KIT FOR CARRIER-FREE ¹²³I-SODIUM IODIDE. VIII

A kit preparation for high-purity carrier-free 1^{23} I-sodium iodide from the 1^{23} Xe $\rightarrow 1^{23}$ I generator is described. The optimum dissolution procedure, the characteristics of the Na¹²³I from the suggested kit preparation, and the features of the kit are discussed.

Iodine-123 is an ideal radioiodine for use in radiopharmaceuticals. The desirability of 123 I from the point of view of its physical properties and radiation dosimetry is well known. The prospects for general availability of 123 I are good; thus, the need for the development of convenient methods of preparation of carrier-free 123 I are apparent. The preparation of carrier-free 123 ICl as an iodination reagent for the synthesis of radiopharmaceuticals has recently been described (1).

In this paper we report on a kit method for the fast, dependable preparation of carrier-free Na¹²³I. The radiochemical purity and chemical forms of ¹²³I that are formed following the ¹²³Xe(β^+ ,EC)¹²³I nuclear transformation under selected experimental and preparative conditions are discussed. A ¹²³Xe \rightarrow ¹²³I kit that could be supplied to hospitals is described.

Sodd, et al (2–7) have provided an exhaustive evaluation of the accelerator production of ¹²³I. Further exploratory studies by Lambrecht, et al (1,8) have verified the suggestion that the production of ¹²³I by the ¹²³Xe generator coupled with rigorous chemical scrubbing (1,8) results in \geq 99.8% radionuclidic purity as ¹²³I. The only radiohalogen contaminant is \leq 0.2% ¹²⁵I. The ¹²³Xe decays by positron emission and electron capture with a 2.1-hr half-life to ¹²³I (T_{1/2} = 13.3 hr). The ¹²⁵I (T_{1/2} = 60 days) contaminant results from the decay of ¹²⁵Xe (T_{1/2} = 16.8 hr) which is produced simultaneously with the ¹²³Xe. For the cyclotron production of ¹²³I we recommend the ¹²²Te(⁴He,3n)¹²³Xe and ¹²³Xe(β^+ ,EC)¹²³I nuclear reactions with E_{4 Ha} ~ Richard M. Lambrecht, Elinor Norton, and Alfred P. Wolf Brookhaven National Laboratory, Upton, New York

45-36 MeV. The alternate but as yet unexplored possibilities are the ¹²²Te(d,n)¹²³I and ¹²⁴Te(p,2n)¹²³I nuclear reactions which might be feasible if ultra-high purity ¹²²Te or ¹²⁴Te were commercially available. Extensive calculations (9,10) reported in 1969 and preliminary (11) experiments have indicated that multicurie quantities of ¹²³Xe can be produced in high yield and purity with the ¹²⁷I(p,5n)¹²³Xe nuclear reaction. Subsequently, Fusco, et al (12) have verified the radiochemical purity and yield obtainable with the spallation reaction. The production of ¹²³Xe is presently the most promising route from which to obtain high-purity carrier-free ¹²³I. The preparation of carrier-free Na¹²³I is independent of the method of ¹²³Xe production.

EXPERIMENTAL MATERIALS AND METHODS

The cyclotron parameters and the gas-collection traps and purification procedures used to obtain highpurity carrier-free ¹²³Xe free of radiohalogen contamination are discussed elsewhere (1,8). The ¹²³Xe was purged from the irradiated ¹²²Te target and was collected on-stream in Pyrex traps immersed in liquid nitrogen. The $^{123}Xe + ^{123}I$ were either used directly or vacuum transferred to the holding vessel that is shown in Fig. 1 and stored in liquid nitrogen $(77^{\circ}K)$ or a dry-ice Dewar $(-78^{\circ}C)$ for 6.5-7.5 hr. When ~90% of the ¹²³Xe had decayed to ¹²³I, the ¹²³I-radionuclidic purity and yield was optimum. The apparatus was fabricated with O ring seals so that the unit containing the O ring seated glass stopcock was vacuum tight even at 77°K. The volume of the vessel was 100 ml. The cap was easily removed after the vacuum was released and provided an easy access for removal of the aqueous iodide solution after the dissolution reagents were added.

