EVALUATION OF 99mTc-DTPA FOR THE MEASUREMENT OF GLOMERULAR FILTRATION RATE

Johannes F. Klopper, Wolfgang Hauser, Harold L. Atkins, William C. Eckelman, and Powell Richards

Brookhaven National Laboratory, Upton, New York

Determination of glomerular filtration rate offers one of the best ways to evaluate renal function, especially the rate of progression of chronic renal disease (1). Although there is general agreement that inulin clearance is the best measure of glomerular filtration rate (GFR), its estimation by chemical methods is laborious. In the past few years, a number of agents labeled with radioactive tracers have been introduced for the measurement of GFR including several chelates such as 51Cr-EDTA (2), 113mIn-DTPA (3), 166Yb-DTPA (4), and 140La-DTPA (5).

The recent development of a kit for the rapid and simple preparation of 99mTc-DTPA (6) makes this chelate potentially the one most readily available for this type of clearance study. This study evaluates 99mTc-DTPA as an agent for GFR measurements.

A substance used for the measurement of GFR must fulfill certain criteria. It must be
1. completely filterable at the glomerulus;
2. not bound to plasma proteins;
3. not synthesized or destroyed by the tubules;
4. not reabsorbed or excreted by the tubules; and
5. physiologically inert.

To obtain information about renal handling of 99mTc-DTPA, a series of experiments was carried out in dogs using a constant infusion technique to compare the renal clearances of 14C-inulin, 131I-sodium iodohippurate, and 99mTc-DTPA. A further comparison between 99mTc-DTPA and 125I-sodium iothalamate was carried out in patients using a single-injection technique.

MATERIALS AND METHODS

Studies in dogs. The experiments were performed under pentothal anesthesia in five adult female mongrel dogs weighing 17–26 kg each. The dogs were given 25-ml water/kg orally following overnight fasting and were further hydrated with Ringer's lactate solution intravenously.

Following a priming dose of 250-mg (442 μM) CaNa$_3$ DTPA and 500-mg (504 μM) inulin, a sustaining solution of 500-ml 0.9% NaCl containing 625-mg (1,150 μM) CaNa$_3$ DTPA, 1.0-gm (1,009 μM) inulin, 1.25-mg (5.5 μM) SnCl$_2$2H$_2$O, 25 μCi 14C-inulin, and 2.0 mCi 99mTc-DTPA was started at a rate of approximately 2 ml/min. An equilibration period of 60 min was allowed before any urine or blood samples were collected. The level of radioactivity was continuously monitored with an external scintillation counter positioned over the heart region.

Three 20-min baseline clearance periods were obtained. At the end of each collection period the bladder was irrigated with 10-ml water and 10-ml air. Plasma samples were obtained 3 min before the midpoint of each collection period.

In dogs No. 1–3 the effect of urine flow on clearance rates was studied. At the end of the baseline clearance periods additional continuous infusion of 5% dextrose was administered and 50-ml 25% mannitol solution given i.v. as a single injection. When diuresis was reached, three more 20-min clearance periods were performed.

In dogs No. 4 and 5 tubular secretion was studied. In these animals 50-μCi 131I-iodohippurate was added to the sustaining solution. At the end of the baseline clearance periods 20 ml of a 2% probenecid solution was administered intravenously to block tubular secretion (7). Three more 20-min clearance periods followed after this injection.

In addition to 14C-inulin, 99mTc-DTPA, and 131I-iodohippurate clearance determinations, fractionation of urine and plasma samples as well as the infused product was performed to determine protein binding and/or breakdown of 99mTc-DTPA. Analysis of the product was performed on a 35-cm gel chro-
matographic column (Sephadex G25) eluted with nitrogen purged saline solution. With gel chromatography 99mTc bound to protein is eluted at the void volume. 99mTc chelates are eluted in 12–20 ml and pertechnetate is eluted in 38–46 ml. The 99mTc adsorbed to the column represents the hydrolyzed fraction (8). The adsorbed 99mTc was removed from the Sephadex as pertechnetate by eluting with 2 ml of a 0.1% H2O2 solution followed by isotonic saline. A standard was also counted to assure balance of 99mTc activity.

