THE COMPUTER IN THE DIAGNOSIS OF THYROID DISEASE

Noel I. Robin, Samuel Refetoff, and Herbert A. Selenkow

Harvard Medical School and the Peter Bent Brigham Hospital, Boston, Massachusetts and the Pritzker School of Medicine of the University of Chicago, Chicago, Illinois

Introduction of the computer into the medical realm has resulted in many practical applications for its use (1-3). This fact is directly related to the computer's ability to store large quantities of information and to process this information on command, its accuracy in fulfilling assigned tasks, and its virtual tirelessness and independent operation. In the realm of the thyroid, computer applications have included analysis of a thyroid model (4), diagnosis of certain disease states (5-8), assessment of thyroid scans (9), and evaluation of the thyroidal radioactive iodine (^{131}I) uptake (10).

In a recent study from this laboratory (11,12), the merits and reliability of a valuable parameter of thyroid function, the serum-free thyroxine index-T₄ (FTI-T₄), were reported. The availability of a compact and relatively inexpensive programmable electronic computer-calculator system permitted investigation of its use in processing laboratory data for determining the FTI-T₄ and for mathematically estimating thyrometabolic status.

METHODS AND MATERIALS

Serum samples were obtained from 137 normal, 160 "normal," 70 hyperthyroid, and 50 hypothyroid subjects. Normal subjects consisted of 114 male and 23 nonpregnant female blood donors who were clinically healthy and euthyroid, and had taken no medications for at least 2 months before sampling. The group designated "normal" was composed of either euthyroid hospitalized individuals or ambulatory subjects who were pregnant or were taking medications which included estrogens and androgens. No effort was made to select these patients or to determine whether or not they reflected the general population of patients. In addition, euthyroid patients on thyroid replacement therapy for euthyroid goitrous disorders were also included in this category. The hyperthyroid and hypothyroid subjects were unselected except for their underlying thyroid pathology. Many were taking various medications including estrogens. They were classified as to their thyroid diagnosis by history, clinical appearance, and multiple diagnostic laboratory procedures which included radioactive iodine uptake (RAI), scan, and triiodothyronine suppression test, but did not include the laboratory tests under study.

 T_4D (13), RT_4 , and $FTI-T_4$ values were obtained on each serum sample by manual and visual calculations in the usual manner. For comparison, the same basic data printed out from isotopic counting equipment was applied to a programmed computer-calculator to accomplish the following sequence of calculations for each unknown sample. First, the T_4D was calculated from the standard curve and the value retained in the computer memory. Next, the RT_4 ratio was computed and multiplied by the T_4D to obtain the FTI-T₄ value. Lastly, the value for the FTI-T₄ was categorized as euthyroid, hypothyroid, or hyperthyroid, and the results were printed out on a teletypewriter.

To use the computer to calculate the T_4D , the standard curve was applied first by entering the ordinate values for each abscissa value of 0, 1, 6, 12, 18, and 24 mg% of thyroxine, respectively. Ordinate values were calculated as the percent of isotopic thyroxine bound to thyroxine binding globulin (TBG) compared with the total isotopic thyroxine added to the resin-TBG system (11). All data were entered into the computer on punched paper tape through a teletype input/output reader integrated with a Wang Electronic Calculator System (Model 380). These respective points of the standard curve were then retained by the electronic system for later use. As contrasted with the usual sigmoid-shaped curve of the standard values

Received Nov. 5, 1970; revision accepted April 8, 1971. For reprints contact: Noel I. Robin, The Cambridge Hospital, 1493 Cambridge St., Cambridge, Mass. 02139.

FIG. 1. Comparison of standard curve for obtaining T_4D obtained by visual fit (solid line) and by use of straight-line segments (dotted line).

obtained by the best visual construction, the computer treated the curve as a series of sequential straight-line segments connecting adjacent points (Fig. 1). Ordinate values for each unknown serum sample were then entered in a similar fashion. The computer applied this ordinate value to its appropriate straight-line segment, and the corresponding abscissa value was obtained and held in store as the serum thyroxine concentration (T₄D) of this sample. The computer was able to perform these tasks by means of a recycling program tape which "instructed" the calculator to perform the appropriate mathematical tasks and then store vital empiric derivations.