Received July 24, 1972; revision accepted Nov. 29, 1972. For reprints contact: R. M. Lambrecht, Chemistry Dept., Brookhaven National Laboratory, Upton, N.Y. 11973.

FIG. 1. Holding vessel for ¹²³Xe ¹²³I generator.

Analytical methods. Descending paper chromatography was used for the quantitative analysis and identification of the chemical forms of ¹²³I. Whatman No. 1 chromatographic grade paper was used and the eluant chosen was butanol saturated with 3 M NH,OH. The chromatograms were developed for 6-8 hr and were protected from open exposure to air and light as much as possible. Losses of carrierfree iodide from the chromatographic paper under these conditions did not appear to be serious but have been observed previously (13). If the chromatographic paper containing microgram amounts of iodide is left exposed to light and air, iodide is lost. We observed a 10% loss in 3 hr, 30% in 6.5 hr, and 70% in 24 hr. Note, however, that even under conditions in which iodide is not lost, some forms of iodine may be volatile.

The R_f values for the chemical forms of iodine as IO_{3}^{-} , IO_{4}^{-} , and I^{-} were established by x-ray fluorescence detection on chromatograms developed with 10 μ g of the respective sodium salts. An R_f value of 0.00 \pm 0.05 was assigned to iodate and periodate, whereas an R_f value of 0.24 \pm 0.05 was identified as iodide. In addition, one to four unidentified chemical forms of ¹²³I were found in the carrier-free solutions^{*}. Iodine as ${}^{123}I_2$ was not found in the preparations.

The paper chromatograms were qualitatively evaluated by exposing the developed chromatogram to Dupont Cronex 4 film for several hours. For the quantitative assay of the ¹²³I, the chromatogram was subsequently cut into segments and counted in a NaI(Tl) scintillation counter of known efficiency. The radiochemical yields were determined by the ratio of the activity in the respective bands to the total activity on the chromatograph. Unless otherwise indicated, $100 \pm 5\%$ of the activity applied to the chromatogram was recovered. Results of duplicate chromatograms of the same sample were within $\pm 2\%$ a.d.

Iodine-123 dissolution procedures. Two approaches from which to obtain carrier-free Na¹²³I were investigated. The ¹²³Xe \rightarrow ¹²³I nuclear transformation can be allowed to occur directly in solution. Unfortunately, the limited solubility of xenon in aqueous solutions negates the usefulness of this method on a preparative scale unless the dead volume is very small and the ¹²³Xe is continuously mixing with the solvent. The latter point could be a source of difficulty if the Na¹²³I kit were to be shipped while the ¹²³Xe \rightarrow ¹²³I decay-process was occurring. The second approach was the dissolution of ¹²³I from a Pyrex surface on which the ¹²³Xe had been condensed and allowed to decay to ¹²³I.

Table 1 summarizes data on the identity and yield of the chemical forms of ¹²³I that are in solution. The final chemical forms of ¹²³I in solution are quite sensitive to the dissolution reagents, reducing agents, and neutralization procedures used to give a final product of pH ~ 7. Typically, >95% of the ¹²³I in the trap was removed from the walls with the dissolution procedure. See Table 1 (1.3-1.9). The optimal yield of ¹²³I was obtained when the activity was dissolved in sodium hydroxide and sodium thiosulfate was added before the solution was neutralized with hydrochloric acid (1.6B, 1.7 and 1.8). Sodium bisulfite was more effective at reducing the oxidized forms of jodine to jodide (1.6D) than sodium thiosulfate. An 0.1 M solution of sodium bisulfite is not acceptable in a pharmaceutical product.

