seems logical for it to be present as a cation to form a chelate, as is the case with other transition metals. This is also in agreement with recent carrier ^{99m}Tc electrophoresis data.

> WILLIAM C. ECKELMAN GEORGE MEINKEN POWELL RICHARDS Brookhaven National Laboratory Upton, New York

REFERENCES

1. ECKELMAN W, MEINKEN G, RICHARDS P: The chemical state of technetium in biomedical products. II. The chelation of reduced technetium with DTPA. Submitted to J Nucl Med

2. RICHARDS P, ATKINS HL: Technetium-99m labeled compounds: Proc. 7th Annual Meeting of the Japanese Nuclear Medicine Society, Tokyo, Japan, Nov. 17–18, 1967, Tokyo Radioisotope Assoc, 1968, pp 165–170

A SIMPLER METHOD FOR OPTIMIZING THE WINDOW OF THE ANGER CAMERA FOR ^{99m}Tc

The procedure for optimizing the window of an Anger camera for 99m Tc proposed by Sanders et al (*J Nucl Med* 12: 703-706, 1971) does indeed provide a significant improvement in scan quality, as shown in their paper, but the method has two disadvantages. First, the use of a small 99m Tc source

FIG. 1. In A 10% window is centered on photopeak of 140keV gamma ray of ⁹⁹TC. In B, without any other adjustments, win-

I have modified the technique of optimizing the window to overcome both of these problems. First, the method is used only with an extended source of 99m Tc which may be a flood source or a patient who has received millicurie amounts of 99m Tc for diagnostic examination. Second, by setting the window at 10%, the isotope peak dial is turned until the 99m Tc photopeak is centered in the window as shown in Fig. 1A. Then without further adjustment the window width is increased to 25%. The effect on the photopeak window is shown in Fig. 1B.

to determine the counting rate response over the range of "isotope peak" settings in effect produces a response curve for only a few of the 19 photomultiplier tubes in the array. Second, obtaining the counting rate over the full range of the "isotope peak" potentiometer may take several minutes.

dow width is increased to 25%. Window now covers energy range of 133–167 keV.

The method is simple and while not exactly as accurate as the technique described by Sanders et al, we have observed the same marked improvement in scintiphotos obtained by using this optimized window.

ROBERT C. LANGE

Yale University School of Medicine New Haven, Conn.

ACKNOWLEDGMENT

This work was supported in part by USPHS Grant CA06519.

FEASIBILITY OF ¹³³mBa AS A BONE SCANNING AGENT

Parenterally administered barium salts are largely bone seekers, and ^{131}Ba and ^{135m}Ba have been used as bone scanning agents (1,2). Both ^{131}Ba and ^{135m}Ba suffer from being produced from expensive, isotopically enriched stable targets. Another barium radionuclide, ^{133m}Ba , also has desirable properties as a scanning agent. In addition to reactor production from ¹³²Ba by the n,γ reaction, it can also be made by the ¹³³Cs(p,n) reaction in a cyclotron (3).

Barium-133m decays ($T_{1/2} = 38.9$ hr) by emission of a 276-keV gamma ray to ¹³⁸Ba which is itself radioactive ($T_{1/2} = 7.2$ years). Although associated with all of the disintegrations of ¹³⁸Ba, the 276-keV gamma ray is highly internally converted so that a

Radionuclide	Rads/µCi injected			
	Skeleton	Total body	Injected dose to bone (%)	
188m Ba-188 Ba	0.00257	0.000459	60	
^{185 m} Ba	0.001176	0.000178	60	
¹⁸¹ Ba- ¹⁸¹ Cs	0.00648	0.001840	60	
¹⁶ Sr	0.02759	0.009367	70	
⁹⁷ ^m Sr	0.0000640	0.0000151	70	
¹⁸ F	0.0001113	0.00002556	53	

* The assumption is that 60% of the injected dose goes to bone and decays there with a $T_{1/2}$ of 38.9 hr. The ¹³⁵⁰⁰Ba deposited in bone is assumed to decay to ¹³⁵⁰Ba which decays with an effective half-life equal to the physical half-life (7.2 yrs).

