷ Co- BLM	^{e7} Ga- cit.	⁵⁷ Co- BLM	⁶⁷ Ga- cit.	⁵⁷ Co- BLM	^{e7} Ga- cit,	⁵⁷ Co- BLM						
3	2.61	1.52	1.76	0.59	3.59	1.37	4.25	0.07	3.48	0.12	7.177	0.029	1.11	0.05
	±0.45	±0.31	±0.58	±0.18	±1.44	±1.02	±1.21	±0.02	±1.37	±0.10	±2.800	±0.020	±0.37	±0.02
6	3.39	2.34	4.72	0.81	7.78	2.06	5.29	0.10	5.40	0.09	7.005	0.013	1.12	0.05
	0.59	0.68	1.21	0.23	2.21	1.16	3.01	0.08	2.61	0.03	3.100	0.006	0.40	0.04
24	3. 79	0.71	7.32	0.21	6.69	0.91	2.02	0.04	3.83	0.07	0.813	0.015	0.22	0.02
	1.01	0.41	1.87	0.08	2.90	0.68	0.80	0.03	1.98	0.04	0.420	0.008	0.10	0.008
48	2.55	0.34	6.30	0.22	6.82	0.46	1.35	0.03	2.62	0.03	0.507	0.01 <i>5</i>	0.28	0.02
	0.57	0.22	1.91	0.12	2.38	0.33	0.56	0.01	0.65	0.02	0.310	0.003	0.08	0.01
72	1.83 0.34	0.21 0.13	6.88 2.50	0.16 0.15	5.82 1.02	0.34 0.10	0.21 0.12	0.01 0.008	2.62 1.02	0.02 0.01	_	_	0.22 0.12	0.018 0.006
120	1.73 0.62	0.16 0.08	4.98 1.17	0.09 0.04	1.52 0.84	0.05 0.02	0.15 0.08	0.003 0.001	0.43 0.21	0.003 0.002	_	_	0.043 0.020	0.001 0.000



FIG. 1. Gallium-67-citrate (A) and ⁵⁷Co-bleomycin (B) were injected simultaneously into Ehrlich's tumor-bearing mice. Ordinate is retention value of radionuclide expressed as percent of administered dose per gram tissue weight in various tissues and tumor. Abscissa is time interval after administration of ⁶⁷Ga-citrate and ⁸⁷Cobleomycin. Note difference in distribution in organs with two scanning agents.

	T/M		T/B		T/L		T/K		T/Bo.		T/In.	
Time (hr)	⁶⁷ Ga- cit.	⁵⁷ Co- BLM	^{e7} Ga- cit.	⁵⁷ Co- BLM	⁶⁷ Ga- cit.	⁵⁷ Co- BLM	⁶⁷ Ga- cit.	⁵⁷ Co- BLM	⁶⁷ Ga- cit.	⁵⁷ Co- BLM	^{e7} Ga- cit.	⁵⁷ Co- BLM
3	2.35	30.4	0.36	52.4	1.48	2.58	0.73	1.11	0.75	12.7	0.61	21.7
6	3.03	46.8	0.48	18.0	0.72	2.89	0.44	1.14	0.63	26.0	0.64	23.4
24	17.20	35.5	4.66	54.6	0.52	3.38	0.57	0.78	0.99	10.1	1.88	17.8
48	9.11	17.0	5.03	22.7	0.40	1.55	0.37	0.74	0.97	11.3	1.89	11.3
72	8.32	11.7	_	_	0.27	1.40	0.31	0.62	0.70	10.5	8.71	21.0
120	40.20	160.0		· —	0.35	1.77	1.14	3.20	4.02	53.3	11.50	53.3

bleomycin being strongly attached to DNA molecules in the studies of Kono (10). According to the above information, it is logical to propose that the different rates of uptake and excretion of 57 Co-bleomycin and 67 Ga-citrate are explainable by their different sites of localization within the cell.

It is obvious that both agents have advantages and disadvantages that must be weighed before their application to an individual case. Further investigations of the clinical applications of ⁵⁷Co-bleomycin are in progress and will be reported in the near future.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to W. S. Keane, U.S. Naval Hospital, Yokosuka, Japan. This research was supported by a grant from the Japan Ministry of Education.