In addition to IO_{3}^{-} , IO_{4}^{-} , and I^{-} , the Na¹²³I preparations contained from one to four unidentified forms with their R_f values at 0.48, 0.67, 0.77, and 0.94. The best dissolution procedures tested resulted

^{*} The solutions are carrier-free in the context that the ¹²³I is removed from the collection vessel without the addition of a natural iodine carrier. However, we have not attempted to remove the iodine that may be present in the starting reagents. The unidentified ¹²³I bands may be related to the reaction of the ¹²³I species with impurities present in the dissolution media.

in the elimination of all but a single form that is typically found in a $\sim 3\%$ yield at an R_t value of 0.94. The fact that this fraction does indeed correspond to a chemical form of ¹²³I and not to a radioimpurity in the preparation was verified by gamma spectrometry.

The anomalous bands are not peculiar to the ${}^{123}Xe \rightarrow {}^{123}I$ generator since others have observed unidentified fractions in carrier-free preparations of Na¹³¹I formed by the (n,γ) activation of ${}^{130}Te$ (14-23).

suggested method for the $^{123}\ensuremath{I^-}$ kit

A suggested ${}^{123}Xe \rightarrow {}^{123}I$ generator kit is shown in Fig. 1. The characteristics of a typical carrierfree Na ${}^{123}I$ preparation are summarized in Table 2. The total solids in the preparation are sodium chloride (2.5 mg/ml) resulting from the pH adjustment and the reducing agent (0.2 mg/ml). The tellurium carryover from the irradiation target is below the limits of detection by atomic absorption, i.e., <1 μ g/ml. The final preparation contains 0.02% sodium thiosulfate as a stabilizing reagent to prevent the oxidation of iodide to iodine, iodate, and periodate. Sodium thiosulfate is itself oxidized at a rate proportional to the radioactive concentration (24). However, the shelf-life of Na¹²³I is long relative to the 13.3-hr physical half-life of ¹²³I. Hence, 0.02% sodium thiosulfate is adequate for preserving the quality of the Na¹²³I.

The advantages of the ¹²³I⁻ kit are that the short-lived parent, ¹²³Xe, can be collected at the accelerator and transported to hospitals while the ¹²³Xe(β^+ ,EC)¹²³I nuclear transformation is occur-

Typical radiochemical yield, %							
	Dissolution procedure	¹²³ IO ₃ ~	+ ¹²⁸ IO ₄ ^{- 12}	⁸ l ^{- 123} l-others	Comments* †		
1.1	¹⁵⁸ Xe→ ¹²⁸ I decay in 0.1 <i>M</i> NaOH	1.3	96	2.7	Low solubility of Xe in gaugous solu		
1.2	¹²³ Xe→ ¹²³ I decay in H₂O	3.9	86	8.9	tion negates routine use as kit.		
1.3	¹²⁹ I dissolution from trap with distilled H ₂ O	5.9	76	16.4	95% recovery, paper streaked 1 min after dissolution.		
		3.4	80	15.6	82% recovery, paper streaked 5 min after dissolution.		
		6.0	86	7.1	Paper streaked 1 hr after dissolution		
		3.5	84	12.0	75% recovery, paper streaked 1.5 h after dissolution.		
1.4	¹²³ I dissolution from trap with 0.1 M NaOH, neutralize with 0.1 M HCI,						
	(A) no reducing agent	6.1	85	6.4			
	(B) add 10 ⁻² to 10 ⁻³ M Na ₂ S ₂ O ₃	6.1	88	5.5			
1.5	¹²³ I dissolution from trap with 1.0 M NaOH	11.0	86	2.5			
	+ H ₂ O, neutralize with 0.1 M HCl, add 2 \times 10 ⁻⁸ M Na ₂ S ₂ O ₃	7.7	87	5.1			
1.6	¹²³ I dissolution from trap with 1 M NaOH						
	(A) neutralize with 0.1 M HCl, add 2 × 10 ⁻³ M Na ₂ S ₂ O ₃	13.9	82	3.8			
	(B) add 2 × 10 ⁻⁸ M Na₂S₂O₃, neutralize with 0.1 M HCI	1.1	95	3.2			
	(C) Mixture of equal volumes of (A) & (B)	7.1	89	3.2			
	(D) Solution (C) $+$ 0.1 M NaHSO ₃	0.2	98	1.8			
1.7	128 I dissolution from trap with NaOH, add 2 \times 10 $^{-8}$ M Na_2S2O_3, neutralize with 0.1 M HCI	1.4	95	3.4			
1.8	123 l dissolution from vessel with 0.1 M NaOH, add 2 \times 10 $^{-3}$ Na ₂ S ₂ O ₃ , neutralize with 0.1 M HCl	0.2	96	2.8	96% recovery.		
1.9	¹²⁸ I dissolution with 0.1 M NaCl containing 0.2% Na ₂ S ₂ O ₃ pH $=$ 7	0.3	93	6.6	82% recovery from chromatogram \sim ¼ of ¹²⁸ 1 not in final solution.		

