THE SOCIETY OF NUCLEAR MEDICINE
20th ANNUAL MEETING

June 12–15, 1973
Americana Hotel
Miami Beach, Florida

ANNOUNCEMENT AND CALL FOR ABSTRACTS FOR SCIENTIFIC PROGRAM

The Scientific Program Committee welcomes the submission of abstracts of original contributions in nuclear medicine from members and nonmembers of the Society of Nuclear Medicine. Papers will be considered on the following subjects: Basic Science Aspects of Nuclear Medicine, Clinical Diagnosis, Clinical Investigation, Education and Administration, Nuclear Instrumentation, Radiation Biology, Radioisotope Therapy and Radiopharmaceuticals.

In addition to these conventional listings, the committee will attempt to establish scientific sessions that are disease oriented. Basic science contributions regarding related instrumentation, radiopharmaceuticals, animal and in vitro studies as well as clinical investigation proposals will be welcomed for these "mini-seminars". The proposed subjects for this year are:

- Salt and Water Balance
- Jaundice
- The Liver Mass
- Renovascular Disorders
- Congenital Heart Disease
- Acquired Heart Disease
- Cerebrovascular Insufficiency
- Hydrocephalus
- Thrombosis and Related Conditions
- Obstructive Pulmonary Disease
- Autonomous Thyroid States
- Benign Bone Lesions

The submitted abstract must concern completed work which must be substantiated with supporting data. Works-in-progress will be accepted for presentation at separate sessions. The deadline for receipt of these will be announced at a later date. All regular abstracts must be postmarked no later than January 10, 1973.

GUIDELINES FOR SUBMITTING ABSTRACTS:

Abstracts must be submitted in the following format to receive consideration. They are to be typed on the official abstract form which can be obtained by writing The Society of Nuclear Medicine, 211 East 43rd Street, New York, N.Y. 10017. The instructions on the forms must be followed exactly if the abstract is to be considered. The original and five copies must be submitted.

Each abstract must contain the name(s) of the author(s), the institution(s), and the mailing address of the author presenting the paper. Underline the name of the author who will present the paper.

Each abstract must contain the following information in this order:

1. Purpose of the study
2. Methods used
3. Results (Pertinent supporting data are mandatory)
4. Conclusions

Abstracts that are accepted will be published in the June 1973 issue of the Journal of Nuclear Medicine. Supporting data (charts, graphs, figures, tables, formulas, etc.) consisting of a maximum of three type-written pages are required in order to have any abstract reviewed for presentation at the meeting. This material will not be published.

Send the original abstract form, supporting data, and the five copies to:

Leonard M. Freeman, M.D.
Chairman, Scientific Program Committee
Hospital of the Albert Einstein College of Medicine
1825 Eastchester Road
Bronx, New York 10461

DEADLINE: January 10, 1973

932
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdela-Dayem, H. M.</td>
<td>Handling 133Xe in saline, 231</td>
</tr>
<tr>
<td>Abreu, C. M. and Braverman, L. E.</td>
<td>Serum free thyroxine measurement, 780*</td>
</tr>
<tr>
<td>Abreu, C. M. and Vagenakis, A. G.</td>
<td>Adams, E. H., Chandler, R. P. and Farkas, R. J.</td>
</tr>
<tr>
<td>Adams, G. D.</td>
<td>See Anderson, D. W.</td>
</tr>
<tr>
<td>Adelstein, S. J.</td>
<td>See Prince, E. W.</td>
</tr>
<tr>
<td>Adkins, J.</td>
<td>See Tetalman, M. R.</td>
</tr>
<tr>
<td>Adolph, R.</td>
<td>See Wellman, H. N.</td>
</tr>
<tr>
<td>Ahuja, S.</td>
<td>See Williams, E. D.</td>
</tr>
<tr>
<td>Alagarsamy, V.</td>
<td>See Burdine, J. A.</td>
</tr>
<tr>
<td>Alavi, A., Bond, J. P., Kuhl, D. E. and Creath, R. H.</td>
<td>Scan of bone marrow in infants in sicker cell anemia, 408*</td>
</tr>
<tr>
<td>Alazraki, N. P.</td>
<td>Ashburn, W. L., Hagan, A. and Friedman, W. F.</td>
</tr>
<tr>
<td>Alazraki, N. P., Halpern, E. S., Kuness, J. E. and Ashburn, W. L.</td>
<td>Hyperbaric cisternography, 408*</td>
</tr>
<tr>
<td>Alazraki, N. P.</td>
<td>See Coel, M.</td>
</tr>
<tr>
<td>See Halpern, S. E.</td>
<td>See Schlieb, A.</td>
</tr>
<tr>
<td>Alfieri, D., Bergeron, D., Blumiri, L. and Vogel, J. M.</td>
<td>Combined transmission-emission scanning for lungs, 861*</td>
</tr>
<tr>
<td>Allen, D. C.</td>
<td>See Keller, A. R.</td>
</tr>
<tr>
<td>Allen, J. H.</td>
<td>See Staeb, E.</td>
</tr>
<tr>
<td>Alvarez, J., Maass, R. and Arriaga, C.</td>
<td>Multilabeled lung scan agent, 409*</td>
</tr>
<tr>
<td>Alvarez-Cervera, J.</td>
<td>See Skromme-Kadlubik</td>
</tr>
<tr>
<td>Anderson, B. G.</td>
<td>See Ansari, A. N.</td>
</tr>
<tr>
<td>Anderson, D. W., Richter, C. W., Ficken, V. J. and Adams, G. D.</td>
<td>TLD measurement of dose to technicians’ hands, 627</td>
</tr>
<tr>
<td>Anderson, J. T.</td>
<td>See Vogel, J. M.</td>
</tr>
<tr>
<td>Anderson, R. E. and Varma, V. M.</td>
<td>Amebic pericarditis, 217</td>
</tr>
<tr>
<td>Anderson, R. E.</td>
<td>See Waltz, A. G.</td>
</tr>
<tr>
<td>Anderson, T. M.</td>
<td>See Hoffer, P. B.</td>
</tr>
<tr>
<td>Andrews, G. A.</td>
<td>See Nelson, B.</td>
</tr>
<tr>
<td>Andrews, H. L.</td>
<td>See Weber, D. A.</td>
</tr>
<tr>
<td>Anger, H. G.</td>
<td>See Van Dyke, D. C.</td>
</tr>
<tr>
<td>See Yano, Y.</td>
<td></td>
</tr>
<tr>
<td>Ansari, A. N., Anderson, B. G., Morita, R., Beierwaltes, W. H. and Conn, J. W.</td>
<td>Adrenal imaging and uptake, 409*</td>
</tr>
<tr>
<td>Ansari, A. N., Sookstein, J. J., Beierwaltes, W. H. and Conn, J. W.</td>
<td>Adrenal tumor scanning and angiography, 410*</td>
</tr>
<tr>
<td>Antar, M. A., Spencer, R. P. and Binder, H.</td>
<td>131I-labeled fat absorption test, 780*</td>
</tr>
<tr>
<td>Apau, R. L., Kunza, R. and Siemens, J. K.</td>
<td>Bloodless lung due to bronchial obstruction, 561</td>
</tr>
<tr>
<td>Apau, R. L.</td>
<td>See Waxman, A. D.</td>
</tr>
<tr>
<td>Aprill, C. N., Schuler, S. E. and Weiss, T. E.</td>
<td>Peripheral joint imaging, 367</td>
</tr>
<tr>
<td>Aprill, C. N.</td>
<td>See Shuler, S. E.</td>
</tr>
<tr>
<td>Archer, E. G., Potchen, E. J., Studer, R. and Siegel, B. A.</td>
<td>131I-toluidine blue in rat tissue, 85</td>
</tr>
<tr>
<td>Archibald, E. L.</td>
<td>See Mincey, E. K.</td>
</tr>
<tr>
<td>Arnold, R.</td>
<td>See Subramanian, G.</td>
</tr>
<tr>
<td>Arriga, C.</td>
<td>See Alvarez, J.</td>
</tr>
<tr>
<td>Ashburn, W. L.</td>
<td>See Alazraki, N. P.</td>
</tr>
<tr>
<td>See Coel, M.</td>
<td></td>
</tr>
<tr>
<td>See Halpern, S. E.</td>
<td></td>
</tr>
<tr>
<td>See Schlieb, A.</td>
<td></td>
</tr>
<tr>
<td>Ashkar, F. S. and Gilson, A. J.</td>
<td>The normalized serum thyroxine, 410*</td>
</tr>
<tr>
<td>Atkins, H. L., Eckelman, W. C., Hauser, W., Kopper, J. F. and Richards, P.</td>
<td>Splenic sequestration of 99mTc-RBC, 809</td>
</tr>
<tr>
<td>Atkins, H. L., Hauser, W., Richards, P. and Kopper, J. F.</td>
<td>Adverse reactions to radiopharmaceuticals, 232</td>
</tr>
<tr>
<td>Atkins, H. L., Kopper, J. F., Lambrecht, R. M. and Wolf, A. P.</td>
<td>99mTc and 18F comparison in thyroid imaging, 411*</td>
</tr>
<tr>
<td>Atkins, H. L.</td>
<td>See Eckelman, W. C.</td>
</tr>
<tr>
<td>See Kopper, J. F.</td>
<td></td>
</tr>
<tr>
<td>See Lebowitz, E.</td>
<td></td>
</tr>
<tr>
<td>Atmaran, S. H.</td>
<td>See Ganatra, R. D.</td>
</tr>
<tr>
<td>August, L.</td>
<td>See Wellman, H. N.</td>
</tr>
<tr>
<td>Ausmann, J.</td>
<td>See Damm, D.</td>
</tr>
<tr>
<td>Avis, K. E.</td>
<td>See Harper, A. G.</td>
</tr>
<tr>
<td>Baglan, R. J.</td>
<td>See Lane, S. D.</td>
</tr>
<tr>
<td>Bagley, C. M.</td>
<td>See Milder, M. S.</td>
</tr>
<tr>
<td>Bahr, G. K.</td>
<td>See Simmons, G. H.</td>
</tr>
<tr>
<td>Bailey, D. S.</td>
<td>T iodine assay, 861</td>
</tr>
<tr>
<td>Baker, J. M.</td>
<td>See Weiss, P. H.</td>
</tr>
<tr>
<td>Ball, D.</td>
<td>See Higgins, H. P.</td>
</tr>
<tr>
<td>Banerji, M. A. and Spencer, R. P.</td>
<td>Febrile response to CSF flow studies, 655</td>
</tr>
<tr>
<td>Banerji, M. A.</td>
<td>See Goldstein, T.</td>
</tr>
<tr>
<td>Baranosky, J.</td>
<td>See Lebowitz, E.</td>
</tr>
<tr>
<td>Bardfield, P. A.</td>
<td>See Rudin, S.</td>
</tr>
<tr>
<td>Barnes, H.</td>
<td>See Kundey, D. E.</td>
</tr>
<tr>
<td>Barrall, R. C.</td>
<td>Radioactive impurities in radiopharmaceuticals, 570</td>
</tr>
<tr>
<td>Barrett, H. H.</td>
<td>Fresnel zone plate imaging, 382</td>
</tr>
<tr>
<td>Barrett, H. R., DeMeester, G. D. and Wilson, D. T.</td>
<td>Fresnel zone plate imaging with x-ray film cassettes, 781*</td>
</tr>
<tr>
<td>Bartok, S.</td>
<td>See Manfredi, O. L.</td>
</tr>
<tr>
<td>Bashoor, R. G.</td>
<td>See Conway, J. J.</td>
</tr>
<tr>
<td>Beattie, J. W.</td>
<td>See Collimator optimization for gamma camera, 411*</td>
</tr>
<tr>
<td>Beck, R. N.</td>
<td>Nomenclature for Fourier transforms of spread functions, 704</td>
</tr>
<tr>
<td>Beck, R. N.</td>
<td>See Tetalman, M. R.</td>
</tr>
<tr>
<td>Beierwaltes, W. H.</td>
<td>See Ansari, A. N.</td>
</tr>
<tr>
<td>See Lieberman, L. M.</td>
<td></td>
</tr>
<tr>
<td>See Mizejewski, G. J.</td>
<td></td>
</tr>
<tr>
<td>See Quinones, J. D.</td>
<td></td>
</tr>
<tr>
<td>See Rogers, W. L.</td>
<td></td>
</tr>
<tr>
<td>Bekdik, C. F., Sanac, Y., Laleni, Y. and Erbengi, G.</td>
<td>Simultaneous thermal and radioisotope scanning of thyroid nodules, 411*</td>
</tr>
<tr>
<td>Bell, E. G., Blair, R. J., Subramanian, G. and McAfee, J. G.</td>
<td>99mTc-polyphosphate for pediatric bone scanning, 412*</td>
</tr>
<tr>
<td>Bell, E. G., Blair, R. J., Subramanian, G. and McAfee, J. G.</td>
<td>99mTc-polyphosphate for bone scanning in neoplastic disease, 413*</td>
</tr>
<tr>
<td>Bell, E. G.</td>
<td>See Blair, R. J.</td>
</tr>
<tr>
<td>See Subramanian, G.</td>
<td></td>
</tr>
<tr>
<td>Bell, P. R., McClain, W. J., Ross, D. A., East, J. K. and Moore, E. C.</td>
<td>Dual data-scanning system, 413*</td>
</tr>
<tr>
<td>Bell, W. R.</td>
<td>See Malmd, L. S.</td>
</tr>
<tr>
<td>See Rhodes, B. A.</td>
<td></td>
</tr>
<tr>
<td>Benjamin, P. F.</td>
<td>99mTc-albumin, 172</td>
</tr>
<tr>
<td>Bennett, L. R.</td>
<td>See Liton, D. L.</td>
</tr>
<tr>
<td>See Wilson, A. F.</td>
<td></td>
</tr>
<tr>
<td>Benson, C.</td>
<td>See O’Rourke, J.</td>
</tr>
<tr>
<td>Benua, R. S.</td>
<td>See Buzzi, K.</td>
</tr>
<tr>
<td>Bergen, J. J.</td>
<td>See Conway, J. J.</td>
</tr>
<tr>
<td>Bergeron, D.</td>
<td>See Alfferi, D.</td>
</tr>
<tr>
<td>Berke, R.</td>
<td>See Wellman, H. N.</td>
</tr>
<tr>
<td>Berke, R. A. and Saenger, E. L.</td>
<td>Brain image interpretation, 413*</td>
</tr>
<tr>
<td>Bieler, E. U.</td>
<td>18F bone scan in periosteal new bone formation, 775</td>
</tr>
<tr>
<td>Binder, H.</td>
<td>See Antar, M. A.</td>
</tr>
<tr>
<td>Blahd, W. H.</td>
<td>See Halpern, S. E.</td>
</tr>
<tr>
<td>See Krishnamurthy, G. T.</td>
<td></td>
</tr>
<tr>
<td>See Tubis, M. E.</td>
<td></td>
</tr>
</tbody>
</table>
| Blair, R. J., Bell, E. G., Subramanian, G. and McAfee, J. G. | 99mTc-poly-
phosphate bone imaging in non-neoplastic disease, 414*

Blair, R. J. See Bell, E. G.
See Subramanian, G.

