PREPARATION OF HIGH-PURITY CARRIER-FREE

123I-IODINE MONOCHLORIDE ASIODINATION REAGENT
FOR SYNTHESIS OF RADIOPHARMACEUTICALS, IV

Richard M. Lambrecht, Constance Mantescu,* Carol Redvanly, and Alfred P. Wolf

Brookhaven National Laboratory, Upton, New York

This is the first detailed report of a satisfactory method of the production and preparation of 123I iodination reagents, specifically 123ICl and 123ICl$_2^-$, in which the iodination reagent has $\geq 99.8\%$ radiochemical purity as 123I (the only radioimpurity is 125I). The reagent may be obtained carrier-free in nonaqueous or aqueous media. Iodine-123 fulfills the criteria for an ideal gamma-emitting radionuclide for in situ and in vivo diagnostic procedures more closely than any other isotope of iodine (1–3). Iodine-123 is desirable for nuclear medicine applications because the 13.1-hr half-lived isotope decays principally by electron capture emitting a 159-keV photon. This energy radiation is optimum for tissue penetration and for detection on high-resolution counting equipment. The radiation exposure from equal amounts of 121I will not exceed a few percent of that delivered in 131I clinical applications and diagnostic examinations. Further by using 123I, a radiopharmaceutical may be administered at frequent intervals.

Undesirable negatron decay is absent in decay of 123I. The upper limit of positron emission is at 0.01% (4). Use of 123I has been delayed because most methods of production (5–11) have yielded 123I that is contaminated at the time of production with about 0.5–2% of 124I (4.2 days), 126I (13.1 days), and lesser quantities of other radionuclides even in the best cases. Even with less than 1% 124I contamination, the useful features of 123I are negated (12,13).

Satisfactory methodology and techniques for obtaining 123I in $\geq 99.8\%$ radiochemical purity, where the only radioimpurity is $\leq 0.2\%$ 125I ($\gamma = 40$ keV, 60 days), have been developed by V. J. Sodd, et al (1) and at BNL. This paper reports the preparation of iodination reagents for labeling pharmaceuticals with 123I on a carrier-free or diluted scale in either nonaqueous or aqueous media. The iodination reagents may be prepared from the iodine monochloride and from the iodine or iodides atom or ion by the following methods a–e which are initiated by the 123Xe $(\beta^-, E_C.)^{123}$I nuclear decay processes.

I. Auger Effect Activation
(a) ICl (excess) + 124Xe \rightarrow 123I-ICl (diluted) + ?
(b) Cl_2 (excess) + 123Xe \rightarrow 123ICl (carrier-free) + ?
(c) NOCl (excess) + 123Xe \rightarrow 123ICl (carrier-free) + ?

II. Auger Effect Activation and Chemical Synthesis
(d) 1. 123Xe (Pyrex vessel) $\beta^{+}(K_{\alpha \beta})$ 123I + NaOH \rightarrow 123I$^- + ?$
2. 2 123I$^- + 3\text{H}^+ + \text{IO}_3^- + 3\text{Cl}^- \rightarrow 3$ 123ICl$^-$(diluted, aqueous)
(e) 1. 123Xe + $\frac{1}{2}$ I$_2$ \rightarrow 123I-I$_2$
2. 123I-I$_2$ + 2NOCl \rightarrow 2NO + 123ICl + ICl (diluted)
3. 123I-I$_2$ + Cl$_2$ (excess) \rightarrow 123ICl + ICl\dagger
 + Cl$_2$ \rightarrow 123I-ICl

Data and methodology pertaining to the preparation of iodination reagents are presented for the chemical reactions initiated as outlined in a–d. Previously Method II(d)2 has been extensively employed as an iodination route for 131I, 123I, and 124I. Only the last example II(e)3 is clearly not applicable as a convenient route to 123I. Examples of use of 123I in the synthesis of several model radiopharmaceuticals (diodosalicylic acid, iophenoxic acid, 123I-serum albumin and monoido- and diiodol-tyrosine) are presented. Finally the merits of the preparation of iodinated radiopharmaceuticals over direct synthesis induced by autoradiation labeling are briefly discussed.