* Recovery balance is ratio of % activity recovered on the chromatogram vs the activity applied. Radiochemical yields are relative to activity recovered on the paper chromatogram.

 \dagger Most experiments reported are the average of two or more duplicate chromatograms, experimental error $<\pm2\%$ a.d.

TA	BLE	2.	CHA	RACI	FERISTICS	OF	Na ¹²³ I	FROM
THE	SUC	F GE	STED	KIT	PREPARA	TIO	N PROG	CEDURES

Chemical form	Carrier-free Na ¹²³ l			
Chemical composition	95% iodide, <1.5% iodate + periodate, balance unidentified io- dides			
Radioiodine purity	≥99.8% as ¹²³ I, balance as ¹³⁵ I			
Total solids	2.5 mg, ml NaCl			
Reducing agent	0.2 mg/ml or 0.02% Na ₂ S ₂ O ₃			
pH of final solution	6.8– 7.8			
Tellurium content	<1 µg/ml			

ring. At the appropriate time after receipt of the kit, the dissolution reagents are added to the vessel. The product is ready for dispensing with less than 20 min of workup at the clinic. A disadvantage, although not serious, is that the generator, which is not a generator in the true sense, can be used only once for each $^{123}Xe \rightarrow ^{123}I$ shipment. One limitation necessitates that the dissolution be performed in an area which has adequate ventillation to dispose of the radioxenons that are insoluble in the aqueous solution and volatilize during the dissolution process. The principal advantage of the $^{123}Xe \rightarrow ^{123}I$ kit is that carrier-free $^{123}I^-$ is now available in a radionuclidic purity heretofore unavailable.

While the virtues of ¹²³I in radiopharmaceuticals have been noted in the literature for some time now (25,26), ¹²³I with acceptably low quantities of other radioiodine, especially ¹²⁴I and ¹²⁵I, has not been readily available. It must be stressed that the preparation described in this paper contains no ¹²⁴I and less than 0.2% ¹²⁵I. Presently, the production of "economical quantities" of ¹²³I by this method are being explored at BNL. The same method we have described can be used to convert the multicurie quantities of ¹²³Xe which will be produced by BLIP (27) when it eventually comes on stream. Although the production method differs, the products in both cases are characterized by high radionuclidic purity. Clinical evaluation of ¹²³I prepared by this method has been in progress for some time now and has been reported (28,29).

ACKNOWLEDGMENT

The research was performed under the auspices of the U.S. Atomic Energy Commission. For an earlier paper in this series on ¹²⁸I, see Reference I of this article. We also acknowledge the scientific glassblowing of Karl Walther.