Blau, M. See athrop, K. A.

Blaufox, M. D.
See Chervu, L. R.

See Milstein, D. M.

Blum, L. See Alfieri, D.

Bond, J. P. See Alavi, A.

Boone, D. F. and Dowey, J. E. Collimator for myocardial blood-flow studies, 414*

Bookstein, J. J. See Ansari, A. N.

Boomer, J. Relative thyroid uptake, 862

Boostrom, S. E., Laumols, B., Cormman, J. L., Ryerson, T. W. and Brown, D. W. Orthotopic hepatic homotransplantation, 415*

Boushy, S. F. See Gabriele, A. R.

Bowie, W. W. See Harvey, W. C.

Boyce, C. L., Jones, A. E. and Johnston, G. S. Whole-body 18F bone imaging with scintillation camera, 862

Boyce, C. L. See Swann, S. J.

Boyd, C. M. See Lieberman, L. M.

Boyd, J. W. See Quinones, J. D.

Boyd, M. See Crandell, D. C.

Boynt, R. E. See Murray, I. P. C.

Brady, L. W. See Gindhart, T.

Brady, N. See Tran, N.

Brahmav,or, S. M., Groves, R. B., Staeh, E. V., Erickson, J. J. and Brill, A. B. Optimization of data in lung and brain scans, 881

Bramlet, R. See Lewis, C. L.

Bramlet, R. C. Magnifying collimators, 574

Branlty, J. C. See Genna, S.

Braunstein, P., Chandra, R. and Krichoff, I. Quantitating cerebral blood flow, 415*

Braunstein, P. See Jonas, S.

Breneman, W. See Abreu, C. M.

See Vagenakis, A. G.

Brien, T. G. and Fay, J. A. "Cr-EDTA biological half-life and renal function, 339

Brill, A. B. See Brahmanav, S. M. See Price, R.

Brill, D. R. See Patton, D. D.

Bronzino, J. See O'Rourke, J.

Brookeman, V. and Williams, C. M. Serum thyroxine as a screening test, 416*

Brookeman, V. A. See Spector, S. S.

Brotherton, J. See Potter, R.

Brown, D. W.
See Bostrom, S. E.
See Kirch, D. L.

Brown, J. L. See Mincey, E. K.

Brownell, G. L., Burnham, C. A., Hoop, B., Chester, D., Conner, H., Kazemi, H. and Bunnell, J. MGH positron camera, 417*

Brownell, G. L. See Gena, S.

Budinger, T. F. Digital manipulation and presentation of scintillation camera images, 417*

Budinger, T. F. and Yano, Y. 131Cs myocardial function evaluation, 417*

Bunnell, J. See Brownell, G. L.

Burdine, J. A., Alagarsamy, V., Ryder, L. A. and Carr, W. N. Quantitative imaging of regional ventilation and perfusion, 418*

Burdine, J. A., Murphy, J. H., Alagarsamy, V., Ryder, L. A. and Carr, W. N. Functional pulmonary imaging, 933

Burdine, J. A.
See Calderon, M.
See Holmquest, D. L.

Burnbaurn, M. See Tyson, J.

Burnham, C. A.
See Brownell, G. L.

See Greene, R.

Burns, R. G. and Riley, R. F. Radioimmunoassay of C-reactive protein, 418*

Burrows, B. A. Letter from the Editor, publication commission, 1

Burrows, B. A. Letter from the Editor, Style Manual for Authors, 657

Burrows, B. A. See Genna, S.

Buuse, W. See Tyson, J.

Buzzi, K., Paul, J. M. and Benua, R. S. Selective summing of multiple gamma transition lines, 419*

Buzzigoli, G. See Rolleri, E.

Cadile, J. See Perkins, D.

Cadle, P. J. Career ladder for technical personnel, 863

Calderon, M., Harrison, M., Holmquest, D. L., Ryder, L. A. and Burdine, J. A. Pulmonary ventilation and perfusion in pediatrics, 419*

Calderon, M. See Holmquest, D. L.

Callahan, R. J. See Castronovo, F. P.

Calvert, W. P. See LePage, J.

Cardarelli, J. A. See Genna, S.

Carle, V. See Henisz, A.

Carlson, J. C. Computer oscilloscope display to match film, 420*

Carr, W. N. See Burdine, J. A.

Cassell, K. J. See Secker-Walker, R. H.

Cassell, B. See Cohen, M. B.

Castronovo, F. P. and Callahan, R. J. "Tc-1-1-hydoxy-ethylidene-1,1-disodium phosphonate for bone, 821

Castronovo, F. P. See Genna, S.

Chandler, H. L. See Genna, S.

Chandler, R. P. See Adams, E. H.

Chandra, R. See Braunstein, P.

Charkes, N. D. Graves' disease with functioning nodules, 885

Chauhuri, Tapan, K. Bone scan in thyroid acropathy, 775

Chauhuri, Tapan K., Chauhuri, Tuhin, K. and Christie, J. H. Radiostrontium uptake in extraosseous tissues, 858

Chauhuri, Tapan K., Chauhuri, Tuhin, K., Schaprio, L. R. and Christie, J. H. "Se bone scan in hypertrophic pulmonary osteoarthropathy, 120

Chaudhuri, Tapan K. See Chaudhuri, Tuhin K.

Chaudhuri, Tuhin K. and Chauhuri, Tapan K. "Fe- and "Se-RBC handling in aplastic splenic conditions, 420*

Chaudhuri, Tuhin K., Shirazi, S. S., Chaudhuri, Tapan K. and Condon, R. E. "Tc scan to diagnose post-surgery retained antrum, 421*

Chaudhuri, Tuhin K. See Chaudhuri, Tapan K.

See Muilenburg, M. I.

Chervu, L. R., Blaufox, M. D., Eckelmann, W. C. and Richards, P. 201Sn complexes for bone imaging, 781*

Chervu, L. R., Lory, M., Liang, T., Lee, H. B. and Blaufox, M. D. Radioimmunoassay for plasma renin activity, 804

Chesnut, D. See Brownell, G. L.

Chestnut, C. H., Neip, W. B. and Denney, J. D. Quantitative bone-mass measurements, 421*

Chiba, K. See Iio, M.

Chiles, J. T.
See Hoffer, P. B.

See Tetelman, M. R.

Christacopoulos, J. S. See Drum, D. E.

Christensen, J. See Simmons, G. H.

Christie, J. H.
See Chaudhuri, Tapan K.

See Muilenburg, M. I.

Christman, D. R. See Atkins, H. L.

Chu, F. C. H. See Greenberg, E. J.

Coel, M., Halpern, S. E. and Alazraki, N. P. Hot hepatic lesions on liver scans, 703

Coel, M., Halpern, S. E., Alazraki, N. P., Ashburn, W. L. and Leopold, G. Increased colloid uptake by intrahepatic lesion, 221

Coel, M. See Schieff, A.

Cohen, M. B. and Spolter, L. Rheumian and technetium heptasulfide, 287

Cohen, M. B., Spolter, L., MacDonald, N. S. and Cassen, B. Enzymatic synthesis of "Nl-glutamine, 422*

Cohen, Y. See Perez, R.

Cohn, S. H., Shukla, K. K., Dombowski, C. S. and Fairchild, R. G. "Pu,Be neutron source for total-body activation analysis, 487

Collins, K. See Franco, J.

Condon, R. E. See Chaudhuri, Tuhin K.

Conk, D. M. See Kramer, R. J.

Conn, J. W. See Ansari, A. N.

Conner, H. See Brownell, G. L.

Conner, T. See Subramanian, G.

Cooke, M. B. D. and Kaplan, E. Principles of whole-body imaging with a scintillation camera, 899