Received July 26, 1971; original accepted Nov. 15, 1971.
For reprints: Richard M. Lambrecht, Chemistry Dept., Brookhaven National Laboratory, Upton, N.Y. 11973.
* Visiting scientist during 1971 from Institute of Atomic Physics, P.O. Box 55, Bucharest, Romania.
EXPERIMENTAL

Cyclotron parameters. Carrier-free 123I is produced by the decay of 123Xe which in turn is produced by the 4He bombardment of 122Te; 122Te(4He,3n)123Xe, 123Xe $^3_3^7$, E.C. 123I. The BNL 60-in. cyclotron provided a deflected 4He beam of 7–10 μA on an external generator-type target (11–14) in which the alpha beam was degraded ($E_a = 46–35$ MeV)*. The 122Te metal was purchased from Oak Ridge National Laboratory in >95% enrichment as 122Te. A schematic diagram of our automated apparatus is shown in Fig. 1.

The 123Xe, 123I, and radiohalogens are continuously flushed from the target in a dried helium stream passing through $\frac{3}{10}$-in. i.d. Teflon tubing (Applied Science Laboratories, Inc.) to a fume hood 80 ft external to the cyclotron vault. The radiohalogen contamination is selectively removed from the 123Xe and 123I by passing the helium stream carrying the active gases through a 10 cm \times 16 mm quartz furnace containing wadded high-purity silver wire (size 6.3 mil, Handy and Harman Co.) heated to 280–320°C. The chemical scrubber is exceptionally efficient since at the elevated temperature the silver and radiiodine already in the gas react to form silver iodide. The silver furnace method is superior in all respects to the other suggested methods (9–11) that rely on condensation of radioiodides in copper traps held at -78°C.

The radioxenons are subsequently quantitatively condensed in Pyrex radiator traps held at 77°C. The traps are equipped with Teflon vacuum stopcocks and fabricated of 10 \times 8 mm, 5 \times 3 mm, and 10 \times 8 mm tubing of the lengths of 22, 200, and 22 cm, respectively. Prior to use the traps are thoroughly washed in a hot $\text{H}_2\text{SO}_4/\text{HNO}_3$ bath, rinsed to neutral pH with distilled water, and vacuum dried. Immediately before use the traps are mounted on a vacuum line and flamed under vacuum. The traps are then cooled under vacuum, mounted on the collection line, purged with dry helium, and cooled with liquid nitrogen. After the collection period the 123Xe is allowed to decay to 121I; or it can be transferred by vacuum distillation to an appropriate reaction vessel (Pyrex or quartz ampoules of 2–10 cc volume), sealed off, and allowed to decay.

If the decay of the xenon isotopes is permitted to occur for 6–7 hr after the midpoint of short irradiations (<1 hr), the yield of 123I is at the maximum obtainable via transfers involving 123Xe. Under these conditions the contribution of 125I is minimized. If enriched 122Te is used and the incident E_a is 46 MeV, primarily 123Xe and 123I are produced. However, if the deuteron contribution in the alpha beam is significant (estimated to be $<0.01\%$ with the BNL cyclotron) the d,xn reactions will produce 121I, 122I, and 123I in very low radiochemical yields (15). In our case the 123I probably arises from the 122Te(4He,pn) 124I reaction.

The radionuclidic purity of 123I obtained is $\approx99.8\%$, and since approximately 1% of 123I produced directly is scrubbed out, the only radiocontaminant is $\leq0.2\%$ 125I. Both the 123I and 125I are formed by the 122Te(4He,3n)123Xe $^3_3^7$, E.C. 123I and the 122Te(4He,2n)125Xe $E_C, \approx 17.6$ MeV, 125I nuclear transformations. The xenon isotopes are not affected by the silver furnace as the active gases pass through. The lines in the gamma spectrum of 123Xe and 123I have been published elsewhere (4,15–17). Our identification was made with a Ge(Li) detector using the published spectra. The production rate (based on

* Further details concerning the release of 123Xe from alpha irradiated tellurium and the organic chemical reactivity of the 123Xe $\rightarrow ^{125}$I nuclear transformation are topics of a separate study to be published elsewhere (14).