TABLE 3. COMPARISON OF UPTAKE OF 67Gg-CITRATE AND 57Co-BLM IN INFLAMMATORY AND TUMOR LESIONS OF YOSHIDA SARCOMA-BEARING RATS 24 HR AFTER INTRAPERITONEAL INJECTION (% DOSE/GM)*

			"Ga-citrate	
Lesions	^{e7} Ga-citrate	⁵⁷ Co-BLM	⁵⁷ Co-BLM	
Inflammation (acute				
stage)	0.244 ± 0.079	0.009 ± 0.002	25.4	
Tumor	0.530 ± 0.156	0.114 ± 0.052	4.6	
Inflammation (subacute				
stage)	0.114 ± 0.034	0.004 ± 0.001	29.2	
Tumor	0.935 ± 0.196	0.081 ± 0.025	11.5	

REFERENCES

1. EDWARDS CL, HAYES RL: Tumor scanning with "Gacitrate. J Nucl Med 10: 103-105, 1969

2. NOUEL JP, RENAULT H, ROBERT J, et al: La Bleomycine marquée au ⁵⁷Co dans le diagnostic des tumeurs malignes et de leur extension. *Nouv Presse Med* 1: 95-98, 1972

3. MAEDA T, KONO A, KOJIMA M: Tumor scanning with ⁵⁷Co-bleomycin. *Radioisotopes* 21: 436–438, 1972

4. GROVE RB, ECKELMAN WC, REBA RC: Distribution of labeled bleomycin in normal and tumor-bearing mice. J Nucl Med 14: 917-919, 1973

5. HISADA K, ANDO A, SUKUKI Y, et al: Comparison between ⁵⁷Co-bleomycin, ^{50m}Tc-bleomycin and ¹¹¹In-bleomycin as the tumor scanning agent. *Radioisotopes* 23: 53-58, 1974 (in Japanese) 6. HIGASHI T, KANNO M, KURIHARA H, et al: A method for the simultaneous measurement of ⁶⁷Ga, ¹¹¹In, and ⁷⁵Se in tumors using a semiconductor detector. J Nucl Med 13: 624–626, 1972

7. TANAKA M, MAEDA T: Diagnosis of lung cancer with labeled bleomycin. Naika 32: 881-885, 1973 (in Japanese)

8. HIGASHI T, NAKAYAMA Y, AKIBA C, et al: The mechanism of uptake of gallium-67 in tumor cells. *Radioisotopes* 22: 291–296, 1973

9. BROWN DH, SWARTZENDRUBER DC, CARLTON JE, et al: The isolation and characterization of gallium-binding granules from soft tissue tumors. *Cancer Res* 33: 2063-2067, 1973

10. KONO A, KOJIMA M, MAEDA T: On the ⁵⁷Co-bleomycin. Jap J Clin Radiol 18: 195-196, 1973 (in Japanese)

SNM TECHNOLOGIST SECTION

22nd Annual Meeting

June 17-20, 1975

Philadelphia Civic Center

Philadelphia, Pennsylvania

THIRD CALL FOR TECHNOLOGIST SCIENTIFIC EXHIBITS

The Technologist Program Committee announces that abstracts of exhibits are now being reviewed for the 22nd Annual Meeting. Applications are welcomed from all technologists. The Committee also welcomes exhibits that compliment presented papers on the program.

All exhibits will be illuminated by available room light. There will be no provisons for transillumination, e.g., view boxes. The exhibit should be mounted on poster board not exceeding 30 x 30 in. No more than two boards may be entered for a subject. Exhibits should be clearly titled. Submit the following information with your application: Exhibitor's name and affiliation, title of exhibit (10 words maximum), abstract (100 words), dimensions (maximum of two boards not exceeding 30 x 30 in.).

Exhibit Awards: The Section is pleased to announce the presentation of 1st, 2nd, and 3rd place awards for the three most outstanding scientific exhibits. These are judged on the basis of scientific merit, originality, display format, and appearance.

Send applications to:

James K. Langan Division of Nuclear Medicine The Johns Hopkins Hospital 601 N. Broadway Baltimore, Md. 21205

Deadline April 15, 1975