REFERENCES

1. LAMBRECHT RM, MANTESCU C, REDVANLY C, et al: Preparation of high purity carrier-free ¹²³I monochloride as iodination reagent for synthesis of radiopharmaceuticals. IV. J Nucl Med 13: 266-273, 1972

2. SODD VJ, BLUE JW, SCHOLZ, KL: ¹²³I production for pharmaceutical use. In *The Uses of Cyclotrons in Chemistry, Metallurgy and Biology,* Amphlett CB, ed, London, Butterworths and Co, 1970, pp 125–137

3. BLUE JW, SODD VJ: ¹²⁹I production from the β^* decay of ¹²³Xe. In *The Uses of Cyclotrons in Chemistry, Metallurgy and Biology,* Amphlett CB, ed, London, Butterworths and Co, 1970, pp 138–147

4. SODD VJ, SCHOLZ KL, BLUE JW, et al: Cyclotron production of I-123: an evaluation of the nuclear reactions which produce this isotope. *BRH/DMRE* 704: p 34, 1970

5. SODD VJ, BLUE JW, SCHOLZ KL: Pure ¹⁸⁹I production with a gas flow target. J Nucl Med 12: 395-396, 1971

6. SODD VJ, SCHOLZ KL, BLUE JW, et al: Evaluation of nuclear reactions that produce ¹⁸³I in the cyclotron. *Isot Radiat Tech* 9(2): 154–159, 1971–1972

7. BLUE JW, ROBERT WK, SODD VJ, et al: ¹²⁸I production for use in nuclear medicine by spallation of xenon. NASA TM X 67875, 1971

8. LAMBRECHT RM, WOLF AP: The $^{128}Te(\alpha,3n)^{128}X \rightarrow ^{128}I$ generator, VI. Radiat Res 52: 32-46, 1972

9. STANG LG, HILLMAN M, LEBOWITZ E: The production of radioisotopes by spallation. BNL Report 50195 (T-547), 1969

10. LEBOWITZ E, GREENE MW, RICHARDS P: On the production of ¹²³I for medical use. BNL 15015 R, Int J Appl Radiat 22: 489-491, 1971

11. LEBOWITZ E, LAMBRECHT RM: unpublished results, 1972

12. FUSCO MA, PEEK NF, JUNGERMAN JA, et al: Production of carrier-free ¹²⁵I using the ¹²⁷I(p,5n)¹²⁵Xe reaction. J Nucl Med 13: 729-732, 1972

13. ANGHILERI LJ: Chromatographic loss of carrier-free ¹³¹I. Int J Appl Radiat 14: 427-428, 1963

14. CVORIC J: Chemical forms of iodine in carrier-free preparations of Na¹³³I. J Chromatogr 44: 349-361, 1969

15. DOCTOR VM, TRUNNELL JB: Studies on the effect of storage on the purity of sodium iodide-¹³³I. Endocrinology 64: 455-461, 1955

16. TAUROG A, TONG W, CHAIKOFF IL: An unidentified iodine compound formed by incubation of cell-free preparations of tissue with iodide-¹³¹I. J Biol Chem 224: 759-772, 1957

17. DEGROOT LJ, BERGER JE: A note on inorganic oxidation products of ¹⁸¹I formed in biological systems. *Endocri*nology 67: 657-662, 1960

18. TAUROG A: An unidentified ¹³¹I contaminant of radioiodide preparations. Endocrinology 69: 126–138, 1961

19. AHN CS, ROSENBERG IN: Non-iodide radioactivity in commercial solutions of sodium radioiodide⁻¹⁸I. Endocrinology 68: 50-61, 1961

20. KAHN M: In Inorganic Isotope Synthesis, Herber RH, ed, New York, WA Benjamin Inc, 1962, pp 236-242

21. KAHN M, WAHL AC: Some observations on the chemical behavior of iodine at low concentrations. J Chem Phys 21: 1185-1189, 1953

22. REYNOLDS MS: Some observations on the chemical behavior of carrier-free ¹³¹I and dilute carrier ¹²⁷I. Thesis, University of New Mexico, 1967, p 185