FIG. 1. Automated apparatus for 123I production.
recovery) of 123I at 6.5 hr from the midpoint of a short irradiation (T_o) may (depending on irradiation conditions) range from 1 to 470 μCi/μA-hr of beam current. The production rate usually obtained is ~ 200 μCi/μA-hr. When using a 1-hr irradiation with a 5-μA beam, the activity from the generator-type target at T_o is about 1 mCi of 123I. By using a 50 μA internal beam, we anticipate that we can produce ~ 50 mCi of 123I (at T_o) during a 6-hr irradiation on a generator target. The production rate is satisfactory for experimental and clinical studies at the BNL Medical Research Center.

Methods of preparation of 123ICl: materials. Research grade chlorine gas supplied by the Matheson Co. in 99.965 minimum volume percent purity was vacuum dried at 600°C on 40–60-mesh activated charcoal impregnated with copper and barium as an activator (18). Iodine monochloride stored under argon was from Alpha Inorganics; nitrosoyl chloride in 97% purity was from Matheson; the salicylic acid was supplied by Baker Chemicals; the L-tyrosine by K and K Laboratories; and the crystallized human serum albumin was purchased from Nutritional Biochemical Corp.

Procedure a for 123Xe + ICl. The scrubbed 123Xe collected from the helium stream was vacuum distilled on to 0.5 cc ($\sim 10^{-2}$ moles) of ICl that had been thoroughly degassed; or in addition contained known amounts of either Cl$_2$, O$_2$, or H$_2$O. Following the addition of 123Xe the ICl solution was agitated at 25°C for 6–10 hr. Details concerning these experiments are given in Table 1 or are subsequently discussed. The 123I-ICl was subsequently dissolved in 1 N aqueous HCl (19) or in acetic acid (20), and after the absolute activity determination was used for the iodination reactions. In >0.3 N HCl solutions the chemical form of 123I is 123ICl$^- 2^-$, and it is impossible to extract the complex ion with solvents such as CCl$_4$ or benzene. In acetic acid media the chemical form is 123ICl.

Procedure b and c for 123Xe + Cl$_2$ or NOCl. Pressures ranging from 10 to 760 torr of Cl$_2$ or NOCl were introduced into flamed Pyrex or quartz ampoules attached to a vacuum line. The additive was condensed to 77°C K, and 123Xe was distilled into the ampoule, following which the vials were sealed and permitted to stand at ambient temperature for several hours. Control experiments were performed in the absence of light, under normal illumination, and also at 77°C K.

The ampoules containing the 123ICl and excess halogen reagent were broken in vacuo using the apparatus shown in Fig. 2. The excess Cl$_2$ or NOCl was removed by distillation at low temperature. A dry ice-acetone slurry will condense ICl (m.p. 25–27°C), while permitting Cl$_2$ to be easily removed under vacuum. The (if) desired carrier ICl was added either in aqueous HCl, NaCl solution or acetic acid solution. The results of these experiments are summarized in Table 2.

123I-labeling of selected radiopharmaceuticals. Diiodosalicylic acid (20), teridax (ipohenoxic acid) (21,22), human serum albumin (23–26) and L-tyro-
sine (27) were labeled using 123ICl according to the methods cited in the references. All radiopharmaceutical preparations yielded a range of millimoles to 10^{-2} μmoles of product. In order to compare the potential of the iodination procedure using 123ICl labeled by the autoradiation activation associated with the decay of 123Xe, several experiments were performed in which 123ICl was obtained via oxidation of 123I as discussed by McFarlane, et al (23). The method of Welch (28) of condensing 123Xe onto frozen serum albumin was explored, and the results are compared to those obtained by synthetic methods.

RESULTS AND DISCUSSION

In order to incorporate radioiodine in a high radiochemical yield into certain pharmaceuticals, it is mandatory that the conversion of iodine to a more active species such as electrophilic halogen (i.e., I+) be achieved rather than using molecular iodine. One of the most convenient sources of the I+ species is iodine monochloride. For this reason, attention was focused on the preparation of 123ICl on a carrier-free scale in nanaqueous or in aqueous media. The presence and efficacy of this iodinating reagent is derived from chemical evidence and radiochemical and chemical yields. Physical analytical methods, such as UV or IR spectroscopy, are inapplicable to the analysis of such trace quantities (~10^6-10^9 molecules) of 123ICl.