Cooke, M. B. D. and Kaplan, E. Implementation evaluation of whole-body camera imaging, 903
Cooper, J. See Harbert, J. C.
Cooper, R. E. M. See O'Reilly, R. J.
Coppedge, S. M. and Gydehen, F. R.
Elevated index of iodine ingestion, 863
Cooper, M. See Franco, J.
Corbus, H. F. See Webber, M. M.
Cormann, J. L. See Bosstrom, S. E.
Cornell, R. P. See Saba, T. M.
Cortez-Manso, F. See Skromme-Kadubik, G.
Coy, P. See Mincey, E. K.
Craddock, T. D. Pinhole collimator distortions, 779
Cragin, M. D. See Webber, M. M.
Crandel, D. C., Boyd, M., Wenne- mark, J. R. and Friedman, B. I.
Liver-spleen scanning, 720
Creech, R. H. See Alavi, A.
Crocker, E. F. See McLaughlin, A. F.
Croll, M. N. See Ginthard, T.
Cruithers, T. See Moinuddin, M.
Curl, F. D. See Harbert, J. C.
Daily, M. L. Eye exposure from 99mTc, 864
Daily, M. L. and Jones, M. R.
Data retrieval system, 572
Damm, D., Ausmann, J. and Wolff, J. M.
Evaluation technique for ventriculo-atrial shunt patency, 423*
Davies, D. H. See Kirch, D. L.
Davies, T. and Hayes, M. Rapid renal transplant evaluation, 864
Davis, D. O. See Holman, B. L.
Davis, L. E. See Moses, D. C.
Davis, M. A. See Dewanjee, M. K.
Dean, P. M. See Sear, R.
DeBlanc, H. J. and Wagner, H. N.
Automated testing of bacterial sensitiv- ity to antibiotics, 423*
DeBlanc, H. J. See Russell, C. D.
deGraff, M. and Solomon, N.
Phantom for scanner evaluation, 865
de Graft, M. See Lebowitz, E.
DeLand, F. H. Metabolic infection as an index of bacterial sensitivity to drugs, 424*
DeLand, F. H. and Felman, A. H.
Pericardial tumor compared with pericardial effusion, 697
DeLand, F. H. and Maurerl, W.
Gating mechanism for motion-free liver and lung imaging, 939
DeLand, F. H., Suleiman, O. and Maurerl, W.
Respiration in hepatic imaging, 424*
DeLand, F. H. and Tilden, R. L.
Electroosmophoretic radioimmunoas- say, 425*
DeLand, F. H. See Tilden, R. L.
DeMeester, G. D. See Barrett, H. H.
DeMeester, G. D. See DeNardo, S. J.
See Fusco, M. A.
DeNardo, S. J., Hammel, C. F., Lewis, J. P. and DeNardo, G. L.
Bone and marrow assessment in sickle cell anemia, 425*
DeNardo, S. J. See Fusco, M. A.
Denney, J. D., Nelp, W. B. and Sherrard, D. J.
Total-body activa- tion for Ca in chronic renal dis- ease, 426*
Denney, J. D. See Chesnut, C. H.
Deutsch, M. E. and Redmond, M. L.
99mTc-HSA kits, 426*
DeVita, V. T. See Milder, M. S.
Dewanjee, M. K., Fletcher, J. W. and Davis, M. A.
Tc-polysphosphate proportion and distribution, 426*
Dewanjee, M. K., Fliegel, C., Treves, C.
and Davis, M. A. 99mTc-tetra- cycline for kidney imaging, 427*
Diaz, N. J. See Spector, S. S.
Dibos, P. E. See Lomas, F.
DiChiro, G., Jones, A. E., Johnston, G. S., Ommaya, A. K. and Koslow, M.
Radioisotope angiography of the spinal cord, 567
DiChiro, G. See Larson, S. M.
Dielman, R. See Zeiss, R.
Dimich, A. B. See Greenberg, E. J.
Dinwoodie, R. See Lembarres, M.
Dombrowski, C. S. See Cohn, S. H.
Domènech-Torné, F. M. See Vondrell-Torné, E.
Dore, K. E. See Gates, G. F.
dos Remedios, L. V. See Weber, P. M.
Dowdey, J. E. See Bonte, F. J.
Drum, D. E. and Christacopoulos, J.
S. Lung imaging in clinical decision making, 909
Drum, D. E. See Polga, J. P.
Dubovsky, E. See Goel, Y.
Quantitative test of gallbladder function, 428*
Dugan, M. A., Kozar, J. J., Ganse,
G. and Quap, C. Thrombosis local- ization, 762*
Dunn, C. J. and King, W. B.
Orientation and localization, 865
Dworak, C. See Quaife, M. A.
Dwyer, A. J. See Greenberg, E. J.
East, J. K. See Bell, P. R.
Eastham, S. See Higgins, H. P.
Eber, L. M. and Poc, N. D.
Eckelman, W. C., Meinken, G. and Richards, P.
Chemical state of technetium, 341
Eckelman, W. C., Meinken, G. and Richards, P.
Chemical state of 99mTc in biomedical products, 577
Eckelman, W. C. and Richards, P.
Analysis of 99mTc-labeled compounds, 302
Eckelman, W. C. and Richards, P.
99mTc labeling of albumin, 180
Eckelman, W. C., Richards, P., Atkins, H. L. and Hauser, W.
Alteration of 99mTc-RCB, 400
Eckelman, W. C.
See Atkins, H. L.
See Chervu, L. R.
See Kopper, J. F.
Edwards, C. L., Hayes, R. L. and Nelson, B. "Normal" 9Ga scan, 428*
Edwards, C. L. See Nelson, B.
Edwards, R. Q. See Kuhl, D. E.
Ege, G. N. See Nelis, A.
Elkman, E. A. See Dugal, P.
El Gamal, T. See Holloway, W.
El-Zayat, A. and Razzak, M. A.
Lective distribution of caval blood within the lungs, 616
Endow, J. S.
See Halpern, S. E.
See Krishnamurthy, G. T.
See Tubis, M.
Enright, L. P. See Kriss, J. P.
Erbeing, G. See Bekdik, C. F.
Erickson, J. J. See Brahmovar, S. M.
Everhart, H. See Witoskaf, R.
Abdominal lymph node visualization, 185
Fairchild, R. G. See Cohen, S. H.
Farkas, R. J. See Adams, E. H.
Farmaelint, M. and Trainor, J.
Inhalation lung scanning, 344
Farr, P. A., Saha, G. B. and Shi- bata, H. N. "In-transferrin for tumor scanning, 429*
Fay, J. A. See Brian, T. G.
Feindel, W. See Rojek, H.
Felman, A. H. See DeLand, F. H.
Ferguson, R. H. See Sonnemaker, R. E.
Ferro, A., Medeiros-Neto, G. A., To- ledano, A. C. and Kleeff, J.
Auton- omous thyroid nodules, 733
Ferraz, A. See Medeiros-Neto, G. A.
Ficken, V. J. See Anderson, D. W.
Finch, S. C. See Spencer, R. P.
Fink, D. W. Scintigraphy of an accessory spleen rupture, 333
Fink, D. W. See DeNardo, F. W.
Distortion with pinhole collimator on the scintillation camera, 338
Finn, R. D. and Wolf, A. P.
Cyclotron production of 12C-CO2, 429*
Fischer, J., Gamm, H. and Wolf, R.
Capacity test of the spleen, 430*
Fish, M. B. See Khentigan, A.
Fliegl, C. See Dewanjee, M. K.
Fletcher, J. W. See Dewanjee, M. K.
Fordham, E. W. See Rayudu, G. V. S.
Fortman, D. L. See Robbins, P. F.
Found, B. See Webber, M. F.
 Fowler, J. S.
See Atkins, H. L.
See Lambrecht, R. M.
Francis, M. D. See Tote, A. J.
Franco, J., Coppler, M., Kovaleski, B., Nelson, V., Collins, K. and
Vanags, K. Diagnosis of hepatoma, 644
Franco, J.
See Kovaleski, B.
See Vanags, K.
Freedman, G. See Liuzzi, A.
Freeman, L. M. and Mehnert, P.
Scintigraphy of metastatic thy- roid carcinoma, 335
Friedman, B. I.
See Crandell, D. C.
See Harper, A. G.
See Moinuddin, M.
See Rockett, J. F.
Friedman, W. F. See Alazraki, N. P.
Frisbie, J. H. See Roberts, R. C.
Fusco, M. A., Peek, N. F., Juenger- man, J. A., Canez, F. W., De- Nardo, S. J. and DeNardo, G. L.
Cyclotron production of 131I, 430*
Antibiotics
bacteria sensitivity, "C-glucose metabolism, 423*, 424*
Tc-tetracycline, preparation, distribution, in rats, 427*
Antimony-124
content, "Mo-"Tc generator eluate, 570
content, "Tc-O3-, methyl-ethyl-ketone extraction, 318
Arm
see Extremities
Arsenic-74
brain tumor imaging, MGH positron camera, 417*
Autofluoroscope
brain imaging, "Tc-O3-, 582
Autoradiography
"^F, experimental communicating hydrocephalus, in dogs, 784*
Bacteria
antibiotic sensitivity, "C-glucose metabolism, 423*, 424*
Barium-128
production, Brookhaven Linac Isotope Producer, 449*
Barium-133m
calibrator, quality control, 285
Barium-133m
bone agent, in dogs, 342
Blood
plasma renin activity, compared to radioimmunoassay, 804
Bladder
neurogenic, complication of "^I-HSA cisternography, 763
Blocking dose
KClO4, for "Tc-O3-, in dogs, 363
Blood
radioimmunoassay for hepatitis associated antigen, 425*, 454*, 599
Blood clots
see Thrombosis
Blood flow
see specific organs
Blood vessels
see Brain, blood flow; Heart, blood flow; Vascular system
Bolus injection
see Injection
Bone
and marrow assessment, sickle cell disease, 425*
"Ca kinetics in disease, 461*
comparison of "F, "Sr and "Tc-Sn-polyphosphates, in animals, 462*
"F, field distortion, scintillation camera, 338
"F imaging, MGH positron camera, in animals, 417*
"F scan, kidney accumulation, 744
hydroxyapatite, in vitro skeletal model, 472*
image, whole-body, "F, pinhole collimator, 862*
lesions, effect of radiation therapy on "Ca and "Sr kinetics, 747
localization aid to x-ray therapy, 867*
mass, neutron activation analysis, in osteoporosis, 421*
mineral content, transmission scanning, 13
"Sn complexes, distribution in mice, 781
"Sr and "Sr scans, metastatic lung carcinoma, 465*
"Sr dosimetry, 705
"Sr imaging, ankylosing spondylitis, 467*
"Sr scan, hyperpertensive pulmonary osteoarthropathy, 120, 775
"Sr scan, thyroid acropachy, 775
"Sr scans, in children, 468*
"Sr scans, metastatic breast disease, 452*
"Tc-organo-phosphonate, preparation, animal studies, 821
"Tc-polyphosphate imaging, 412*, 413*, 414*
"Tc-polyphosphate, "kit" preparation, 470*
"Tc-polyphosphate, preparation, animal studies, 455*, 472*, 480*, 947
"Tc-polyphosphate, properties, 427*
Tc-Na-pyrophosphate scanning, 788*
turnover, photon absorptometry, in dogs, 593
Bone marrow
assessment, sickle cell disease, 425*
image, "Tc-S-colloid, 456*
infarcts, sickle cell anemia, "Tc-S-colloid scan, 408*

Book review
Dynamic Studies with Radioisotopes in Medicine, 127
Frontiers of Nuclear Medicine, 854
Progress in Atomic Medicine, 774
Precautions in the Management of Patients Who Have Received Therapeutic Amounts of Radioisotopes, 230
Protection Against Radiation from Brachy-therapy Services, 854
Radiation Protection Instrumentation and its Application, 395
Radiation Quantities and Units, 773
Brain
absorbed dose calculation, 856
cerebrovascular occlusive disease effect on cisternogram, 493
"C-hydantoin, distribution, in dogs, 479*
distribution of tracers in brain, scalp and serum, in animals, 458*, 681
frontal lucency sign, 459*
image interpretation, 413*
image, autofluoroscope, "Tc-O3-, 582
image, corpus callosum involvement, 510
image, "doughnut" sign, 630, 777
image, in Rhesus monkeys, 874*
imaging, MGH positron camera, "As, 417*
imaging, "rim" sign, 637
image, "Tc-O3-, optimum counting time, 881
image, "Tc-O3-, vertex view artefact, in child, 393
post-craniotomy time, effect on "Tc-O3- scan, 156
sarcoma, kinetics of "Tc-, "Sr, "Sr, "In- and "Yb-DTPA, in mice, 205
scan, myotic aneurysm, right middle cerebral artery, "Tc-O3-, 695
scan, sensitivity and specificity, 460*
scan, "Tc-O3-, autopsy confirmation, 373
scan, "Tc-O3-, in multiple sclerosis, 845
scan, "Tc-O3-, initial compared to delayed, 131
scan, "Tc-O3-, intracranial infection, 451*
scan, "Tc-O3-, negative defect, intracranial teratoma, 122
tomography, "Tc-O3-, 869*
transverse section scanning, orthogonal tangent correction, 447*
tumor, intracranial, "Tc-O3- and "Ga-citrate, 439*
tumor localization, "Tc-Sn-DTPA, -Fe-ascorbic acid-DTPA, and -Fe-ascorbic acid, in mice, 832
tumor, "Tc-O3-, uptake, 321
Brain, blood flow
bolus injection, "Tc-O3-, 434*
cerebral, "Tc-O3-, quantitation, 355*, 415*
comparison of analytic methods, "Xe, 66
digital studies, computer analysis, 658
regional cerebral, "Xe, camera, 534, 916
regional, "Tc-O3-, cerebrovascular disease, 135
Calcium
balance, chronic renal disease, total-body neutron activation analysis, 426*
content, biological samples, neutron activation analysis, 293
total-body neutron activation analysis, 421*, 487
Calcium-47
absorption studies, renal lithiasis, 463*
bone lesion kinetics, effect of radiation therapy, 747
kinetics in bone disease, 461*
Calcium-49
total-body Ca, neutron activation analysis, 487
Camera, image intensifier
Fresnel zone plate, 382, 464*, 612
Camera, positron
MGH, clinical results, 0% 15NH3, 14F, 111As, 125Ga, 417*
regional ventilation, 130NN, 433*

Camera, scintillation
bolus injection technique, 118
brain blood flow, 125TcO4-, digital, computer analysis, 658
brain imaging, 14doughnut" sign, 777
collimator, low-energy, 471*
collimator, magnifying, 574
collimator, multichannel magnifying, 414*
collimator, parallel-hole, design, 467*, optimization, 411*
collimator, pinhole, distortion, 778
collimator, pinhole, F16 whole-body bone, 862*
collimator, pinhole, imaging Rhesus monkeys, 874

-carotid, 4m

collimator, pinhole, nonuniformity, filter correction, 859
computer system, cardiac dynamics, 585
computer system, central circulation, 125Tc-HSA, 477*
computer system, Intertechnique model 22, 461*
computer system, left ventricular ejection fraction, 649
computer system, liver tumor detection, 125Ga-citrate, 667
computer system, lung ventilation and perfusion, 125Xe, 125Tc-HSA microspheres, 933
computer system, quantitative liver image analysis, 869*
computer system, quantitative 125TcO4- angiocardiography, 813
computer system, regional cerebral blood flow, 125Xe, 916
computer system, regional lung ventilation, 418*, 439*, 450*, 466*
computer system, right and left heart dynamics, 785*
determination of actual organ size, 129
digital manipulation of image, 417*
field uniformity, computer evaluation, 525, correction, 449*
field distortion, pinhole collimator, 14F, 338
film characteristics, Polaroid 107 and Eastman 2495, 475*
frequency domain and techniques for dynamic studies, 440*
Fresnel zone plate, 382
heart, left atrial myxoma diagnosis, 81
heart, left-to-right cardiac shunt, 125TcO4-, 142
heart, left ventricular ejection fraction, 125Tc-HSA, 459*
heart, superior vena cava aneurysm, 227
kidney blood and urinary flow, 472*
liver imaging and perfusion, 480*
liver phagocytic, metabolic and blood-flow studies, 300
liver, rapid sequential imaging, 475*, 522
liver, respiraion effect, 424*, 437*, 758
liver, 125Tc-S colloid, clinical evaluation, 909
lung, ventilation, perfusion, 418*, 419*, 470*, 473*, 561, 633, 933
motion correction, analog and digital, 458*
motion correction, liver and lung, gating mechanism, 939
MTF for three collimators, 125Tc and 125Xe, 481*
multi-channel analyzer-computer system, regional cerebral blood flow, 534
multicrystal, high counting rate, 440*
optimum counting time, liver and lung, 125TcO4- and 131I-MAA, 881
orientation of organ, 866*
pancreas imaging, 51
portal circulation evaluation, 689
pulmonary hypertension, 604
quality control, 285
remote start switch, 706
resolution, effect of threshold preamplifiers, 169
spatial distortion, analysis, correction, 307
spatial resolution, electronic signal processing and movable filter plate, 784*
125Tc window optimizing, 342
thyroid carcinoma, metastatic, 125TcO4- dynamic study, 335
thyroid uptake, 125TcO4-, 436*
whole-body imaging, 899, 903