The RT₄, expressed as a ratio of a standard reference serum from a large pooled source of euthyroid serums, was then calculated from a similar TBG-resin system employing isotopic thyroxine (10). After entering the data necessary to obtain the percent TBG-bound radioactivity for the standard reference serum, the computer was programmed to calculate the absolute percent uptake for each unknown serum sample and then divide this value by the uptake of the standard reference serum to obtain and retain the RT₄ ratio. At this point, the mathematical product of each T₄D and its respective RT₄ ratio was obtained as the FTI-T₄.

To determine an appropriate diagnostic range of values for the $FTI-T_4$, criteria for delineating mathematic limits of this parameter were derived in con-

junction with the established clinical thyroid diagnosis of the patients studied. Each category was created on the basis of the degree of mutual inclusion or exclusion of FTI-T₄ values of the hyperthyroid, hypothyroid and "normal" groups. FTI-T₄ values obtained by the computer and by previous manual methods were compared with each other and with previously described normal ranges (11,12). These latter ranges were delineated from ± 3 s.d. of the mean FTI-T₄ values of 137 healthy, euthyroid blood bank donors. This range for the FTI-T₄ is 3.06– 10.22. All statistic applications used standard methods (12).

RESULTS

Values of T₄D, RT₄, and FTI-T₄ obtained by computer were compared with similar values obtained through visual and manual calculations. Because the method for calculating RT₄ is identical in either case, these values were unchanged. T_4D and FTI- T_4 values, on the other hand, were slightly but not significantly different. T₄D values in the "normal," hypothyroid, and hyperthyroid categories were respectively 7.90 \pm 2.16, 2.62 \pm 1.10, and 14.90 \pm 4.01 by computer calculation compared with 7.89 \pm 2.19, 2.39 \pm 1.09, and 15.07 \pm 4.12 when determined manually. FTI-T₄ values in these same groups were 7.09 \pm 1.97, 2.11 \pm 1.05, and 19.62 \pm 7.22 by computer analysis and 7.08 \pm 1.98, 1.90 \pm 1.00, and 19.82 ± 7.26 by manual means. The exclusion or inclusion of these values in a previously studied euthyroid range were not affected by these slight alterations in individual values. 93.8% of the "normal," but only 16.0% of the hypothyroid and 0.0% of the hyperthyroid values remained within ± 3 s.d. of the mean FTI-T₄ derived from serum samples of blood bank donors. Ranges set for the FTI-T, for each thyroid diagnostic category are shown in Table 1 and Fig. 2. No hyperthyroid or hypothyroid FTI-T₄ values fell in the "normal" range of 4.56-10.45. Conversely, no "normal" values lay below the upper hypothyroid limit of 3.43 or above the lower hyperthyroid limit of 12.73. These two limits also greatly exceeded the respective limits of the 137 blood bank control serums. Within the FTI-T, range of 3.43-4.56, there were seven hypothyroid and 15 "normal" values (14.0 and 9.4% of the respective total values). Six (12.0%) of the hypothyroid values fell between 3.43 and 3.84 while only one hypothyroid value of 4.56 exceeded 3.84. On the other hand, five "normal" and five hyperthyroid FTI-T, values (3.1 and 7.1%, respectively) fell within the overlap range of 10.45-12.73 (Fig. 2).

A set of ranges for present and future FTI-T, determinations was thus incorporated in the computer

FIG. 2. Frequency distribution of FTI-T4 values of hypothyroid, "normal," and hyperthyroid patients in this study.

program as follows: FTI-T₄ values less than 3.43 are considered hypothyroid; between 3.43 and 3.84 are borderline normal-hypothyroid; between 3.84 and 4.56 are probably euthyroid; between 4.56 and 10.45 are euthyroid; between 10.45 and 12.93 are border-line normal-hyperthyroid; and greater than 12.73 are hyperthyroid (Table 1). A sample computer run of a series of serum T₄D, RT₄, and calculated FTI-T₄ values and concomitant predicted diagnoses are shown in Fig. 3.