In order to determine the yield of the 123ICl, a standard iodination reaction was chosen, which was known to give a high chemical yield for iodination. The conversion of salicylic acid to diiodosalicylic is convenient for this purpose (20). The synthesis time is conveniently short, being only 2–4 hr to dry crystalline product-123I. Following the optimization of the parameters affecting the preparation of the iodinating reagents, the other selected radiopharmaceuticals were prepared.

Labeling of ICl by 123Xe decay in ICl. Table 1 summarizes the results of using 123I-ICl as the iodination reagents. This reagent was prepared by dissolving 123Xe in ICl, and subsequently using the active solution directly for the iodinations. If the ICl was prepared under a nitrogen atmosphere and degassed by repeated freezing and pumping on a vacuum line, ~90% of the 123I activity [in the form of greater than 95% 123ICl$_3^-$, (Ref. 19,29)] in an aliquoted fraction of the original ICl mixture was extracted with >0.3 N HCl. The remaining ~10% of the activity was soluble in CCl$_4$ or C$_6$H$_6$, and was presumably mostly 123I-I$_2$ and organically soluble forms of iodine (30) and other than 123ICl and 123ICl$_3^-$. The presence of 123I-I$_2$ is not unexpected, since the ICl $\rightleftharpoons \frac{1}{2}$ I$_2 + \frac{1}{2}$ Cl$_2$ equilibrium constant at 25°C is 1.8×10^{-3} (31). The further reaction of the ICl reactants to yield ICl is only 0.42% complete at 25°C (19).

However, the effective labeling of 123I-ICl by this method is very sensitive to the presence of oxygen and water. In two sets of experiments with 0.4 and 1.6 mole % O$_2$ and H$_2$O present, respectively, the 123I activity extractable as 123ICl$_2^-$ was reduced to 83 and 73.5%, respectively. The corresponding yields of 123I-diiodosalicylic acid were likewise reduced, whereas the organic 123I soluble fraction increased to 26.5% in the ICl containing water in the latter case.

In a separate study, pressures of undried chlorine gas of 0, 80, and 760 torr were added to the ICl solution immediately after the introduction of one or two transfers of the 123Xe. The resulting solution was dissolved in acetic acid and used without further treatment to synthesize 123I-iophenoxic acid. As shown in Table 1, the radiochemical yield as teridax was ~40% and was independent of the excess pressure of chlorine above the ICl. However, if several transfers of 123Xe onto the ICl were employed, the radiochemical yield as teridax was reduced to ~10%. Presumably in the latter case, moisture as water and/or air was also present from the Cl$_2$ or possibly also vacuum distilled onto the ICl during the 123Xe transfers. In any case the chemical form of the 123I must not have been as 123I-ICl. The presence of a trace of H$_2$O in the 123I-ICl can result in the reaction (4) which is rapid under ordinary conditions (19).

$$5^{123}\text{I}-\text{ICl} + 3\text{H}_2\text{O} \rightarrow 5\text{HCl} + (\text{HO}^{123}\text{I} + \text{HOI})$$

$$\rightarrow (\text{HIO}_3 + \text{H}^{123}\text{IO}_3^-) + 2^{123}\text{I}_2$$ (3)

Iodic acid and hypiodous acid are not effective iodination reagents and may account for the reduction in radiochemical yields in either teridax or 123I-diiodosalicylic acid.

