
Three methods for calculating the deadtime
in scintillation cameras by the two-source
method are presented. Their accuracy is com
pared with that of seven methods that have been
described.

Rapid dynamic quantitative studies with the Anger
camera and multimillicurie injection of short-lived
radionuclides may produce counting rates ranging
from 15,000 to 30,000 cps. Even at such rapid
rates, the statistics of histogram data points from
small flagged areas of interest may leave much
to be desired. For this reason the dose injected
may be limited by the expected deadtime losses of
the imaging system. At high counting rates these
losses are very significant and require correction (1)
because of the 4â€”8 @secdeadtime of typical Anger
cameras. The addition of a computer-controlled data
processing system may further extend the deadtime
to 10 or 15 @sec.For a system with a deadtime of
10 @sec,a measuredcountingrate of 30,000 cps
must be corrected by a factor of 1.43 to 42,900.
An error in this deadtime of Â±1 @secwould affect
the corrected value by Â±4.3% . In most systems the
deadtime varies somewhat with counting rates, and
before such a system is used for quantitative studies
the deadtime should be measured accurately over a
wide range of counting rates.

For the determination of deadtime, the familiar
two-source method is both rapid and convenient (2).
In this procedure two approximately equal sources
are counted separately and in combination. However,
several equations that appear in the literature for the
calculation of deadtime by the two-source method
(3â€”i1) are approximations that assume RT < < 1
or the background to be negligible. When using one
of them for Anger camera imaging systems, in which
the product, RT, of the counting rate and the dead

time may be in the range 0.2â€”th4, one must be sure
that the error is acceptable. The purpose of this corn
munication is to present two precise methods of
calculation developed by the authors and to compare
them with a number of other equations from the
literature. We also present an improved modification
of one of these other equations.

The following symbols are used:
R,, R2, R12,and Bk are measured rates from

Nos. 1 and 2 sources, from the combination of the
two, and the background, respectively.

N,, N2, and N,2 are corresponding â€œtrueâ€•rates
corrected for deadtime.

Bc is the background rate corrected for dead
time.

T is the general symbol for deadtime.
T,, . . ., T,0 are values of the deadtime as cal

culated by a number of methods to be described.
For the two-source method:

N12+Bc=N1 +N2or

R12 Bk _ R, R2
1-R12T@ l-BkT@ 1-R1T@ l-R2T

The background appears only on the left side of
the equation because the background rate is included
but once when measuring R,2 and twice when meas
uring R1 and R2 (7).

Method 1. The authors have written a computer
program to find a value of T1 by successive approxi
mation to satisfy the foregoing equation. It calcu
lates T1 to a precision of less than 0.01 @secand is
valid at any measured counting rate and background.
For verification, the program also ouputs (N12 +
Bc) and (N1 + N2) in addition to the final value
for T1.
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Parameters Calculated deadtime (4usec)

Method 2. The authors have also expanded the
foregoing equation into a quadratic:

AT2+BT+C=0

where A = RIR2RI2 + RIRBk â€”R1R12Bk â€”
R2R,2Bk

B = 2(R12Bk â€”RIR2)
C = R1 + R2 â€”R12â€”Bk.

Of the two possible solutions, the only valid one is:

T = â€”Bâ€”VB2â€”4AC

values will show a significant error. We have made
an empirical background correction to Method 4 to
eliminate most of the background error:

Method 10.

2(R1 +R2â€”R,2â€”Bk)
T10 @(R+R2 2Bk)(R12â€”Bk)

Both Methods 4 and 10 require R1 and R2 to be
approximately equal within Â±10%.

The relations between the variables N1 , Bc, T, and
T1 (i = 1@. . ., 10) are shown in Fig. 1 and Table 1.
For these purposes the true counting rates are:

N2=N, andN,@=2N1

A short FORTRAN program was written to dis
play, under operator control, a wide range of these
graphs on a CRT. Subsequently, a hardcopy is then
obtained. For a given Bc, true deadtime, T, and
counting rate N1 this program first calculates cor
responding values for R,, R2, and R12, and Bk. It

S

FIG.1. Hardcopydisplayofresultsofcalculatingdeadtime,
T,, by each of ten methods. Background is 30 cps. T1 is shown
as function of corrected sample counting rate, N1, from 2,000 to
30,000 cps, for true deadtimes of 5, 10, and 15 @tsec.