Patient studies. A comparison between 99mTc-DTPA and 125I-sodium iothalamate plasma concentration and urinary excretion following a single-injection technique was carried out in 11 patients. The patients studied were under investigation for hypertension and had normal or mildly diminished renal function as evaluated by other renal-function studies.

Solutions of "instant" 99mTc-DTPA were prepared by adding 3 ml of pertechnetate saline solution to 1 ml of stock DTPA solution as previously described (6). Following hydration with at least 1 liter of liquids ~3.0 mCi 99mTc-DTPA and 50 μCi 125I-sodium iothalamate was administered intravenously. During the ensuing 24-hr period nine plasma samples were obtained at regular intervals and fractional urine collected. Data on plasma concentration and urinary excretion of the injected material were obtained by comparison to a known standard of the injected dose.

Clearance values for 99mTc-DTPA and 125I-sodium iothalamate were calculated according to a two compartmental analysis according to principles previously described (9–12). Gel chromatography of the plasma samples was performed to determine protein binding of the radioactive label.

RESULTS

Studies in dogs. The administration of mannitol followed by hydration (Table 1) resulted in a marked increase of urine flow with a mean increase from 0.8 to 3.7 ml/min. At the same time the mean clearances of 99mTc-DTPA and 14C-inulin did not increase (mean values for 99mTc-DTPA unchanged at 2.2, 14C-inulin changed from 2.9 to 2.8 ml/min/kg).

The administration of probenecid to produce tubular blockade (Table 2) resulted in a marked decrease of Hippuran clearance with a mean decrease from 6.8 to 3.3 ml/min/kg. At the same time the mean clearances of 99mTc-DTPA and 14C-inulin was not significantly modified with a mean change for the 99mTc-DTPA from 2.3 to 2.1, and for 14C-inulin from 2.6 to 2.9 ml/min/kg. The mean urine flow decreased only slightly from 4.7 to 4.5 ml/min during this experiment.

Studies in human beings. Total-body retention and plasma levels of 99mTc-DTPA and 125I-iodohippurate are compared in Figs. 1 and 2. Although the total-body retention and earlier plasma levels of the two compounds are very similar, the 24-hr plasma levels of 99mTc-DTPA were slightly higher than that of 125I-iodohippurate. Clearance rates calculated from plasma levels (Fig. 3) showed that 99mTc-DTPA underestimated clearance by about 8% as compared with 125I-iodohippurate.

The slopes and intercepts of the fast components of the two compounds are compared in Fig. 4.

Protein binding and stability. When a continuous infusion technique was employed in the dogs analysis of plasma samples obtained during the infusion period showed 6.6–15.3% (average 9.7%) of the radioactivity to be protein bound. Analysis of the product infused showed at least 95% of the 99mTc

Table 1. Effect of Increasing Urine Flow

<table>
<thead>
<tr>
<th>Dog No</th>
<th>Urine flow (ml/min)</th>
<th>14C-inulin clearance (ml/min/kg)</th>
<th>99mTc-DTPA clearance (ml/min/kg)</th>
<th>14C-inulin clearance/99mTc-DTPA clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.24</td>
<td>3.35</td>
<td>2.75</td>
<td>0.82</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
<td>2.47</td>
<td>1.96</td>
<td>0.79</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>2.87</td>
<td>2.46</td>
<td>0.86</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>2.84</td>
<td>2.61</td>
<td>0.92</td>
</tr>
</tbody>
</table>

For each dog the values reported in the upper line are the mean of three clearance periods measured at low urine flow; those in the lower line are the mean of three clearance periods measured at high urine flow.