We conclude from the data of Table 1 that ICl may be effectively labeled by the dissolution of 123Xe in very dry, oxygen free iodine monochloride. The principal advantages of the method are: the 123I-ICl may be obtained without subsequent addition of carrier ICl; the reagent may be used in nonaqueous form; or, an aqueous solution of $\geqslant 0.3$ N HCl may be added and one can obtain 123I-ICl$_2^-$ as the iodination reagent. The inherent disadvantage of the method is the low specific activity obtained. The labeling mechanism is under investigation but may involve both activation by the Auger cascade (auto-{ω}radiation) and halogen exchange reactions.
Carrier-free 123ICl from 123Xe decay in Cl₂ or NOCl. Table 2 presents data which suggest that the 123I atoms born from the decay of 123Xe by the 123Xe (β^+, E.C.)123I processes in a chlorine gas environment results principally in the formation of 123ICl. The yield as carrier-free 123ICl (as measured by two chemical techniques) is essentially invariant at about 90% under a variety of conditions. The 123I activity extracted as 123ICl₂⁻ is 93 ± 2% in all cases tested. (We are attempting to identify the chemical forms of the remaining 123I activity.) The activity incorporated into 123I-diiodosalicylic acid is 85 ± 5%. Considering the reproducibility of the chemical synthesis (±5%) and the fact that the overall chemical yield giving the acid is about 90% (20–22), one observes that the radiochemical yields as diiodosalicylic acid and as 123ICl₂⁻ are the same within experimental error.

The radiochemical yield as 123ICl is not affected, within experimental error, if the total pressure of the 123Xe + Cl₂ mixture is varied between 10 and 760 torr of chlorine. Further the yield as 123ICl is not affected by 89% or 99% xenon moderation at a total pressure of 92 or 484 torr. Likewise the synthesis of 123ICl is not sensitive to normal laboratory illumination. It is noteworthy that if 92 torr of nitrosyl chloride is substituted for 90 torr of chlorine as the reactant, the yield of 123I-diiodosalicylic acid is reduced from 82.5 to 62%. This suggests that the reactive 123I may be a positively charged species showing preferential attack or reaction at the more electronegative halogen in NOCl. The alternate prod-

TABLE 1. DISTRIBUTION OF 123I ACTIVITY FOLLOWING 123Xe DECAY IN SELECTED ICI MIXTURES

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Conditions*</th>
<th>% activity in H₂O/HCl</th>
<th>% activity in Cl₂</th>
<th>% activity diiodosalicylic acid</th>
<th>Incorporated as iophenoxic acid (teridax)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,6</td>
<td>no additive</td>
<td>90</td>
<td>10</td>
<td>81</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>O₂ (0.4 mole %)</td>
<td>83</td>
<td>17</td>
<td>82</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>H₂O (1.6 mole %)</td>
<td>73.5</td>
<td>26.5</td>
<td>73.0</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Cl₂ (80 mm)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Cl₂ (760 mm)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>40</td>
</tr>
</tbody>
</table>

* All samples were degassed under vacuum and Samples 1–3 were also prepared under a N₂ atmosphere. Experimental error ±5% a.d.

TABLE 2. SYNTHESIS OF 123ICl BY 123Xe DECAY IN Cl₂ AND NOCl

<table>
<thead>
<tr>
<th>Radiochemical yield as 123ICl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracted as 123ICl₂⁻ in 1 N HCl solution (%)</td>
</tr>
</tbody>
</table>

- 1-10: 95, 87
- 11: 100, 88
- 12: 337, 83
- 13: 444, 84
- 14: 594, 93
- 15: 673, 91
- 16: 740, 86
- 17: 760, 91
- 18: 92 NOCl, 62
- 19: 92 NOCl, 57

* In Runs No. 1, 5, 11, 15, and 17, the Cl₂ contained 1.5 mole % H₂O. Experimental error is ±5% a.d.
TABLE 3. 123I-LABELING OF SOME RADIOPHARMACEUTICALS BY 123IICl