Carbon-11
-acetylene, preparation, 699
-CO2 cyclotron production, 429*
-hydantoins, preparation, distribution, in dogs, 479*

Carbon-14
-CO2 exhaled, fat malabsorption test, 780*
-CO2 formaldehyde oxidation by alcoholic RBC, in vitro, 473*, 677
-CO2, lactose metabolism, 789*
-CO2, oxidation process, human placenta, 41
DOPA, enzymatic and nonenzymatic oxidation, 349
-D-glucose-6-phosphate oxidation in human placenta, 41
-DL-leucine oxidation in human placenta, 41
-DL-3-phenylalanine oxidation in human placenta, 41
-formaldehyde, oxidation in alcoholic RBC, in vitro, 473*, 677
-glucose metabolism, bacteria antibiotic sensitivity, 423*, 424*
-inulin, clearance, compared to 125Tc-DTPA, 107
-lactose, milk intolerance assessment, 789*
-polyphosphate, distribution compared to 125Tc-labeled, in animals, 472*
-2-thiouracil, placental transfer, fetal distribution, in animals, 148
-trialpinmitate, Na palmitate, fat malabsorption test, 780*

Cardiac
see Heart

Cerebral blood flow
see Brain, blood flow

Cerebral spinal fluid
see also: Cisternography
dynamics, normal pressure hydrocephalus, 873*
153Yb-DTPA clearance in meningitis, in dogs, 942

Cesium-141
-microspheres, glomerular blood-flow distribution, in rats, 454*

Certification
need for a Board, 398, 857

Cesium-129
myocardial infarction imaging, in dogs, 478*
myocardial scanning, 460*
myocardial uptake studies, 417*
production, Brookhaven Linac Isotope Producer, 449*

Cesium-131
myocardial turnover, in animals, 557

Cesium-134
content, 129Mo-125Tc generator eluate, 388, 570

Cesium-137
calibrator, quality control, 285

Chelates
see also: Technetium-99m, DTPA
124Cr-EDTA, renal function, 339
DTPA, 125Tc-, 111In-, 153Yb-, kinetics, brain sarcoma and kidney in mice, 205
111In-, cisternography, relative radiation dose, 468*
111In-DTPA, cisternography, 442*
111In-DTPA, adverse reactions, 232
111In, in 125Tc- and 153Yb-, DTPA and EDTA, transplant evaluation, 793
153Pb-EDTA, cisternography, in animals, 468*
125Tc-(Sn)DTPA, Fe-ascorbic acid-DTPA, renal clearance, brain tumor localization, in mice, 852
153Yb-DTPA, cisternography, 73
153Yb-DTPA clearance from CSF, 942

Chlorine
content, biological samples, neutron activation analysis, 293*
total-body, neutron activation analysis, 487

Chlorine-38
total-body CI, neutron activation analysis, 487

Chloromerodrin
see Mercury 197; Mercury-203

Cholesterol
125I-19-iodo-, adrenal imaging, 409*, 410*
Chromatography
anion exchange, paper and gel, ##Tc## compounds, 202
gel, chemical state of ##Tc##, 577
paper and potentiometric, reduced Tc, 432*

Chromium-51
- EDTA, renal function, 339
- chloride, placenta uptake, in rabbits, 451*
- microspheres, glomerular blood flow distribution, in rats, 454*
- "overdose" procedures, 866*
- RBC, agglutination in macroglobulinemia, 397
- RBC and ##Tc##-RBC, red cell volume, 443*
- RBC, labeling and centrifugation, syringe technique, 163
- RBC labeling, effect of corticosteroid therapy, 872*
- RBC, rate of loss from spleen, 686
- RBC, Rh-positive, antibody evaluation, 446*
- RBC, spleen capacity test, 430*
- RBC survival, standardization, 573
- stannous hydroxide, lung scan, 409*

Chromosomes
radiation damage, X-rays, ##Au##, in rats, 479*

Cisternography
aseptic meningitis, call for participation in pyrogen test-
ing, 778
communicating hydrocephalus, experimental, ##I-HSA##, in
dogs, 784*
chelate kinetics, 442*
CSF dynamics in normal pressure hydrocephalus, 873*
CSF shunt function, ##Tc##-DTPA and ##Tc##O##, 464*
hyperbaric, 408*
##I-HSA## effects of cerebrovascular occlusive disease, 493
##I-HSA##, febrile response, 655
##I-HSA##, neurogenic bladder complication, 763
##I-HSA##, In-transferrin, 401
##Pb-EDTA##, preparation, animal studies, 468*
radio-IHSA, pneumoencephalogram and surgical corre-
gation, 467*
stereo, 289
##Tc##-DTPA, 551
##Tc##-HSA ventriculography, 448*
##Tc##-HSA, ##Yb-DTPA##, ##I-HSA##, posterior fossa abnor-
malities, 73
transmission scanning as aid, 870*
ventriculo-atrial shunt patency, ##Tc##, 423*
##Yb-DTPA## clearance in meningitis, in dogs, 942

Clinical evaluation
autofluoroscope ##Tc##O## brain imaging, 743 cases, 582
bone imaging, ##Tc##-Polyphosphate, 230 cases, 412*,
413*, 414*
brain imaging, corpus callosum involvement, 56 cases,
510
brain scan, frontal lobus sign, 67 cases, 459*
brain scan, sensitivity and specificity, 302 cases, 460*
##Ca## absorption studies in renal lithiasis, 198 cases, 463*
central circulation evaluation, ##Tc##-HSA, 41 cases, 477*
cerebral blood flow, ##Xe##, 25 cases, 66
cisternography, IHSA, 213 cases, 467*
computer-interfaced four probe counter, 46##Au## studies,
435*
coronary arteriography, 52 cases, 435*
CSF flow studies, ##I-HSA##, febrile response, 88 cases,
655
##Cs## myocardial uptake studies, 28 cases, 417*
effective thyroid hormone test, 88 cases, 874*
extension scan procedure, efficacy, 436*
##F## bone scan, kidney accumulation, 160 cases, 744
##Ga##-citrate scanning, malignant lymphoma, 30 cases,
474*
##Ga##-citrate, tumor scans, 246 cases, 25; 149 cases, 196;
2000 cases, 457*
##Ga## distribution in lymphoma and leukemia, 100 cases,
448*
##I-19##iodocholesterol, adrenal imaging, 40 cases, 409*
##I-19##triolein absorption, 44 cases, 252

I##T## urinary excretion in thyroid carcinoma, 53 cases, 434*
K heart scans, 20 cases, 432*
kidney imaging aid to biopsy, 478 cases, 544
kidney transplants, 180 cases, 793
left-to-right cardiac shunt detection, camera, ##Tc##O##,
93 cases, 142
liver disease, differential diagnosis, ##Ga##, ##In##, ##Tc-S
colloid, 113 cases, 450*
liver, homotransplant evaluation, 50 cases, 415*
liver imaging, ##Tc##-S colloid, 650 cases, 909
liver, quantitative image analysis, camera-computer sys-
tem, 200 cases, 869*
liver scan, 1500 cases, 457*
liver-spleen imaging, ##Tc-S## colloid, in trauma, 100 cases,
438*
liver-spleen scan, Hodgkin's disease, 110 cases, 453*
low-energy collimator, ##Tc##-microsphere lung imaging,
63 cases, 471*
lung imaging, pulmonary hypertension, 27 cases, 604
microcirculation pathophysiology in chronic obstructive
pulmonary disease, 84 cases, 462*
##N##-NH##, myocardial imaging, 38 cases, 782*
"normal" lung scan, ##Tc##-MAA, 46 cases, 476*
pancreas imaging, 134 cases, 51
peripheral joint imaging in children, ##Tc##O## and ##Tc-DTPA##,
78 cases, 466*; ##S##, 30 cases, 468*
pulmonary ventilation and perfusion, 70 children, 419*
radioimmunoassay, carcino embryonic antigen, 250 cases,
788*
radioimmunoassay, cytoketoprotein, 100 cases, 783*; 300
cases, 783*
regional lung ventilation, ##Xe##, computer-camera, 103
cases, 466*
renography, computer-assisted, 109 cases, 235
respiration in liver imaging, 50 cases, 424*; 50 cases, 437*
sequential liver imaging, ##Tc##-S colloid, 79 cases, 475*;
77 cases, 522
serum free thyroxine, 118 cases, 780*
serum thyroxine as screening test, 1600 cases, 416*
##S## and ##S## bone scans, metastatic lung carcinoma, 82
cases, 465*
##S## bone scans, metastatic breast disease, 164 cases,
452*
##Tc##-MAA "kit", 50 cases, 790*
##Tc##-Na-pyrophosphate for bone scans, 300 cases, 788*
##Tc##O## and ##I## for thyroid scan, 67 cases, 446*
##Tc##O## bolus injection, brain, 120 cases, 434*
##Tc##O## brain scan, 5000 cases, 451*
##Tc##O## brain scan, autopsy confirmation, 84 cases, 373
##Tc##O## cerebral transit, 96 cases, 455*
##Tc##O## thyroid uptake, scintillation camera, 165 cases,
436*
##Tc##-S colloid bone marrow imaging, 150 cases, 456*
thrombosis imaging, ##Tc##-S colloid-MAA, 73 cases, 476*
thyroid, autonomous nodules, diagnostic index, 100
cases, 733
thyroid imaging, ##I## and ##Tc##O##, 87 cases, 411*
thyroid, simultaneous thermic and ##Tc##O## scans, 78
cases, 411*
total-body neutron activation analysis, bone mass, 37
cases, 421*
T##s## serum uptake, albumin microspheres, 241 cases, 893
ultrasound and imaging, thyroid nodule, 102 cases, 504
##Xe## regional lung function, 201 cases, 450*

Cobalt-57
calibrator, quality control, 285
marker, kidney localization, 544
source, transmission imaging, head, mediastinum, 874*
-vitamin B, placenta uptake, in rabbits, 451*

Collimator
collimating, index of resolution, 115
collimator, resolution, energy dependence, 19
Fresnel zone plate, 382, 464*, 612
Fresnel zone plates, x-ray film cassettes, 781*
low energy, scintillation camera, 471*
magnifying, scintillation camera, 574
multichannel magnifying, scintillation camera, 414*
parallel-hole, scintillation camera, design, 467*, optimization, 411*
pinhole, camera distortion, 778
pinhole, camera, field definition, "F", 338
pinhole, camera, filter correction for non-uniformity, 859
pinhole, camera, imaging Rhesus monkeys, 874*
reducing extrathyroidal neck activity, 693
scintillation camera, MTF, ""Tc, ""Xe, 481*

Computer
analysis of digital dynamic ""TcO, cerebral circulation, 658
-camera-multichannel analyzer system, regional cerebral blood flow, 534
-camera system, central circulation, ""Tc-albumin, 477*
-camera system, heart dynamics, 585
-camera system, intrarenal dynamic processes, 473*
-camera system, left ventricular ejection fraction, 459*, 649
-camera system, liver tumor detection, "Ga-citrate, 667
-camera system, lung ventilation and perfusion, ""Xe, ""Tc-HSA microspheres, 933
-camera system, quantitative liver image analysis, 869*
-camera system, quantitative ""TcO, angiography, 813
-camera system, regional cerebral blood flow, ""Xe, 916
-camera system, regional lung ventilation, 418*, 439*, 450*, 466*
-camera system, right and left heart dynamics, 785*
-camera system, whole-body imaging, 899, 903
design program, parallel-hole collimator, 467*
digital, camera image manipulation, 417*
digital, spatial distortion correction, gamma camera, 307
dynamic camera studies, frequency domain, 440*
functional images of regional ventilation and perfusion, 418*
image enhancement, nonlinear digital techniques, 441*
-interfaced four probe counter, "Au, 433*
-Inter technique model 22, 461*
motion correction, analog compared to digital, 458*
oscilloscope display to match film, 420*
renography, 235
-scanner, dual data-scanning system, 413*
scintillation camera field uniformity evaluation, 525

Cows
see Generators

Cyclotron
"C-acetylene preparation, 699
"CO production, 429*
"F, production, 785*
"Ga production, 25
"I production, 430*, 729
"Pb production, 468*
"Tc production, 781*
"Tc production, 776

Data processing
see also Computer
frequency domain techniques, 440*
functional images, regional ventilation and perfusion, 418*, 456*
limitations, scintillation camera, 417*
lung scanning and ratemeter averaging, effect on lesion detection, 191
low counting-rate scan, 528
motion correction in liver imaging, 437*
-multiwindow spectral analysis, 431*
nonlinear digital techniques, 441*
organ motion correction, 458*
quantitative liver image analysis, 869*
scan smoothing effect on observer performance, 752
spatial distortions, scintillation camera, 307
spatial resolution improvement, scintillation camera, 784*
transverse section scanning, orthogonal tangent correction, 447*

Detector
Ge(Li), coaxial for scintillation camera, 767
Ge(Li) semiconductor, "Ga, "'In, "Se simultaneous measurement, 624
5 in NaI(Tl), figures of merit, 419*

Dextrose
hyperbaric cisternography, 408*

Digital computer
see Computer

Display system
image communication by telephone, 379, 771
oscilloscope, matching to film, 420*
35 mm film, 868*

Distinguished Nuclear Pioneer Lecturer—1972
Francis Perrin, 406

Distinguished Nuclear Pioneers—1972
Frédéric and Irène Joliot-Curie, 402

DOPA
"C-, enzymatic and nonenzymatic oxidation, 349

Dosimeter
calorimetric, ""Tc to technicians' hands, 627

Dysprosium-157
-gluconate, placenta uptake, in rabbits, 451*

Editor's Letter
nature of publications, 1

Style Manual for Authors, 657

Education
need for a Board of Certification, 398, 857
task description, 870*
technician, technologist, suggested program, 863*

