EFFECT OF TRACER DOESES OF 131I ON SERUM PROTEIN-BOUND IODINE
AND SERUM THYROIDINE CONCENTRATION

Apostolos G. Vagenakis, Cynthia M. Abreau, and Lewis E. Braverman

St. Elizabeth's Hospital and Tufts University School of Medicine, Boston, Massachusetts

Tracer doses of 131I are commonly used in evaluating thyroid function and in scanning the thyroid gland. The amount of radiiodine used in these studies is extremely variable, but with modern detecting instruments it is unlikely that more than 60 μCi 131I will be used. Significant radiation damage probably does not occur from these small doses. It would therefore be unlikely that these tracer amounts of 131I would alter the secretion of thyroid hormone into the blood. However, a recent report has suggested that doses of 40 μCi carrier-free 131I were followed by a significant lowering of the serum protein-bound iodine (PBI) within 48 hr (1). It was suggested that an early and transitory effect of irradiation to the thyroid resulted in a decreased secretion of thyroid hormone. More recently, Bell and Mackey did not confirm these findings but used only 20 μCi 131I (2). In view of these contradictory findings, a study was carried out in which the effect of the administration of varying tracer doses of 131I on the serum concentration of stable thyroid hormone was assessed.

METHODS

Studies were carried out in patients referred to the Nuclear Medicine Laboratory for studies of thyroid function. Two dose ranges of 131I were used. In those patients in whom an 131I uptake was requested, the dose of 131I was 15–20 μCi and in those patients in whom thyroid scans were requested, 45–60 μCi were used. Blood was drawn before administration of the 131I and 48 hr later. Both samples of serum were analyzed simultaneously in duplicate for stable PBI by a modification of the method of Zak (3) and for thyroxine iodine (T,I) by a modification of the isotopic displacement technique of Murphy and Pattee (4,5).

RESULTS

The results obtained in 26 patients are summarized in Table 1. Fourteen patients were studied with the lower dose of 131I. In these subjects, three of whom were hyperthyroid, no significant change occurred in either the serum PBI or T,I following the administration of 131I. Twelve patients, two of whom were hyperthyroid, were studied following the administration of the higher dose of 45–60 μCi 131I. Again, no significant change in serum PBI or T,I followed the administration of this higher dose of 131I.

Received May 20, 1971; original accepted May 26, 1971.
For reprints contact: Lewis E. Braverman, Endocrinology Div., St. Elizabeth's Hospital, 736 Cambridge St., Boston, Mass. 02135.

| TABLE 1. EFFECT OF TRACER DOESES OF 131I ON SERUM PBI AND T,I CONCENTRATION |
|-----------------------------------|------------------|------------------|------------------|------------------|------------------|
| Dose 131I (μCi) | Serum PBI (mg/100 cc) | 48 hr post 131I | p value* | Serum T,I (mg/100 cc) | 48 hr post 131I | p value* |
| 15–20 (14) | Control | 6.2 ± 2.6* | 6.0 ± 3.2 | NS | Control | 5.8 ± 2.1 | 5.7 ± 2.3 | NS |
| (45–60) | 6.7 ± 3.1 | 7.0 ± 3.7 | NS | 6.2 ± 3.1 | 6.4 ± 3.2 | NS |

* Paired t test.
† Number of patients in each group.
‡ ± s.d.
DISCUSSION

The administration of 131I in tracer doses of 15–60 μCi does not effect the serum PBI or serum T, I. These findings are not unexpected since this low radiation dose delivered to the thyroid would not be expected to alter thyroid trapping of iodide, thyroid hormone synthesis, or release of thyroid hormones into the blood. Our results are in agreement with those obtained by Bell and Mackay (2) but not with those obtained by Diengott and Boxer who reported a striking decrease in serum PBI following the administration of tracer doses of 40 μCi 131I (1). Since the dose range of 131I used in the present study encompasses both doses employed in the two previous studies, the radiation dose delivered to the thyroid cannot be the explanation for the divergent results found in the two previous studies.

Finally, since measurement of serum T, I by the isotopic displacement technique requires the use of either 125I- or 131I-labeled thyroxine, it is suggested that the radioactivity in serum following the administration of tracer doses and, more importantly, therapeutic doses of 131I be determined before the test procedure.

ACKNOWLEDGMENT

Supported in part by research grant AM 07917 from the National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethesda, Maryland.

REFERENCES