<table>
<thead>
<tr>
<th>Method No.</th>
<th>Method of preparation of 123IICl</th>
<th>Diiodosalicylic acid</th>
<th>Iophenoxic acid</th>
<th>This work†</th>
<th>Literature yield (%) Ref</th>
<th>This work</th>
<th>Literature yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123Xe + ICl</td>
<td>85 ± 5</td>
<td>41 ± 2</td>
<td>80 ± 2</td>
<td>85 (24,29)</td>
<td>32 diiodo</td>
<td>50 diiodo</td>
</tr>
<tr>
<td>2</td>
<td>123I − → ICl2</td>
<td>70 ± 5</td>
<td>17 ± 17</td>
<td>40 ± 5</td>
<td>35 (20)</td>
<td>21 monoiodo</td>
<td>25 monoiodo (27)</td>
</tr>
<tr>
<td>3</td>
<td>123Xe + Cl2</td>
<td>85 ± 5</td>
<td>47 ± 5</td>
<td>40 ± 5</td>
<td>18 [23]</td>
<td>1.1 diiodo</td>
<td>1.0 monoiodo</td>
</tr>
<tr>
<td>4</td>
<td>123Xe + crystalline substrate (77 °K)</td>
<td>80 ± 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Average yield for three experiments excepting the diiodosalicylic acid from which ten experiments were done to establish the actual figure of the radiochemical yield.
† The radiochemical yield quoted in Ref. 24,25 is given for gamma globulins. In Ref. 26 and the present work a molar ratio of HSA to iodine of 1:0.5 was used to obtain a 40% radiochemical yield. The radiochemical yield could be improved at the same HSA to iodine ratio by preoxidizing the protein.
‡ Using the direct labeling of ICI (Method No. 1), a decrease in the radiochemical yield was observed if several transfers of 123Xe were made. The radiochemical yield remained constant for Method No. 3 even if the total activity increase by a factor of 50. See text for discussion.
§ The radiochemical yield was 18% for 123I-IHSAS labeled by direct decay of 123Xe in HSA and purified over a Dowex column using a 4 mg crystalline sample of HSA. Welch (28) has reported labeling yields of HSA (100 mg) of up to 80% although the sample provided a very low specific activity and without mentioning the purification of the labeled compound. Please refer to text for discussion.

3 mg crystalline L-tyrosine.

uct NO128I is not a characterized compound, and its decomposition may not lead to 122IICl.

The recoil energy spectrum of the 128Xe (β^+, E.C.) 128I decay has not been measured. However, one would expect the maximum translational energy of the ^{128}I to be 38–27 eV. After one elastic collision with Cl$_2$ the average kinetic energy of the ^{128}I species is ~3.5 eV. This suggests most of the reactions of 128I proceed via atomic or ionic iodine and/or possibly atomic chlorine reactions, rather than as a result of the excess translational energy produced by an internal conversion electron (~0.25 eV) and the subsequent Auger electron cascade. Attempts are being made to distinguish the thermal and hot reactions of ^{128}I, and to determine the role of I$^+$, I$^-$ and/or thermal scavenging reactions in contributing to the high yield of 128IICl in Cl$_2$ mixtures. Further details concerning the reactivity of radiohalogen induced by autoradiation activation have been discussed elsewhere (32–34).

The inherent advantage of synthesizing 123IICl by the 123Xe (β^+, E.C.)123I decay processes in Cl$_2$ is that the iodination reagent can be obtained carrier-free, and hence extremely high specific activities are obtainable. Once the free Cl$_2$ has been vacuum distilled from the 123IICl, the chemist may add the appropriate reagents and perform the synthesis directly. Alternately the 123IICl may be readily converted to the complexed anion 123ICl$_2^-$ for use as the iodination reagent. The preparation of 123IICl from chlorine is convenient and is superior to the other preparative methods involving ICl or the oxidation of iodide, as Na128I, to 123ICl$_2^+$. The iodine monochloride method described by McFarlane in 1958 (23) used radiiodine as the source of label. Helmkamp, et al (24–27) extended this procedure to use sodium radiiodide (123I or 125I), and to work at high activity levels. However, the efficiency of radiiodination depends on a critical step that required one to rapidly mix Na*I with ICl and jet the mixture into protein. This persistence on rapidity is due to the fact that the tracer Na*I, and the carrier ICl(ICl$_2^+$) are not in the same chemical form. As a result a random exchange could precede the iodination reaction. In the method of iodination using 123IICl described in the present work, this inconvenience is eliminated, because the tracer (123IICl) and the carrier ICl (if added) are in the same chemical form. The iodination of the compound proceeds only via 123I$^+$ substitution without competing side reactions.

