Rapid scintiphotographic studies with 99mTc-pertechnetate and the Anger scintillation camera have been used to visualize major blood pathways as well as the vascularization (or the lack thereof) in various body organs. Functioning metastatic thyroid disease would appear to be a particularly useful area for this technique since one is able to visualize both the early vascularization of the lesion and the later trapping of the pertechnetate by the functioning thyroid tissue. The method used is similar to what has been described previously in other areas (1,2).

CASE REPORT

A 66-year-old female entered the Bronx Municipal Hospital Center in August 1967 with severe left hip pain of 2-weeks duration. She had undergone thyroid surgery for a "tumor" 8 months earlier in her native Ecuador. On physical examination, she had a 12.5 × 10-cm hard, non-mobile, tender mass in the left lower quadrant of the abdomen. It could not be separated from the iliac bone.

Thyroid studies on admission indicated a euthyroid state. Her protein-bound iodine was 6.5 μg/100 ml, and her T$_3$ resin sponge uptake was 28%. There were no clinical signs or symptoms of thyrotoxicosis.

An x-ray of the pelvis revealed an area of sclerosis in the ilium with an associated fracture above the left acetabulum. A 99mTc-pertechnetate rapid scintigraphic study revealed the mass to be highly vascular (Fig. 1). A delayed 5-min study showed considerable activity in the mass with little residual

FIG. 1. Scintigraphic study of left pelvic mass after 10-mCi intravenous bolus of 99mTc-pertechnetate. Zero to 10-sec exposure shows bifurcation of aorta and early vascularization of mass. Fourteen to 18- and 26-30-sec exposure shows progressive increase in mass activity. A 300-K exposure at 5 min reveals intense activity in mass with very little residual background activity. This probably represents, in part, actual trapping of pertechnetate by this functioning thyroid metastasis.
The very favorable concentration of radioiodine in the pelvic lesion, further thyroid surgery was not performed. One hundred thirty-five millicuries of 131I was administered in late September 1967. About 2 weeks later, she was placed on daily thyroid extract for TSH suppression.

Over the next 4 months, the patient did quite well. Her pain was considerably relieved and the left pelvic mass was reduced to 3 cm. A repeat 99mTc-pertechnetate dynamic study demonstrated the marked reduction in the size of the mass (Fig. 5). Repeat 131I studies showed a reduction in uptake of the mass to 7%. The thyroid itself was now trapping 19% of the radioiodine. The maintenance thyroid medication had been discontinued 3 weeks prior to reevaluation.

The patient did well for an additional 6 months but then developed multiple metastatic foci elsewhere. Despite supportive therapy and one additional course of 131I therapy, her condition continued to deteriorate and she expired. An autopsy was not performed.

BRIEF COMMENT

The ability of metastatic thyroid lesions to trap 99mTc-pertechnetate was demonstrated first by Sodee with the use of conventional rectilinear scanning (3). Carr et al recently reported concentration of the same radiopharmaceutical in metastatic papillary carcinoma in neck nodes (4). The use of the Anger scintillation camera allows one to study the vascularization of the lesion in addition to its trapping ability. The excellent correlation between the radioisotope and radiographic angiogram again demon-
FIG. 5. Scintiphographic study of left pelvic mass 4 months after therapeutic dose (135 mCi) of 131I. Serial exposures show considerable reduction in size and vascular supply of mass. Technique and time of each exposure is identical to pre-treatment camera study. This allows easy comparison of two examinations.

ACKNOWLEDGMENT

We wish to acknowledge Chien-Hsing Meng who performed the angiogram shown in Fig. 3.

REFERENCES