Energy
dependence, resolution of focused collimator, 19, 115
emission, ""TmPt, 790*
gamma, "Se, MIRD pamphlet 9
multiple gamma figures of merit, 419*

Enzymes
alcoholic RBC oxidation of "C-formaldehyde, in vitro, 473*, 677
limitus amebocyte lysate test for endotoxin, 431*
oxidation of "C-DOPA, 349
placenta oxidation "C-leucine, -phenylalanine, -glucose-6-phosphate, 41
synthesis of "N-glutamate, 786*
synthesis of "N-glutamine, 422*

Epinephrine
effect on spleen size, 211, 951

Erythrocyte
see Red blood cell

Excretion
urinary, "I in thyroid carcinoma, 434*

Extremities
arteriovenous shunt flow, ""Tc-albumin microspheres, 357
joint imaging, in children, ""TcO, 367
joint imaging, in children, ""TcO, and ""Tc-DTPA, 466*
joint scanning, in children, "Sr, 468*
temporary circulatory arrest to restrict isotope distribution, 288
thromboembolus detection, "I-streptokinase, in dogs, 451*

Eye
capillary and aqueous humor dynamics, Xe and albumin, 788*
exposure to ""Tc, technician, 864*

Fetus
"C-2-thiouracil distribution, in animals, 148
placenta oxidation, ¹⁴C-leucine, -phenylalanine, -glucose-
6-phosphate, 41
placenta uptake, 11 agents, in rabbits, 451*
Fibrinogen
¹¹⁷In, autologous, rapid preparation, 841
¹³¹I, thrombosis uptake, in dogs, 782
serum, degradation products, correlation with lung scan,
444*
Film
camera images, Polaroid 107 and Eastman 2495 char-
acteristics, 475*
matching computer oscilloscope display, 420*
Polaroid, scan reproduction, 289
36 mm, record keeping system, 868*
x-ray cassettes, Fresnel zone plate imaging, 781*
Filter
image enhancement, nonlinear techniques, 441*
movable plate, scintillation camera spatial resolution,
784*
nonuniformity correction in scintillation camera pinhole
collimator, 859
sterilization, checking, 285
Fluorine-18
anhydrous, cyclotron production, 785*
bone assessment, sickle cell disease, 425*
bone, compared to °°Sr and °°Tc-polyphosphate, in
animals, 462*
bone imaging, MGH positron camera, in animals, 417*
bone imaging, whole-body, camera, pinhole collimator,
862*
-F, CF₅OF-, IF₃, intermediates, production, 785*
fluotryptophans, preparation, distribution in animals,
713
- 5-fluorouracil production, 785*
kidney accumulation during bone scan, 744
"overdose" procedures, 866*
scintillation camera, field distortion, 338
whole-body imaging, scintillation camera, 909
Fourier transform
frequency domain and techniques, dynamic studies, 440*
nomenclature, 704
Fresnel zone plate
image intensifier camera, 382, 464*, 612
imaging with x-ray film cassettes, 781*
scintillation camera, 382
Gallbladder
biliary excretion of °°Tc-MAA, 260
imaging, °°Tc-penicillamine, 447*, 652
quantitative function test, in dogs, 428*
Gallium-67
-chloride, carotid body tumor, 640
-citrate, distribution in humans, 92
-citrate, intracranial tumor detection, 439*
citrate, °°In, °°Se, simultaneous measurement in tumors,
in mice, 624
citrate, -lactate, -chloride, -Fe-DTPA chelate, kinetics,
in mice, 443*
citrate, liver disease, differential diagnosis, 450*
citrate, liver tumor detection, computer-camera system,
667
citrate, malignant lymphoma scanning, 474*
citrate, tumor scanning, 25, 196
citrate, tumor scanning, microradioangiography corre-
lation, 452*
citrate, whole-body imaging in Rhesus monkeys, 874*
cyclotron production, 25
multiple gamma figures of merit, 419*
"normal" scan, 428*
uptake in lymphoma and leukemia, 448*
whole-body imaging, scintillation camera, 899
Gastric fluid
-aerosol, lung distribution, MGH positron camera, 417*
Gastrointestinal tract
biliary excretion of °°Tc-MAA, 260
fat malabsorption test, °°C-palmitate, 780*
°°Ga-citrate tumor scans, 196
°°Ga content, 448*
gastric dilatation causing spleen displacement, 223
°°T-rioleine absorption, purity, 353
°°T-rioleine absorption test, 252
post-surgery retained antrum, °°TcO₄, scan, in dogs, 421*
°°Tc-S colloid, outline of abdominal mass, 219
Generator
°°Mo-°°Tc, eluate impurities, 388, 570
Glomerular filtration rate
kidney transplant, °°Yb-Fe-DTPA, 793
substitution of °°Cr-EDTA biological half-life, 339
°°Tc-DTPA evaluation, 107
Glutamine
°°N, enzymatic synthesis, 422*, 786*
Gold-198
adverse reactions, 232
dynamic study, computer-interfaced four probe counter,
433*
lymph drainage from mammary gland, 799
"overdose" procedures, 866*
pancreas imaging, subtraction technique, 469*
placenta uptake, in rabbits, 451*
radiation damage to chromosomes, in rats, 479*
Half-life
biologic, °°I-MAA in chronic respiratory disease, 475*
biologic, °°Se-selenomethionine, MIRD pamphlet 9
clearance, °°F, °°Sr and °°Tc-polyphosphate, in animals,
462*
°°Pt, 790
Hand
see Extremities
Heart
amebic pericarditis, 217
cardiac output measurement, well counter adaptation,
707
°°C-hydantoins, distribution, in dogs, 479*
disease, left lung hypoventilation, 470*
dynamic studies, computer-camera system, °°TcO₄, 785*
°°K scans, 432*
left-to-right shunt quantification, °°TcO₄, in children,
787*
myocardial function, °°Cs uptake, 417*
myocardial imaging, °°N-NH₃, 278, 782*
myocardial infarction imaging, °°Cs, in dogs, 478*
myocardial scanning, °°Cs, 460*
myocardial turnover of °°K and °°Cs, in animals, 557
°°N-NH₃ distribution, in dogs, 274
°°N-NH₃ uptake, MGH positron camera, 417*
potent formamid ovale, °°Tc-HSA microspheres lung
scan, 177
pericardial effusion, °°TcO₄, simultaneous transmission-
emission scanning, 347
pericardial tumor compared with pericardial effusion, 697
°°TI production for myocardial scanning, 781*
transmission-emission imaging, 874*
valvular disease, imaging, pulmonary hypertension, 604
Heart, blood flow
angiography, congenital disease, °°TcO₄, 31
aortocoronary vein bypass graft evaluation, °°Tc-HSA,
445*
bolus injection techniques, °°Tc-S colloid, 457*
cardiac shunt measurement, in children, 431*
central circulation evaluation, °°Tc-HSA, 477*
coronary arteriography, °°TcO₄, °°Tc-HSA, °°KCl, 435*
dynamic studies, °°Tc-HSA, camera-computer, 585
left atrial myxoma diagnosis, °°Tc-HSA, camera, 81
left-to-right cardiac shunts, camera, °°TcO₄, 142
left ventricular ejection fraction, °°Tc-HSA, 459*, 649
myocardial. °°Xe, multichannel magnifying collimator,
414*
quantitative \[^{99m}\text{Tc}\]-HSA angiocardiography, 813
superior vena cava aneurysm, \[^{99m}\text{TcO}_4^-\], camera, 227

Hepatic function
see Liver

Hippuran
see Iodine-131, Hippuran

Holography
Fresnel zone plate, image intensifier camera, 382, 464*, 612

Hormones
\[^{125}\text{I}\] human chorionic gonadotrophin uptake by ovarian carcinoma, in animals, 101
radioimmunoassay applicability, 872*
thyroid stimulating, autonomous thyroid nodules, 733
thyroid stimulating, effect of I ingestion on response to stimulation, 826

Human serum albumin
see Iodine-125, albumin; Iodine-131, albumin; Technetium-99m, albumin

Hydrogen-3
-cis-dichlorodiammine platinum, in animals, 790*
-mannitol and -water, in serum, scalp and brain, in animals, 458*, 681

Hydroxyapatite
in vitro skeletal model, 472*

Imaging
see Camera, image intensifier; Camera, positron; Camera, scintillation; specific organs

Immunology
\[^{99m}\text{Tc}\] colloid uptake and \[^{65}\text{Zn}\] blood levels, in animals, 435*

Indium-111
and \[^{59}\text{Fe}\]-transferrin, uptake by RBC, 786*
-chelate, cisternography, relative radiation dose, 468*
-DTPA, kinetics in cisternography, 442*
-fibrinogen, thrombotic uptake, in dogs, 782
\[^{67}\text{Ga}, \[^{111}\text{In}\] simultaneous measurement in tumors, in mice, 624
liver disease, differential diagnosis, 451*
production, Brookhaven Linac Isotope Producer, 449*
-transferrin, tumor imaging, 429*

Indium-111m
-transferrin, cisternography, 401

Indium-113m
aggregates, adverse reactions, 232
-colloid, adverse reactions, 232
-DTPA, adverse reactions, 232
-DTPA, kinetics, brain tumor and kidney, in mice, 205
dual radionuclide scanning, with \[^{99m}\text{Tc}\], 431*
-Fe-DTPA, kidney transplant evaluation, 793
liver perfusion, 480*
placenta uptake, in rabbits, 451*
-stannous hydroxide, lung scan, 409*
transferrin, distribution in serum, scalp and brain, in animals, 458*, 681

Indium-114m
placenta uptake, in rabbits, 451*

Injection
bolus, double, right and left dynamic heart studies, 785*
bolus, \[^{99m}\text{Tc}\]-HSA, left ventricular ejection fraction, 459*
bolus, \[^{99m}\text{Tc}\]-S-colloid, heart studies, 457*
bolus, technique, 118
ocular micro- capillary and aqueous humor dynamics, Xe and albumin, 788*
percutaneous into spleen, portal circulation evaluation, 689

Insulin
\[^{75}\text{I}\] stability, 621

Iodine
ingestion, elevated level, 863*
Iodine-123
cyclocton production, 430*, 729
preparation, -diiodosalicylic acid, -HSA, -monoido and -diido-L-tyrosine, 266
production, Brookhaven Linac Isotope Producer, 449*
thyroid imaging, compared to \[^{99m}\text{TcO}_4^-\], 411*

Iodine-123
-acth, radioimmunoassay, 438*
-albumin, standard for placenta uptake, in rabbits, 451*
angiotensin I, radioimmunoassay for plasma renin activity, 804
-C-reactive protein, radioimmunoassay, 418*
-o-fetoprotein, radioimmunoassay, 783*
fibrinogen, autologous, rapid preparation, 841
hepatitis associated antigen antibody, radioimmunoassay, 454*
-hepatitis associated antigen, electrosmophoretic radioimmunoassay, 425*, 599
-human chorionic gonadotrophin uptake, ovarian carcinoma, in animals, 101
-inulin, stability, 621
-iodopropamide, beta cell carcinoma of pancreas, in hamsters, 215
-Na-Ithalamate, GFR, 107
source, photon absorptiometry, bone turnover, in dogs, 593
-thymidine analog, effect on liver cell culture survival, 789*
thyroid, pre-surgery label, with \[^{131}\text{I}\], autonomous nodules, 738
-thyroxine, binding, single load resin method, 2
-thyroxine, effective thyroxine ratio, 165, 410*
-thyroxine, serum free thyroxine measurement, 780*
toluidine blue, distribution, in rat, 85
-transmission scanning, irregular bones, 13
-Ts serum uptake, albumin microspheres, 893

Iodine-131
\[^{127}\text{I}\] Ba calibrator, quality control, 285
-dichloro-dichloroethane, suprarenal imaging, 282
iodide, adverse reactions, 232
iodide, -HSA, -MAA, hippuran, "overdose" procedures, 866*
-19-iodocholesterol, adrenal imaging, 409*, 410*
PBI conversion, thyroid carcinoma, 434*
-placenta uptake, in rabbits, 451*
post-thyroid cancer therapy scanning follow-up, 925
-rose bengal-HSA microspheres, RES, preparation, distribution, in dogs, 470*
-rose bengal, orthotopic hepatic homotransplant evaluation, 415*
-stannous hydroxide, lung scan, 409*
streptokinase, thromboemboli detection, in dogs, 451*
thyroid carcinoma lung metastases scan, 850
thyroid, dual label with \[^{131}\text{I}\], pre-surgery autonomous nodules, 738
thyroid scan, compared to \[^{99m}\text{TcO}_4^-\], 446*
thyroid scan, simultaneous thermic scan, 411*
thyroid therapy, cancer, long term followup, 445*
thyroid uptake and bread ingestion, 233
thyroid, autonomous nodules, 733
thyroid uptake, collimator for reducing extrathyroidal neck activity, 693
thyroid uptake, effect of I ingestion on TSH stimulation response, 826
thyroid uptake, normal, 548
thyroid uptake, scan, therapy, Graves's disease with functioning nodules, 885
-triiodothyronine absorption, purity, 353
-triiodothyronine absorption test, 252
-triiodothyronine, lipid, hepatic function studies, 300
uptake by non-lactating breast, 777
urinary excretion in thyroid carcinoma, 434*
-urokinase, blood clot uptake, in animals, 646
whole-body scan, colon content, 181