Radiopharmaceuticals containing 123I. In Table 3 we have summarized the results of testing the various labeling procedures for the preparation of labeled
123ICl or 123ICl$^-$ for the synthesis of several model radiopharmaceuticals. The radiochemical yields obtained are those expected on the basis of theoretical yield and published results. Of the various 123ICl preparative methods, the one we prefer and recommend for use in radiopharmaceutical preparations is the 123Xe + 10 torr Cl$_2$ procedure. As shown in Table 3, the integrity of the labeling method as evidenced in the preparations of 123I-diiodosalicylic acid, 123I-human serum albumin (similarly applicable to 123I-gamma-globulin), and monoiodo- and diiodo-L-tyrosine are convincing proof that the 123ICl iodination reagent so obtained is well suited to labeling pharmaceuticals with 123I. We have checked the toxicity of 123I-IHSA and the 123I-L-tyrosine prepared by this method. Needless to say the chlorine gas is expected to show toxic effects if it is not removed from the radiopharmaceutical.

Also included in Table 3 are results we have obtained by condensing the 123Xe onto crystalline serum albumin or L-tyrosine, and permitting the 123Xe autoradiation process to label the substrate with 123I. Welch (28) reported obtaining yields of up to 80% for a 100-mg crystalline sample of serum albumin. However, in many clinical applications of 123I, one must obtain a very high specific activity for useful results. For example, in cisternography a desirable specific activity of 123I-IHSA is 1 mCi/mg. Our results using a 4-mg crystalline sample of serum albumin indicate a radiochemical yield of ~18% is obtained after the removal of the inorganic iodine. With 1 mCi of 123I activity this corresponds to a final specific activity of 45 µCi/mg. The specific activity calculated for Welch's data (28) for the 100-mg sample is only 8 µCi/mg. Thus the optimum sample size that one should choose, if this labeling method is employed, must be a compromise between specific activity and radiochemical yields. This is to be contrasted with the 123ICl method (3 on Table 3) which will permit both a high overall radiochemical yield, and indeed quite high specific activities, if the iodination reaction is performed on a carrier-free scale. By preoxidizing the HSA (26) one could obtain a specific activity of 700 µCi/mg when starting with an initial 1 mCi of 123I. The further advantage of the synthetic procedures is that one may obtain the substrate to iodine ratio that is desirable for a particular application. In the Auger electron-induced labeling processes the 123I may randomly react with the protein, but in the synthetic procedure the 123I will be in the aromatic rings of the protein molecule (26).

We have also labeled a 3-mg crystalline sample of L-tyrosine with the 123Xe decay processes and obtained about a 1–2% radiochemical yield of each of the 123I-monoiodo- and 123I-diiodo-L-tyrosine. Presumably the radiochemical yield could be increased by using a larger sample. The parameters affecting the labeling of organic and biological compounds by irradiation, nuclear transformations, and nonsynthetic methods has been recently reviewed (35–37).

SUMMARY

The 122Te(3He,3n)125Xe (125I, 3He, 1H) 123I nuclear transformations and a silver scrubber produce 123I in greater than 99.8% radionuclide purity. The 123I has been incorporated into several model radiopharmaceuticals by use of 123ICl as the iodination reagent. The parameters affecting the synthesis of 123ICl as a result of the Auger cascade and the coulombic explosion associated with the 123Xe decay in mixtures of ICl, Cl$_2$ and NOCl are reported. The influence of pressure, the effects of additives, as well as the use of 123ICl as an iodination reagent are discussed and compared with other methods of iodination of radiopharmaceuticals.

ACKNOWLEDGMENTS

We appreciate the assistance of Charles Baker and his technical staff (C. Barrett, R. Carchiello, and the late M. Petruk) at the 60-in. cyclotron. Miss E. M. Franz, Mrs. E. Rowland, and Miss K. Karlstrom have been helpful in scheduling the availability of a Ge(Li) detector and providing assistance with routine counting, respectively. V. J. Sodd was helpful in advising us of his unpublished results at the time we were selecting appropriate nuclear reactions for the production of 123I. This research was performed under the auspices of the U.S. Atomic Energy Commission.

REFERENCES

123I-IODINE MONOCHLORIDE AS AN IODINATION REAGENT

14. CREAR J, LAMBERTCH R: to be published

15. GÖFLER O, SCHÖNBER R, FLAMMERSFELD A: Decay of 129Xe, T1/2 = 2.08 hr, Zeit Physik 208: 299–312, 1968