23. HASHIMOTO T, TAMAI T, MATSUSHITA R, et al: Chemical behavior of carrier-free iodine produced by beta decay and effects of iodine carriers. J Nucl Sci Techn 7: 92-96, 1970

24. Manual of Radioisotope Production, Tech Report No 63, International Atomic Energy Agency, Vienna, 1966, p 265

25. MEYERS WG, ANGER HO: Radioiodine-123. J Nucl Med 3: 183, 1962

26. WAGNER HN, EMMONS E: Characteristics of an Ideal Radiopharmaceutical, Andrews GA, Kniseley RM, Wagner HN, eds, USAEC CONF-651111, 1966, pp 1-32

27. LEBOWITZ E, RICHARDS P: The impact of BLIP on radiopharmaceuticals. Trans Amer Nucl Soc 15: 133-4 1972

28. ATKINS H, KLOPPER J, LAMBRECHT R, et al: A comparison of ⁹⁰mTc and ¹²³I in thyroid imaging. J Nucl Med 13: 411, 1972

29. LAMBRECHT RM, MANTESCU C, ATKINS H, et al: Development of new iodine-123 radiopharmaceuticals. Trans Amer Nucl Soc 15: 131-132, 1972

Accepted Articles To Appear in Upcoming Issues

Reduction in Scan Time with Minification (Letter to the Editor). Accepted 11/19/72. D. C. Barber Compromise in ^{SS}F Bone Scanning (Reply to Letter to the Editor). Accepted 11/29/72. P. Braunstein, J. G. Hernberg, and R. Chandra Evaluation of Serum Thyroxine by Radioimmunoassay. Accepted 11/29/72

Evaluation of Schull Information of Action and Schull Information of Schull Information of Action Information of Action Information Informatio Informatio Informa

Radionuclide venography (1997) 7/72. George B. McDonald, Glen W. Hamilton, Robert W. Barnes, Thomas G. Rudd, D. E. Strandness, and Wil B. Nelp Simple Way to Widen the Spectrometer Window in the Ohio-Nuclear Scanner for ⁴⁷Ga Scanning (Letter to the Editor). Accepted 12/7/72.

En-lin Yeh Quality Control of Radiopharmaceutical Kits (Letter to the Editor). Accepted 12/7/72. M. W. Billinghurst Author's Reply to Letter to the Editor. Accepted 12/7/72. H. J. Dworkin New Radiopharmaceutical for Combined Lung-Liver Scan—Prelimi-nary Experiment in Animals (Concise Communication). Accepted 12/7/72

New Radiopharmaceutical for Combined Lung-Liver Scan—Prelimi-nary Experiment in Animals (Concise Communication). Accepted 12/1/72. Tapan K. Chaudhuri, Tuhin K. Chaudhuri, and James H. Christie Localization of Technetium^{9m} in the Choroid Plexus of the Fourth Ventricle (Case Report). Accepted 12/1/72. Raymundo T. Go and John J. Ptacek Distribution of ¹⁴C-Isoxazole in Adrenals, Ovaries, and Breast Car-cinoma. Accepted 12/14/72. Ung Y. Ryo, and William H. Beierwaltes Focal latrogenic Increased Radiocolloid Uptake on Liver Scan (Case Report). Accepted 12/14/72. Herbert D. Helbig ^{9mm}Tc Pertechnetate Transport in Man: Absorption After Subcutane-ous and Oral Administration Secretion into Saliva and Gastric Juice. Accepted 12/29/72. Marguerite T. Hays Radiopotassium-38 for In Vivo Studies of Dynamic Processes (Pre-liminary Note). Accepted 12/29/72. William G. Myers Caval-Portal Shunting as a cause of a Focal Increase in Radiocolloid Uptake in Normal Livers (Concise Communication). Accepted 12/29/72. Donald L. Holmquest and John A. Burdine Radiopotal L. Holmquest of Saliva Lacks (Concise Report) Lacks