Iodine-131, albumin
adverse reactions, 232
cisternography, 73
cisternography, neurogenic bladder complication, 763
cisternography, stereo, 289
cisternography in cerebrovascular occlusive disease, 493
communicating hydrocephalus, experimental, in dogs, 784*
CSF dynamics, normal pressure hydrocephalus, 873*
CSF flow studies, febrile response, 655
liver accumulation in sensitized dogs, 442*
-MAA, adverse reactions, 232
-MAA, biologic half-time in chronic respiratory disease, 475*
-MAA, caval blood distribution to lungs, 616
-MAA, lung imaging, bronchial obstruction, 561
-MAA, lung imaging, optimum counting time, 881
-MAA, lung imaging, pulmonary hypertension, 604
-MAA, lung scan and serum fibrinogen degradation products, correlation, 444*
-MAA, lung scan combined with transmission scan, 861*
-MAA, lung ventilation, perfusion, multiple views, 871*
-MAA, placenta uptake, in rabbits, 451*
-MAA, portal circulation evaluation, 689
whole-body imaging, scintillation camera, 899

Iodine-131, hippurate
adverse reactions, 232
clearance, compared to **tTc-DTPA, GFR, 107
compared to **tTc-penicillamine acetazolamide complex for kidney studies, 723
partial renal infarct simulating tumor, 125
renography, computer-assisted, 235
renography, transplant evaluation, 793, 864*
urinary flow, intrarenal, 472*

Ion exchange resin
T; binding, single load, 2

Iron-52
production, Brookhaven Linac Isotope Producer, 449*

Iron-59
and **In-transferrin, uptake by RBC, 786*
citrate, placenta uptake, in rabbits, 451*
"overdose" procedures, 866
-RBC, handling by abnormal spleen, in rats, 420*
-stannous hydroxide, lung scan, 409*

Joints
peripheral; see Extremities
sacro-iliaic, **Sr imaging, anklyosing spondylitis, 467*

Kidney
absorbed dose calculation, 856
amniotic fluid, 217
biliary excretion **Tc-MAA, 260
cell culture, effects of **I-thymidine analog, 789*
"C-hydantoin, distribution, in dogs, 479*
differential diagnosis of disease, "Ga, **In, **tTc-S colloid, 450*
dynamic studies, **TcO₄, and **Tc-DTPA, 437*
focal defect characterization, **Se-selenomethionine and **Tc colloid, 440*
"Ga-citrate scans, 196
"Ga uptake in lymphoma, 448*
hepatoma, electrooosmophoretic radioimmunoassay for fetal alpha globulin, 644
HSA liver accumulation in sensitized dogs, 442*
imaging, effect of patient position, 873*
imaging, in Rhesus monkeys, 874*
imaging, motion correction, 458*
imaging, motion correction, gating mechanism, 939
imaging, respiratory motion, **Tc-S colloid, 758
imaging, **Tc-S colloid, and perfusion, **In, 480*
imaging, **Tc-S colloid, clinical evaluation, 909
imaging, **Tc-S colloid, respiration effect, 424*
imaging, inspiration-expiration imaging, **Tc-S colloid, 554
**I-rose bengal-HSA microspheres, preparation, distribution, in dogs, 470*
lesion uptake of **Tc-S colloid, 221, 703
lung image separation, in ascites, 249
mass lesions, abdominal, **Tc-S colloid, 219
mass lesions, comparison of scan, angiography and peritoneoscopy, 457*
**NH₃, in dogs, 274
**NH₄ uptake in myocardial imaging, 278
orthotopic homotransplantation, 415*
phagocytic, metabolic and blood flow evaluation, **I-lipid, 300
phantom, low counting-rate data smoothing, 528
portal circulation evaluation, 689
quantitative image analysis, 869*
radioimmunoassay of a-fetoprotein, 783*

Subject Index
SUBJECT INDEX

scan, false-positive due to lung abscess, 945
sequential imaging, \[^{99mTc}\text{-Sn-MAA}\], 475*, 522
\[^{99mTc}\text{-selenomethionine}\] uptake by hepatoma, 565
-spleen imaging, \[^{99mTc}\text{-Tc colloid}\], in trauma, 438*
spleen scan, Hodgkin's disease, 453*
spleen scan, lateral views, 720
\[^{99mTc}\text{-Tc- and }^{111mTc}\text{-albumin, colloids and microaggregates, catabolic pathways}\], 313
\[^{99mTc}\text{-albumin microspheres, preparation, distribution}\], 498
\[^{99mTc}\text{-HSA microaggregates, aseptic electrolytic preparation}\], 172
\[^{99mTc}\text{-penicillamine uptake in gallbladder imaging}\], 447*
\[^{99mTc}\text{-S colloid image “hot spot” due to vena caval obstruction}\], 847
\[^{99mTc}\text{-S colloid imaging, pancreas studies}\], 51
\[^{99mTc}\text{-S colloid, phosphate buffer flocculation}\], 386
\[^{99mTc}\text{-S colloid preparation}\], 866*
\[^{99mTc}\text{-S colloid transportation through hepatic artery and portal vein}\], 391*
\[^{99mTc}\text{-S colloid uptake during immunization}\], in animals, 435*
\[^{99mTc}\text{-Sn(II) colloid, preparation, properties}\], 58
tomography, \[^{99mTc}\text{-Tc colloid}\], 869*
tumor detection, \[^{99mTc}\text{-citrate, computer-camera system}\], 667

Lungs
absciss, causing false-positive liver scan, 945
absorbed dose calculation, 856
aerosol inhalation scanning, modification, 870*
carcinoma, metastatic to bone, Sr scans, 465*
cardiac shunt, left-to-right, detection, camera, \[^{99mTc}\text{O}_{4}^{-}\], 142
cardiac shunt measurement, cyanotic children, 431*
cavali blood distribution, 616
\[^{99mTc}\text{-MAA biologic half-time in chronic disease}\], 475*
imaging, emergency, efficacy, 436*
imaging, \[^{99mTc}\text{-MAA, optimum counting time}\], 881*
imaging, \[^{99mTc}\text{-MAA, serum fibrinogen degradation products correlation}\], 444*
imaging, motion correction, 458*
imaging, motion correction, gating mechanism, 939
imaging, \[^{99mTc}\text{CO}_{3}^{-}, \text{CO}, \text{Os}\], positron camera, 417*
imaging, pulmonary hypertension, 604
inhalation scanning, \[^{99mTc}\text{-HSA, S-colloid, aerosols}\], 872*
left, hypoventilation in heart disease, 470*
left-to-right shunt quantification, \[^{99mTc}\text{O}_{4}^{-}\], in children, 787*
liver image separation, ascites, 249
metastases, thyroid carcinoma, \[^{198Tc}\text{-scan}\], 850
microcirculation pathophysiology in chronic obstructive pulmonary disease, 462*
portai circulation evaluation, 689
regional function, \[^{99mTc}\text{Xe} , 450*, 466*
regional function in cystic fibrosis, \[^{99mTc}\text{Xe} , 439*
regional ventilation and perfusion, functional images, 418*, 456*
regional ventilation, \[^{99mTc}\text{-N-N, positron camera}\], 433*
scan, \[^{99mTc}\text{-citrate for tumor}\], 196
scan, inhalation, 343, 344
scan, multilabeled stannous hydroxide, 409*
scan, normal variants, 476*
scan, Sr, pulmonary ossification, 174
scan, \[^{99mTc}\text{-HSA microspheres, patent formamen ovale}\], 177
\[^{99mSr}\text{ bone scan in hypertrophic pulmonary osteoarthropathy}\], 120, 775
Sr uptake, 858
\[^{99mTc}\text{-HSA, central circulation evaluation}\], 477*
\[^{99mTc}\text{-HSA microaggregates, aseptic electrolytic preparation}\], 172
\[^{99mTc}\text{labeled pollen grains, effects of inhalation and ingestion}\], 478*
\[^{99mTc}\text{-MAA “kit” evaluation}\], 790*
\[^{99mTc}\text{-Sn-MAA, preparation, distribution in rats}\], 928
thromboembolus detection, \[^{99mTc}\text{-streptokinase}\], in dogs, 451*
transmission-emission scanning, \[^{153Am}\], \[^{18F}\text{-MAA}\], 861*
ventilation, activated charcoal trap for exhaled \[^{133Xe}\], 673
ventilation, \[^{99mTc}\text{-aerosol, positron camera}\], 417*
ventilation, perfusion, azigos fissure, 633
ventilation, perfusion, bronchial obstruction, 561
ventilation, perfusion, pediatrics, 419*
ventilation, perfusion, \[^{133Xe}\], in cystic fibrosis, 473*
ventilation, perfusion, \[^{99mTc}\text{-Xe}\], in infants, 873*
ventilation, perfusion, \[^{99mTc}\text{-Xe, multiple views}\], and \[^{99mTc}\text{-MAA}\], 871*
ventilation, perfusion, \[^{133Xe}\], \[^{99mTc}\text{-HSA microspheres}\], 933
Y ventilation, \[^{133Xe}\], 343, 344

Lymph nodes
drainage from mammary gland, \[^{111mTc}\text{-distribution in lymphoma and leukemia}\], 448*
malignant lymphoma, \[^{99mTc}\text{-citrate scans}\], 474*
\[^{99mTc}\text{-S colloid imaging}\], 185

Magnesium
content, biological samples, neutron activation analysis, 293

Mammillary gland
\[^{99mTc}\text{-citrate tumor scans}\], 196
\[^{131I}\text{I uptake in non-lactating breast}\], 777
lymphatic drainage, \[^{111mTc}\text{-Au}\], 799

Manganese
cost, biological samples, neutron activation analysis, 293
Mannitol
\[^{99mTc}\text{-Tc, kidney agent, preparation, distribution, in rabbits}\], 786*

Maxillary sinus
\[^{99mTc}\text{-Citrate scans}\], 196

Mercury-197
-chloromerdrin, brain imaging, corpus callosum involvement, 510
-chloromerdrin, compared to \[^{99mTc}\text{-penicillamine acetazolamide complex for kidney}\], 727
-chloromerdrin, kidney transplant evaluation, 793
“overdose” procedures, 866*

Mercury-203
-chloromerdrin, adverse reactions, 232
-mersalyl, kidney transplant evaluation, 793
“overdose” procedures, 866*
-stannous hydroxide, lung scan, 409*

Microspheres
albumin, \[^{99mTc}\text{-Tc}\], arteriovenous shunt, extremities, 357
albumin, \[^{99mTc}\text{-Tc}\], functional imaging, lung perfusion, 456*
albumin, \[^{99mTc}\text{-Tc}\], lung imaging, low-energy collimator, 471*
albumin, \[^{99mTc}\text{-Tc}\], lung scan, patent formamen ovale, 177
albumin, \[^{99mTc}\text{-Tc}\], lung ventilation and perfusion, computer-camera system, 933
albumin, \[^{99mTc}\text{-Tc}\], myocardial scanning, 460*
albumin, \[^{99mTc}\text{-Tc}\], preparation, distribution, 498
albumin, T, serum uptake test, 893
\[^{111mTc}\text{-}, \[^{111mTc}\text{-}, \[^{89mSr}\], glomerular blood flow distribution, in rats, 454*
\[^{99mTc}\text{-Rose bengal-HSA, RES, preparation, distribution}\], in dogs, 470*

MIRD
absorbed dose calculation, 856
pamphlet 9, radiation dose, \[^{99mTc}\text{-selenomethionine}\]

Modulation transfer function
focusing collimator, energy dependence, 19, 115
multiple gamma figures of merit, 419*
parallell-hole collimator, computer program, 467*
\[^{99mTc}\text{ and }^{111mTc}\text{Xe, three camera collimators}\], 481*
Radiation therapy
effect on bone lesions, 4Ca and 8Sr kinetics, 747

Radiocardiogram

see Heart

Radioimmunoassay
ACTH, 438*
carcino embryonic antigen, 788*
C-reactive protein, 418*
description, applicability, 872*
electroosmophoretic, fetal alpha globulin from hepatoma, 644
α-fetoprotein, 141*, 783*
hepatitis associated antigen, 454*
hepatitis-associated antigen, electroosmophoretic, 425*, 599
inulin, 145*-inulin stability, 621
plasma renin activity, 804

Radioisotopes

"overdose" procedures, 866*

Record keeping
data retrieval system, 572
35 mm film system, 868*
scan reproduction, 289

Red blood cells
alcoholic, 14C-formaldehyde oxidation, in vitro, 473*, 677
14Cr- and 144Tc-, agglutination in macroglobulinaemia, 397
14Cr-, labeling and centrifugation, syringe technique, 163
14Cr-, labeling, effect of corticosteroid therapy, 872*
14Cr-, rate of loss from spleen, 686
14Cr-, radio-positive, antibody evaluation, 446*
14Cr-, spleen capacity test, 430*
production in anemia, non-steady state, 111
15Se- and 15Fe-, handling by abnormal spleen, in rats, 420*
survival, standardization, 573
144Tc- and 144Cr-, red cell volume, 443*
144Tc-, comparison of agents from four preparation procedures, 809
144Tc-, preparation, 399, 400
144Tc-, red cell volume, 760
uptake of 144In- and 144Fe-transferrin, 786*