Table 2. Effect of Tubular Blockade by Probenecid

<table>
<thead>
<tr>
<th>Dog No</th>
<th>Urine flow (ml/min)</th>
<th>14C-inulin clearance (ml/min/kg)</th>
<th>99mTc-DTPA clearance (ml/min/kg)</th>
<th>125I-Hippuran clearance (ml/min/kg)</th>
<th>14C-inulin clearance/99mTc-DTPA clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5.52</td>
<td>2.88</td>
<td>2.41</td>
<td>6.92</td>
<td>0.84</td>
</tr>
<tr>
<td>5</td>
<td>5.03</td>
<td>2.49</td>
<td>1.84</td>
<td>3.28</td>
<td>0.74</td>
</tr>
<tr>
<td>5</td>
<td>3.95</td>
<td>2.31</td>
<td>2.22</td>
<td>6.67</td>
<td>0.96</td>
</tr>
<tr>
<td>5</td>
<td>3.89</td>
<td>3.38</td>
<td>2.42</td>
<td>3.41</td>
<td>0.72</td>
</tr>
</tbody>
</table>

For each dog the values reported in the upper line are the mean of three clearance periods measured before probenecid administration; those in the lower line are the mean of three clearance periods measured after probenecid administration.
present to be in the form of a chelate. No further breakdown of the chelate was detected at the end of the infusion period.

When a single-injection technique was used in five humans 1.8–5.9% (average 3.7%) of the 99mTc was found to be protein bound in plasma samples obtained 1 hr after administration.

DISCUSSION

Although accurate measurements of glomerular filtration rate have been simplified by radionuclide methods, measurements of GFR are subject to certain sources of error including protein and red cell binding and impurities and instability of the compound, as well as tubular handling of the substance. In dogs no change in 99mTc-DTPA clearance was noted with change in the rate of urine flow or following tubular blockade with probenecid. The values obtained for 99mTc-DTPA clearances in dogs were on an average 17% lower than those for 14C-inulin. This difference is partly ascribed to protein binding of 99mTc-DTPA which amounted to about 10% of the 99mTc present in the plasma. The role of protein binding was less when a single-injection technique, instead of continuous infusion, was used and amounted to 3.7% in the samples collected 1 hr after administration.

It has previously been shown that 125I-iothalamate sodium clearances give values close to unity when compared with inulin clearances done simultaneously (13,14). This relationship is probably due to a coincidence of a minor degree of protein binding and tubular secretion (15). The 24-hr urinary excretion of 99mTc-DTPA and 125I-iothalamate was very similar, with average values of 95.6% and 95.3%, respectively. The lower clearances obtained in humans with 99mTc-DTPA as compared with 125I-iothalamate sodium can partly be ascribed to protein binding of 99mTc-DTPA.

It should be pointed out that similar clearance values are not to be expected with a commercially available kit containing DTPA since this product does not behave like a true chelate due to its having a lower urinary excretion rate and higher kidney retention than the product evaluated in this study (16).

From this study it can be concluded that 99mTc-DTPA fulfills the criteria set for an agent used for the measurement of GFR except that it is partly protein bound. This amount, however, is small following a single injection but becomes larger if a continuous infusion is employed.

The advantages of using 99mTc-DTPA for GFR measurements are the rapid preparation of the chelate now possible and the excellent physical characteristics and ready availability of 99mTc. Radiation dosimetry has been previously calculated to be 0.016 and 0.555 rad/mCi to the whole body and bladder, respectively (17). Whole-body radiation has been
prepared by a kit method, is a useful addition to the list of radiopharmaceuticals that can be used for measurement of GFR.

ACKNOWLEDGMENT

This study was performed under the auspices of the United States Atomic Energy Commission. Probencid was kindly supplied by Merck, Sharp and Dohme, Pennsylvania.

REFERENCES

1. WROGN OM: Renal Disease. New York, Oxford University Press, 1962, p 400