Radiation 1	No/dis 771	Energy(x+v) E1	Δ1 (gm-rad, μCi-hr)
Electron capture	1.0	_	_
γ1	0	0.01129	-
$\mathbf{e}_{\mathbf{L}_{r}} \gamma_{1}$	0.67	0.00669	0.0095
ε χ, γ ₁	0.33	0.01123	0.0078
γ₂ 0.276 keV	0.175	0.2757	0.1027
e_k, γ_1	0.595	0.2383	0.3019
eL, γ ₁	0.172	0.2701	0.0989
εμ, γ1	0.057	0.2756	0.0334
K _{a1} x-ray	0.283	0.0322	0.0193
Kas x-ray	0.147	0.0318	0.0099
K ₈₁ x-ray	0.080	0.0364	0.0062
K _{Bs} x-ray	0.017	0.0374	0.0013
L—x-ray	0.180	0.0045	0.0017
KLL Auger electrons	0.047	0.0263	0.0026
KLX Auger electrons	0.021	0.0308	0.0013
KXY Auger electrons	0.003	0.0353	0.0002
LMM Auger electrons	1.206	0.0034	0.0086
MXY Auger electrons	3.087	0.0011	0.0071
38.9 hr	138m Ba	0.288	
	↓	γ ₂ 0.01229	
	\downarrow	γ1 0	
γ_1 assumed to be co $\gamma_s \frac{e_K}{e_k} = 0.34$, K/L	mpletely con + M =	verted in M an = 2.6.	id L shell

use in radiation dose estimates, Part 2. MIRD Pamphlet No 6, J Nucl Med 11: Supplement 4, 5–32, 1970. gamma ray is emitted in only 17% of the disintegrations. One millicurie of retained ^{183m}Ba decays to only 0.6 μ Ci of ¹³³Ba. Dose calculations are shown in Tables 1 and 2.

A sample of 133m Ba, cyclotron produced, was kindly supplied by Dr. Larry Brown of the Oak Ridge National Laboratory as 183m BaCl₂ in 0.1 *M* HCl (2.2 mCi/ml). This was neutralized, filtered and boiled, taken to dryness, and dissolved in sterile isotonic saline. Dogs were injected with 1 mCi each, and blood samples were drawn periodically. The blood disappearance curve was similar to that described with 131 Ba (1). Bone scans of good quality were obtained with both rectilinear scanners and a gamma-ray camera. It should be noted that 183m Ba, like other barium and strontium isotopes, is excreted in the bowel; scans of the pelvic area should be preceded by thorough cleansing of the gastrointestinal tract.

The short physical half-life of ^{133m}Ba contributes to the low radiation dose (even with the contribution from ¹³³Ba). Despite the highly converted emission there is a significant dose reduction over the commonly used ⁸⁵Sr. The ability to produce ^{133m}Ba in either a nuclear reactor or cyclotron is of particular interest.

ROBERT C. LANGE

RICHARD P. SPENCER Yale University School of Medicine New Haven, Connecticut

ACKNOWLEDGMENT

This work was supported by USPHS CA06519 and by T-492 from the American Cancer Society.

REFERENCES

1. SPENCER RP, LANGE RC, TREVES S: Use of ^{135 m}Ba and ¹³¹Ba as bone-scanning agents. J Nucl Med 12: 216-221, 1971

2. HOSAIN F, SYED IB, WAGNER HN: Ionic ¹⁸⁶Ba for bone scanning. J Nucl Med 11: 328, 1970

3. LEDERER CM, HOLLANDER JM, PERLMAN I: Table of Isotopes, 6th ed, New York, John Wiley & Sons, 1967, pp 76, 478

INHALATION LUNG SCANNING

There appears to be a logical fallacy in two papers recently published in the *Journal of Nuclear Medicine*. In the paper, "Radioaerosol inhalation lung scanning: Its role in suspected pulmonary embolism" (*J Nucl Med* 12: 606–609, 1971) Isawa, et al begin with the premise that "a diagnosis of pulmonary embolism cannot be made by perfusion scanning alone." The conclusion of the paper seems to be that aerosol inhalation scanning helps to make the diagnosis of pulmonary embolism. This conclusion is derived from studies on 28 patients with a final diagnosis of pulmonary embolism "based on the discrepancy between perfusion and aerosol deposition patterns." This appears to be begging the ques-