Renal, renography

see Kidney

Resolution
focused collimator, energy dependence, 19
improvement, nonlinear digital techniques, 441*
index of, focusing collimator, 115
optimization of parallel-hole collimators, scintillation camera, 411*
scintillation camera, threshold preamplifiers, 169
spatial, camera, electronic signal processing and movable filter plate, 784*
whole-body imaging, scintillation camera, 903

Reticuloendothelial system

see specific organs

Rhenium
-heptasulfide, in 144Tc-S colloid preparation, 287
Rh-factor
antibody evaluation, 14Cr-RBC, Rh positive, 446*

Rubidium-86
content, 14Mo-144Tc generator eluate, 388

Salivary glands
Ga-citrate scans, 196

Scanner
-computer dual data-scanning system, 413*
-computer system, Intertechnique model 22, 461*
dot scanning, 573
dual and single detector 144TcO4- thyroid uptakes, 159
dual-crystal, anterior landmark recording, 281

line spacing, ratemeter averaging and lesion detection, 191
low counting-rate data smoothing, 528
minification for rapid, low information density scanning, 231
multiple gamma transition line summing, 419*
phantom, machine evaluation, 865*
transmission, irregular bones, 13
unidirectional scanning, 571

Scanning
dual radionuclide, 144Tc and 111In, 431*
effect of data smoothing on observer performance, 752
emergency procedure efficacy, 436*
information density and ratemeter statistics relationship, 702
lateral view positioning, liver-spleen, 720
thermic, thyroid, simultaneous with 144TcO4-, 411*
transmission, aid to cisternography, 870*
transmission-emission, 141Am, 144I-MAA, lungs, 861*
transverse section, orthogonal tangent correction, 447*
unidirectional, 571, 702

Selenium
normal metabolism, MIRD pamphlet 9

Selenium-75
"Ga, 141In, simultaneous measurement in tumors, in mice, 624
marker for thyroid orientation, 865*
multiple gamma figures of merit, 419*
-NA-selenate-S colloid, pancreas imaging, subtraction technique, 469*
nuclear parameters, MIRD pamphlet 9
-RBC, handling by abnormal spleen, in rats, 420*

Selenium-75, selenomethionine
biological distribution, MIRD pamphlet 9
carotid body tumor, 640
distribution compared to 144F-5- and 6-fluorotryptophan, in animals, 713
effect of diet Ca on uptake, in rats, 85
liver focal defect characterization, 440*
pancreas imaging, 51
pancreas imaging, subtraction technique, 469*
purity, MIRD pamphlet 9
radiation dose to humans, MIRD pamphlet 9
uptake by hepatoma, 565
uptake in post-surgery pancreatic bed, 765
uses for diagnosis, MIRD pamphlet 9

Sensitivity
multiple gamma figures of merit, 419*
plane, focused collimator, energy dependence, 19

Sodium
content, biological samples, neutron activation analysis, 293
total-body, neutron activation analysis, 487

Sodium-24
total-body Na, neutron activation analysis, 487

Spinal cord
144Tc-HSA angiography, 567

Spleen
abscess diagnosis, 144Tc-S colloid, 331
absorbed dose calculations, 856
accessory, rupture, 333
capacity test, 430*
14Cr-RBC, rate of loss, 686
displacement, gastric dilatation, 223
functional asplenia and persistent neutrophilic leukocytosis, 224
infarction, 144Tc-S colloid scan, 563
141I-rose bengal-HSA microspheres, preparation, distribution, in dogs, 470*
-liver imaging, 144Tc-S colloid, in trauma, 438*
-liver scan in Hodgkin's disease, 453*
-liver scan, lateral views, 720
portal circulation evaluation, 689
Se- and 144Fe-RBC handling, in rats, 420*

972
sequestration, comparison of \(^{99m}\text{Tc}-\text{RBC}\) from four preparation procedures, 809

size change in response to epinephrine, 211, 951

\(^{99m}\text{Tc}-\text{S colloid uptake during immunization, in animals, 435}*

\textbf{Strontium-82}

production, Brookhaven Linac Isotope Producer, 449*

\textbf{Strontium-85}

bone assessment, sickle cell disease, 425*

bone lesion kinetics, effect of radiation therapy, 747

bone localization aid to x-ray therapy, 867*

bone scan in thyroid acropathy, 775

bone scan, metastatic lung carcinoma, 465*

landmark recording, dual-crystal scanning, 281

low counting-rate data smoothing, 528

lung scan in pulmonary ossification, 174

-microspheres, glomerular blood-flow distribution, in rats, 454*

-nitrate, adverse reactions, 232

"overdose" procedures, 866*

-stannous hydroxide, lung scan, 409*

uptake by extracellular tissue, 858

\textbf{Strontium-87m}

bone, compared to \(^{18}\text{F}\) and \(^{99m}\text{Tc-polyphosphate, in animals, 462}*

bone scan in hypertrophic pulmonary osteoarthropathy, 120, 775

bone scan, metastatic breast disease, 452*

bone scan, metastatic lung carcinoma, 465*

bone scanning for infection, in children, 468*

dosimetry, 705

sacro-ilial joint imaging, 467*

\textbf{Strontium-90}

content, \(^{90}\text{Sr}\) to \(^{99m}\text{Tc generator eluate, 570}\)

\textbf{Sulfur colloid}

see Tcchnetium-99m, sulfur colloid

\textbf{Tantalum-179}

production, Brookhaven Linac Isotope Producer, 449*

\textbf{Technetium-97m}

production, Brookhaven Linac Isotope Producer, 449*

\textbf{Technetium-99}

reduced, chromatography studies, 432*

\textbf{Technetium-99m}

analytical analysis of compounds, 202

-bile salt, quantitative function test, in dogs, 428*

-brain imaging, "doughnut" sign, 630

-caseinid, preparation, kidney imaging, 517

-chemical state, Fe-citrate complex, 340, 341

-Co calibrator, quality control, 285

-colloid, liver, focal defect characterization, 440*

-colloid, quantitative liver image analysis, 869*

-Cs, Rb and Co in generator eluate, 388

cyclotron production, 776

dose to technicians' hands, 627

dual radionuclide scanning, with \(^{111m}\text{In, 431}*

-exposure of technicians' eyes, 864*

-Fe-ascorbic acid complex compared to \(^{99m}\text{Tc-penicillamine acetazolamide complex for kidney, 727}\)

-Fe-ascorbic acid complex, kidney imaging, 344

-Fe-ascorbic acid-DTPA, -Fe-ascorbic acid and -(Sn) DTPA, renal clearance, brain tumor localization, in mice, 832

-Fe hydroxide, adverse reactions, 232

-Fe-hydroxide macroaggregates, lung perfusion, azgos fissure, 633

Fresnel zone plate imaging with x-ray cassettes, 781*

hyperbaric cisternography, 408*

-inulin, intrarenal urinary flow, 472*

-labeled pollen grains, inhalation and ingestion, 478*

-low energy collimator for camera, 471*

-mannitol for kidney, preparation, distribution, in rabbits, 786*

-marker for thyroid orientation, 865*

-microspheres, \(^{131}\text{I-streptokinase, thromemboli detection, in dogs, 451}*

-MTF of three camera collimators, 481*

-NA pyrophosphate, bone scanning, 788*

-organic-phosphonate, preparation, distribution in animals, 821

"overdose" procedures, 866*

-penicillamine-acetazolamide complex, kidney, in animals, 45

-penicillamine acetazolamide complex, kidney studies, 723

-penicillamine, preparation, gallbladder imaging, 447*, 652

-RBC, agglutination in microglobulinemia, 397

-RBC, comparison of agent from four preparation procedures, 809

-RBC, portal circulation evaluation, 689

-RBC, preparation, 399, 400

-RBC, red cell volume, 443*, 760

-reduced, chromatography studies, 432*

-scintillation camera window optimizing, 342

-Sn(II) colloid, preparation, properties, 58

-Sn-MAA, preparation, distribution, in rats, 928

-source, transmission scanning aid to cisternography, 870*

-stannous hydroxide, lung scan, 409*

-streptokininase, -leukocytes, thrombosis uptake, in dogs, 782*

-tetracycline, preparation and distribution, in rats, 427*

-transmission imaging, lung-liver, in ascites, 249

-urokinease, blood clot uptake, in animals, 646

\textbf{Technetium-99m, albumin}

-aerosol, inhalation lung scanning, 872*

-aggregates, cardiac shunt measurement, 431*

-aggregation, aseptic electrolytic cell, 172

-analytical chemical analysis, 202

-aortocoronary vein bypass graft evaluation, 445*

-catabolic pathways, colloids and macroaggregates, 313

-central circulation, 477*

-cisternography, 73

-coronary arteriography, 435*

-heart, blood flow, 585

"kit" preparation, 463*

-left atrial myxoma, scintillation camera, 81

-left ventricular ejection fraction, 459*, 649

-limbus amebocyte lysate test for endotoxin, 431*

-liver accumulation in sensitized dogs, 442*

-MMA, adverse reactions, 232

-MMA and -HSA, freeze-dried "kits", 426*

-MMA, biliary excretion, 260

-MMA, "kit", evaluation, 790*

-MMA, lung perfusion in heart disease, 470*

-MMA, normal lung scans, 476*

-MMA, pulmonary ventilation and perfusion, pediatrics, 419*

-microspheres, arteriovenous shunt in extremities, 357

-microspheres, "functional imaging", lung perfusion, 456*

-microspheres, lung imaging, low energy collimator, 471*

-microspheres, lung scan, formamen ovale, 177

-microspheres, myocardial scanning, 460*

-microspheres, preparation, distribution, 498

-quantitative angiography, 813

-species identification in preparation mixture, 180, 181

-spinal cord angiography, 567

-ventriculo-atrial shunt patency, 423*

-ventriculography, 448*

\textbf{Technetium-99m, DTPA}

-adverse reactions, 232

-analytical analysis, 202

-chemical state of \(^{99m}\text{Tc, 577}\)

-CSF shunt function, 464*

-dynamic flow studies, abdominal pathology, 437*

-GFR, 107

-joint imaging, in children, 367, 466*

-ketones, brain sarcoma and kidney, in mice, 205
Technetium-99m, per technetate
abdominal imaging, post-surgery retained antrum, in dogs, 421*
abdominal pathology, dynamic flow studies, 437*
angiography, carotid body tumor, 640
blood pool scan, amebic pericarditis, 217
bolus injection evaluation, brain, 434*
brain imaging, autofluoroscope, 582
brain imaging, corpus callosum involvement, 510
brain imaging in Rhesus monkeys, 874*
brain imaging, optimum counting time, 881
brain imaging, “rim” sign, 637
brain imaging, vertex view artifact, in child, 393
brain, intracranial tumor detection, compared to "Ga-
citrate, 439*
brain, quantitating cerebral blood flow, 416*
brain, rCBFb in cerebrovascular disease, 135
brain scan, autopsy correlation, 373
brain scan, initial compared to delayed, 131
brain scan, intracranial infection, 451*
brain scan, multiple sclerosis, 845
brain scan, mycotic aneurysm, right middle cerebral
artery, 695
brain scan, negative defect, intracranial teratoma, 122
brain scan, post-craniotomy time effect, 156
brain, serum and scalp distribution, in animals, 458*, 681
brain tomography, 869*
cerebral circulation, digital, computer analysis, 658
cerebral transit, quantitative interpretation, 455*
cisternography, ventriculo-atrial shunt patency, 423*
CSF shunt function, 464*
heart, angiocardiography, congenital disease, 31
heart, coronary arteriography, 435*
heart dynamics, right and left, computer-camera system,
785*
heart, left-to-right cardiac shunt detection, 142
heart, simultaneous transmission-emission scanning, 347
impurities, methyl-ethyl-ketone extraction, 318
joint imaging, in children, 367, 466*
KClO4 blocking, i.v. injection, in dogs, 363
kidney, in vitro transplant evaluation, 422*
kidney, partial renal infarct simulating tumor, 125
kidney, static following dynamic study, 867*
kidney transplant, vascular perfusion, 793
left-to-right shunt quantification, in children, 787*
pericardial tumor compared with pericardial effusion, 697
phantom for scanner evaluation, 865*
portal circulation evaluation, 689
superior vena cava, aneurysm, 227
thyroid carcinoma, metastatic, dynamic studies, 335
thyroid imaging, compared to "I, 411*
thyroid nodule imaging, 504
thyroid scan, compared to "I, 446*
thyroid scan, simultaneous thermic scan, 411*
thyroid uptake, collimator for reducing extrathyroidal
neck activity, 693
thyroid uptake methods, 159
thyroid clearance, scintillation camera, 436*
transmission-emission imaging, heart, mediastinum, 874*
tumor uptake, 321
whole body imaging, scintillation camera, 899
microspheres, lung ventilation and perfusion, computer-
camera system, 933
Technetium-99m, polyphosphate
bone, compared to "F and "Sr, in animals, 462*
bone imaging in children, 412*
bone imaging, neoplastic disease, 413*
bone imaging, non-neoplastic disease, 414*
chemical and biological properties, 427*
distribution compared to "C-labeled, in animals, 472*
distribution, in animals, 455*, 472*, 480*
in vitro optimization, 472*
placenta uptake, in rabbits, 451*
preparation, distribution, imaging, scanning, in animals, 947
preparation, "kit", 470*
preparation, 455*, 472*, 480*
radiation dose, 480*
Technetium-99m, pyrophosphate
bone imaging, 788*
Technetium-99m, sulfur colloid
abdominal mass outline, 219
aerosol, inhalation lung scanning, 872*
adverse reactions, 232
amebic pericarditis, 217
bolus injection, heart studies, 457*
bone marrow assessment, sickle cell disease, 425*
bone marrow imaging, 456*
bone marrow infarct scan, 408*
bone marrow radiation, 793*
hepatic artery and portal vein roles in liver supply, 391
"kit", flocculation due to acid-leached Al, 707
labeling efficiency, 290
liver and spleen uptake during immunization, in animals, 435*
liver disease, differential diagnosis, "Ga and "In, 450*
liver imaging and perfusion with "In, 480*
liver imaging, clinical evaluation, 909
liver imaging, effect of patient position, 873*
liver imaging, in Rhesus monkeys, 874*
liver imaging, pancreas studies, 51
liver imaging, inspiration-expiration, 554
liver imaging, respiration effect, 424*, 437*, 758
liver lesion, increased uptake, 221, 703
liver, orthotopic homotransplant evaluation, 415*
liver scan "hot spot" due to vena caval obstruction, 847
liver, sequential imaging, 475*, 522
liver-spleen imaging, in trauma, 438*
liver-spleen scan, lateral views, 720
liver tomography, 869*
lung-liver image separation in ascites, 249
lymph node imaging, 185
-MAA, thrombosis imaging, 476*
pancreas imaging, subtraction technique, 469*
phosphate buffer flocculation effect, 386
placenta uptake, in rabbits, 451*
preparation, effect of variants, 866*
spleen displacement due to gastric dilatation, 223
spleen, functional asplenia and persistent neutrophilic leu-
cyctosis, 224
spleen size, response to epinephrine, 211, 951
splenic abscess diagnosis, 331
splenic infarction scan, 563
synthesis dynamics, 287
whole body imaging, scintillation camera, 899