12/29/72. Donald L. Holmquest and John A. Burdine
Radionuclide Demonstration of Spinal Dural Leaks (Case Report).
Accepted 12/29/72. Arie L. Liebeskind, David A. Herz, Alan D. Rosenthal, and Leonard M. Freeman
Scintigraphic Study of Pulmonary Blood Flow Distribution in Cystic Fibrosis. Accepted 12/29/72. A. Piepsz, P. Decostre, D. Baran

Normalized Resin Uptake of Displaced ¹²⁸I-T, Using Denatured Serum. Accepted 12/29/72.

Marvin L. Mitchell Use of a Probe Type Colorimeter for the Continuous Monitoring of pH In Association with the ¹³⁷mBa-EDTA Infusion System. Accepted 1/11/73. Frank P. Castronovo

Frank P. Castronovo Excess Extrahepatic Uptake of Radiocolloid Associated with Liver Abscesses (Case Report). Accepted 1/18/73. Gary F. Gates, John L. Gwinn, Fred A. Lee, and Vaughn C. Payne, Jr. Aspergillomatous Abscesses of the Brain and Thryoid (Case Report).

Accepted 1/18/73.

Accepted 1/18/73.
Robert Lisbona, Yves Lacourciere, and Leonard Rosenthall
Clinical Evaluation of Radioimmunoassay of Digoxin (Concise Communication). Accepted 1/18/73.
H. M. Park, I-Wen Chen, G. T. Manitasas, Andy Lowey, and Eugene L. Saenger
Liver Scintiphotography as an Index of Liver Abnormality. Accepted 1/18/73.
Lock F. Manaum and Malcolm P. Powall

1/18/73. Jack F. Mangum and Malcolm R. Powell
Measurement of Regional Area Gas Exchange (RAGE) by Perfusion and Clearance of ¹³⁵Xenon from the Lung. Accepted 1/18/73. Scott R. Inkley and William J. MacIntyre
Intravenous Perchlorate in Brain Scanning (Preliminary Note). Accepted 1/29/73.
I. H. Buttifield, J. C. Wrench, N. Adiseshan, and J. Arnold
Dual Isotope Method for the Diagnosis of Intracardiac Shunts. Accepted 2/8/73.
Vladimir R. Bosniakovic, Leslie R. Bennett, Larry D. Greenfield

cepted 2/8/73.
Vladimir B. Bosnjakovic, Leslie R. Bennett, Larry D. Greenfield, and William R. Vincent
¹³¹I Thyroid Uptakes: Capsule Versus Liquid. Accepted 2/8/73.
S. Halpern, N. Alazraki, R. Littenberg, S. Hurwitz, J. Green, J. Kunsa, and W. Ashburn
Methods for Calculating the Dead Time of Anger Camera Systems. Accepted 2/8/73.
Accepted 2/8/73.

Ralph Adams and Duane Zimmerman Feasibility of Determining Total Body Calcium in Animals and Hu-man Beings by Measuring ³⁷Ar in the Expired Air After Neutron Irradiation. Accepted 2/8/73.

Haulation, Accepted 2/8/73. H. E. Palmer Sieving of Albumin with Sonification. Accepted 2/8/73. Lewis W. Mayron, Vincent Lopez-Majano, and Ervin Kaplan In Vivo Neutron Activation Analysis for Calcium in Man. Accepted 2/8/73.

G. McNeill, B. J. Thomas, W. C. Sturtridge, and Joan E.

Harrison Non-Tuberculous Psoas Abscess: Localization Using ⁶⁷Ga Accepted

Melvin J. Fratkin and Alton R. Sharpe, Jr. Reliability of Renal Imaging Obtained Incidentally in ^{90m}Tc-Poly-phosphate Bone Scanning (Concise Communication). Accepted 2/8/73. Chan H. Park, Leonard M. Glassman, Noble L. Thompson, and Julio S. Mata