2A

The authors have written a brief computer pro
gram for the calculation of this quadratic. Values
agree with Method 1 to a precision of 0.002 @sec
(6-digit accuracy) . Slightly different roundoff or
truncation errors may occur with other computers.

Methods 3â€”9are taken from the literature:

Method 3. (2,7)

Ts 2RIR@@ 8(R,2 + 2Bk)(12/R1R2)

where @=R1+R2â€”R12â€”Bk.

Method 4. (7)

T _2(R1+R2â€”R,2)
4â€” (R1+R2)R,2

Method 5. (3,7,10,12,13)

Method 6. (4,7)

T _R1+R2â€”R12
5â€” 2R3R2

T = D[1 +@(R,2 â€”3Bk)]

R1+R2â€”R,2â€”Bk
where D = 2(R1 _ Bk)(R2 â€”Bk)

Method 7. (3)

T â€” R1+R2â€”R,2
7 â€” R122 â€” R12 â€” R2

Method8. (3â€”6,11)

T _@1+R,2@k
@ â€” R122 â€” R12 â€” R22

Method 9. (10â€”12)

â€” (R1â€” Bk) + (R2â€” Bkâ€” (R12â€” Bk)

T9 â€” â€¢@Lâ€”Bk)(R2 â€”Bk)

Review of preliminary hardcopy curves showed
that of the seven methods from the literature, Method
4 provides the best precision over a wide range of
factors. Only at poor signal-to-background ratios or
if R1 and R, differ considerably from each other,

liii Cliii 1111$I, ud I, (spi)

TABLE 1. VALUES OF THE DEADTIME, T1, AS
CALCULATEDBY EACH OF TEN METHODS

T = 10 @sec
N1 = 15,000 cps
N2 = 15,000 cps
N@ = 30,000 cps
Bc 30 cps
R,= 13,066cps
R2 13,066 cps
R,@,= 23,095cps
Bk = 30 cps

T1= 9.995
T2= 9.997
T3= 9.805
T. = 10.064
T5= 8.894
1. = 9.747
T7= 15.822
T5= 15.666
T. = 8.847
110 = 9.987
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then computes the values of the deadtime as deter
mined by each of the nine methods. The curves thus
generated show T3 as a function of N1.

DISCUSSION

Because the two-source method involves the meas
urement of a small difference between two groups of
counting rates, statistical errors may often be of
greater importance than the computation error inher
ent with a particular mathematical treatment. Statis
tical errors of the two-source method have been dis
cussed by Beers (2).

Most of the two-source method equations were
developed before computers were commonly avail
able, as approximations either to the quadratic or
to a set of simultaneous equations. They were in
tended for G-M tube measurements at relatively low
counting rates. Care must be exercised when apply
ing them to the scintillation camera for rapid quan
titative dynamic studies. In this application, precise
measurements of the deadtime should be performed
for any anticipated source intensity.

A series of measurements of deadtime for our sys
tems show significant variation of deadtime with
counting rate. When these data are entered into a
polynomial curve-fitting program, an empirical equa
tion is obtained relating the deadtime to the counting
rate. This equation is then incorporated into the pro
gram used to correct each point on dynamic function
curves.

For scintillation camera deadtime measurement,
the quadratic of Method 2 is the procedure of choice
when a computer is available. This program is both
shorter and faster in operation than the equally pre
cisc iterative Method 1. For computation without
a computer, Method 10 provides values of the dead
time remarkably close to the quadratic if both
sources are of nearly equal activity. Some of the

other approximation equations may be significantly
or grossly wrong.

On request, the authors will be pleased to provide
a listing of the program for Methods 1 or 2 in
BASIC, FOCAL, or FORTRAN.
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