Thallium-201
preparation for myocardial scanning, 781*

Therapy
Book Review: Precautions in the Management of Pa-
ents who have Received Therapeutic Amounts of
Radioisotopes, 230
cholesterol, "Pt-cis-dichlorodiammine platinum aid, dis-
tribution in animals, 790*
"I, thyroid cancer, long term followup, 445*
"I, thyroid, scanning followup, 925

Thrombosis
clot uptake of "Tc- and "I-urokinase, in animals, 646
"I-fibrinogen, autologous, rapid preparation, 841
imaging, "Tc-s colloid-MAA, 476*

974

JOURNAL OF NUCLEAR MEDICINE
Thyroid
absorbed dose calculations, 856
acropathy, "Sr bone scan, 775
autonomous nodules, diagnostic index, 733
cancer, "I therapy, long term followup, 445*
cancer, post-"I therapy scanning followup, 925
carcinoma, "I urinary excretion studies, 434*
carcinoma, lung metastases, "I scan, 850
carcinoma, metastatic, "mTcO4, dynamic study, 335
C2-thiouaricil, placental transfer, fetal distribution, in animals, 148
effective thyroxine ratio test, 874*
FT, test, 868*
"Ga-citrate scans, 196
Grave's disease with functioning nodules, 885
hemangioma or thyroiditis, 129
I ingestion, elevated level, 863*
imaging and ultrasound, nodule evaluation, 504
imaging, comparison "I and "mTcO4, 411*
"I whole body scans, uptake by non-lactating breast, 777
KCIO3 blocking dose for "mTcO4, in dogs, 363
" peg-board " orientation device, 865*
pre-surgery dual label, "I and "mI, autonomous nodules, 738
scanning, comparison of "mTcO4 and "mI, 446*
scan, "mTcO4, simultaneous thermic scan, 411*
scan, whole body "I, colon content, 181
serum free thyroxine test, clinical evaluation, 780*
serum thyroxine as screening test, 416*
serum thyroxine, components of variance in testing, 465*
serum thyroxine test, normalized, 410*
stimulating hormone, effect of I ingestion on response to stimulation, 826
thyroxine, effective thyroxine ratio, 165
Tt serum uptake test, albumin microspheres, 893
Tt assay, procedural alternative, 861*
Tt binding, single load resin method, 2
Tt test, surface adsorbent, 867*
uptake, change in normal levels, 862*
uptake, "I and bread ingestion, 233
uptake, "mI, normal, 548
uptake, "mTcO4, special collimator, 693
uptake methods, "mTcO4, 159
uptake, "mTcO4, scintillation camera, 436*
Thyroxine
assay, procedural alternative, 861*
binding, TBG and TBGA, single load resin method, 2
determination, surface adsorbent test, 867*
effective thyroxine ratio, 165, 874*
FT, test, 868*
normalized serum thyroxine test, 410*
serum, components of variance in testing, 465*
serum free, measurement, "I3, clinical evaluation, 780*
serum, screening test, 416*
Tin
in reduced Tc, chromatography studies, 432*
Tm-113
stannous hydroxide, lung scan, 409*
Tm-117m
-STPP and NaH2PO4 complexes, for bone, distribution in mice, 781*
Toluidine blue
"I-, distribution, in rats, 85
Tomography
liver and brain, "mTc-S colloid, "mTcO4, 869*
Total body
see whole body
Toxicity
adverse reactions to radiopharmaceuticals, 232
"Cr- and "mTc-RBC, agglutination in macroglobulinemia, 397
radiopharmaceutical testing, 396
"mTc-Na-pyrophosphate, 788*
"mTc-organophosphonate for bone, 821
"mTc-penicillamine-acetazolamide complex, in animals, 45
studies, "mTc-albumin microspheres, 498
Transmission
and emission imaging, heart and mediastinal disease, 874*
image separation of lung and liver in ascites, "mTc, 249
of images, telephone system, 379
scanning, mineral content of irregular bones, 13
scanning, simultaneous with emission, pericardial effusion, "mTcO4, 347
Transplant
see Liver: Kidney
Transverse section scanning
see Scanning
Triolein
"I-, absorption test, 252
"I-, liver phagocytic, metabolic and blood flow studies, 300
"mI-, purity and GI absorption, 353
Trytophan
"F-5- and -6-, preparation, distribution in animals, 713
Tumor
adrenal, "I-19-iodocholesterol scan compared to angiography, 410*
bone lesion kinetics of "Ca and "Sr, effect of radiation therapy, 747
brain sarcoma, "Ga-compounds, kinetics, in mice, 443*
brain sarcoma, kinetics of "mTc-, "mIn- and "mYb-DTPA, in mice, 205
brain, "mTcO4, uptake, 321
brain, uptake of "mTc-(SN)DTPA, -Fe-ascorbic acid DTPA and -Fe-ascorbic acid, 832
cancer, radioimmunoassay, carcino embryonic antigen, 788*
carcinoma, beta cell, "mI-iodopropamide, in hamsters, 215
carcinoma, ovarian, "mI-human chorionic gonadotrophin uptake, in animals, 101
carotid body, evaluation with "mTcO4, "Ga, "mI, "Se-
selenomethionine, 640
"Ga-citrate scan, 149 patients, 196
"Ga-citrate scan, microradioaudiography correlation, 452*
"Ga, "mIn, "Se, simultaneous measurement, in mice, 624
"Ga scanning, 25
"Ga scans, normal, 428*
imaging with "mIn-transferrin, 429*
intracranial, detection, "mTcO4 and "Ga-citrate, 439*
intracranial teratoma, negative defect "mTcO4 scan, 122
lesion detection, effect of line spacing and ratemeter averaging, 191
liver, "Ga-citrate, computer-camera system, 667
lymphoma, whole body "Ga distribution, 448*
malignant lymphoma, "Ga scanning, 474*
"N-NH2, in dogs, 274
pericardial, compared with pericardial effusion, 697
Pt-cis-diamminedichloroplatinum, distribution, in animals, 328
"Se-selenomethionine, radiation dose, MIRD pamphlet 9
simulation by partial renal infarct, 125
thyroid cancer, "I therapy, long term followup, 445*
thyroid cancer, post-"I therapy scanning followup, 925
thyroid carcinoma, lung metastases "I scan, 850
thyroid carcinoma, metastatic, dynamic study, 335
Tt
effective thyroxine ratio test, 874*
serum uptake, albumin microspheres, 893
suppression test, autonomous thyroid nodules, 733
Ultrasonography
thyroid nodule evaluation, 504
Urokinase
Tc and **I**, blood clot uptake, in animals, 646

Vascular system
see also: Brain, blood flow; Heart, blood flow
central circulation, **Tc-HSA, 477**
clot uptake, **Tc**- and **I**-urokinase, in animals, 646
hepatic artery, portal vein, **Tc-S** colloid supplied to liver, 391
portal circulation evaluation, 689
pulmonary hypertension evaluation, 604
superior vena cava, aneurysm, **TcO2**, camera, 227
thrombosis imaging, **Tc-S** colloid-MAA, 476*
vena caval obstruction as "hot spot" on **Tc-S** colloid liver scan, 847

Ventriculography
Tc-HSA, in surgical CSF shunt cases, 448

Whole-body
bone imaging, **F**, camera, pinhole collimator, 862*
counting, **Ga, 25**
imaging, **Ga-citrate, in Rhesus monkeys, 874**
imaging, scintillation camera, 899, 903
neutron activation analysis, calcium in chronic renal disease, 426*
neutron activation analysis, Ca, Na, Cl, P, 487
scan, **I**, colon content, 181
scan, **I**, uptake by non-lactating breast, 777
scan, **Sr** bone, hypertrophic pulmonary osteoarthropathy, 120, 775

Window
multi-, dual radionuclide scanning, **Tc** and **In, 431**

Xenon
washout, eye, capillary and human dynamics, 788*

Xenon-127
production, Brookhaven Linac Isotope Producer, 449*

Xenon-133
activated charcoal trap for exhaled gas, 673
cerebral blood flow, comparison analytical methods, 66

cerebral blood flow, regional, camera, 534

inhalation scanning, 343, 344
in saline, handling, 231
kidney blood flow, 472*
lungs, functional imaging of ventilation, 456*
lungs, regional function, 450*
lungs, regional function in cystic fibrosis, 439*
lungs, regional ventilation, 466*
lungs, ventilation, azygos fissure, 633
lungs, ventilation, bronchial obstruction, 561
lungs, ventilation, camera-computer system, 933
lungs, ventilation, in heart disease, 470*
lungs, ventilation, multiple views, 871*
lungs, ventilation, perfusion, in cystic fibrosis, 473*
lungs, ventilation, perfusion, in infants, 873*
lungs, ventilation, perfusion, pediatrics, 419*
lungs, ventilation, perfusion, **Tc-labeled pollen grains**
inhaled and ingestion, 478*
MTF of three camera collimators, 481*
myocardial blood flow, multichannel magnifying collimator, 414*
regional cerebral blood flow, computer-camera system, 916
washout, kidney transplant evaluation, 793

X-ray
radiation damage to chromosomes, in rats, 479*
Se, MIRD pamphlet 9

Ytterbium-169
-chelate, cisternography, relative radiation dose, 468*
-DTPA, cisternography, 73
-DTPA, CSF clearance in meningitis, in dogs, 942
-DTPA, kinetics in brain sarcoma and kidney, in mice, 205
-DTPA, kinetics in cisternography, 442*
-EDTA, kidney transplant, serial imaging, 793

Zinc-65
blood levels during immuniation, in animals, 435*

Zirconium-95
content, **Mo-**Tc generator eluate, 570
NOTICE TO ALL SUBSCRIBERS OF
THE JOURNAL OF NUCLEAR MEDICINE

The JOURNAL OF NUCLEAR MEDICINE is proud to have maintained the same subscription rate since January 1969. However, because of the steadily increasing size of the JOURNAL over the past four years and the associated increase in manufacturing expense, the Board of Trustees of the Society of Nuclear Medicine has reluctantly decided it must increase the subscription rate starting January 1, 1973. The new subscription rate will be:

- U.S. rate: $40.00
- Canada, South America, Mexico: $42.00
- Elsewhere (includes airmail postage): $45.00
- Student: $20.00
- Single issue rate: $4.00
- June issue rate: $7.00

All subscriptions must be entered on a calendar-year basis.

WORLD FEDERATION OF NUCLEAR MEDICINE AND BIOLOGY

First World Congress of Nuclear Medicine and Biology
September 30—October 5, 1974 Tokyo and Kyoto, Japan

The First World Congress of Nuclear Medicine and Biology will be held in Tokyo and Kyoto, Japan, from September 30 to October 5, 1974, under the auspices of the World Federation of Nuclear Medicine and Biology (WFNMB).

The Congress is the first international event to be organized following the official foundation of WFNMB in Mexico on October 26, 1970. This meeting represents one of the most authoritative scientific projects ever planned in the field of nuclear medicine based on the Foundation Charter of 1970, and similar meetings are to be held every four years.

The Organizing Committee for the Congress is now making extensive preparations and has selected a meeting date that will not conflict with other international congresses in related fields scheduled for that time of year. Since a large number of participants from all over the world are expected, the Organizing Committee would appreciate information from every country on the number of persons who might attend.

A second progress report on the meeting will be mailed out soon. If you have any questions concerning the congress, please contact:

Hideo Ueda, M.D., President
First World Congress
of Nuclear Medicine and Biology
c/o Japanese Society of Nuclear Medicine
The Second Department of Medicine
Faculty of Medicine, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan

Cable Address "WORFEDNUC" Tokyo
Telephone 03-814-0530

XLVIII