DISCUSSION

Measurement of the serum concentration of "free" thyroxine is currently considered to be the most useful laboratory reflection of the clinical thyrometabolic state of the individual (15-19). It has been shown, however, that direct measurements of this parameter are unnecessary under most clinical circumstances because an accurate estimate of the circulating levels of free thyroxine can be derived from two readily available laboratory tests of thyroid function; namely, the serum thyroxine concentration as determined by competitive binding analysis (T_4D) and one of the resin uptake tests $(RT_3 \text{ or } RT_4)$ (11,12,20-24). In this laboratory, an RT_4 procedure has been developed and used routinely to

calculate the FTI-T₄. This FTI-T₄ is particularly advantageous for two distant reasons: (A) the FTI-T₄ provides a more distinct separation of euthyroid from hyperthyroid or hypothyroid values than does the FTI that uses the RT_3 (FTI-T₃) (12); and (B) the RT_4 can be performed in concert with the T₄D and thus, the $FTI-T_4$ can be obtained by a sequential, unified laboratory procedure using a single isotopic preparation of thyroxine. Because the FTI-T₄ provides meaningful and distinct separation of clinical disorders of thyroid function, it is particularly well suited to adaptation to a computer program for performance of tedious time-consuming and error-proof computations for these parameters and to render a predicted thyrometabolic diagnosis based upon derived ranges of the FTI-T₄ for each pathologic category. Results in this study support the utility and accuracy of applying a computer for these computations.

A relatively low-capacity computer-calculator is used in this laboratory to obtain the FTI-T₄ from the T₄D and RT₄ determinations. This task is accomplished by feeding into the input of the programmed electronic computer values for experimentally derived data necessary to obtain a standard curve for the T₄D determination. Sequential values are then entered for data from patient samples. As these lab-

 TABLE 1. RANGES OF FTI-T, FOR DIAGNOSTIC DISCRIMINATION OF THYROID FUNCTION BY

 COMPUTER ANALYSIS

FTI-T₄ range	Hypothyroid*	"Normal"*	Hyperthyroid*	Computer diagnosis
< 3.43	86.0% (43/50)	0.0% (0/160)	0.0% (0/70)	Hypothyroid
3.43- 3.84	12.0% (6/50)	2.5% (4/160)	0.0% (0/70)	Borderline hypothyroid-euthyroid
3.84- 4.56	2.0% (1/50)	6.9% (11/160)	0.0% (0/70)	Probable euthyroid
4.56-10.45	0.0% (0/50)	87.5% (140/160)	0.0% (0/70)	Euthyroid
10.45-12.73	0.0% (0/50)	3.1% (5/160)	7.1% (5/70)	Borderline hyperthyroid-euthyroid
>12.73	0.0% (0/50)	0.0% (0/160)	92.9% (65/70)	Hyperthyroid

* Figures in parentheses represent the number of patients in that category over the total number of patients in the entire diagnostic group.

FIG. 3. Computer printout including values for T4D, RT4, and FTI-T4 along with diagnostic assessment. The following clinical diagnoses apply respectively to the patients numbered one through nine: 1, euthyroid blood bank donor; 2, euthyroid pregnant patient; 3, euthyroid patient on therapeutic corticosteroids; 4, previously hypothyroid patient on 2 grains of desiccated thyroid replacement, daily; 5, hypothyroid patient on oral contraceptives; 6, pregnant patient with Graves' disease; 7, patient with thyrotoxicosis 6 weeks after initiation of oral antithyroid therapy; 8, euthyroid cardiac patient with congestive heart failure; and euthyroid patient on therapeutic doses of diphenlyhydantoin.

oratory data for both standard and patient serums are performed in concert and samples are placed in a sequential manner in the gamma scintillation counter, data output from the counter printout can be fed directly into the computer input manually with a punch tape, or directly, by electronic coupling of the counter to the computer. Once data are entered into the programmed computer, the operational system functions automatically. It calculates the RT₄ by the same computational sequence used manually and at the same time, calculates the T₄D of the unknown samples from the T₄D standard curve. Statistical comparisons between values obtained by conventional and computer means showed no significant differences.

Empiric and clinically useful ranges were derived in the present study for computer categorization. These new diagnostic limits are based upon absolute inclusion or exclusion of FTI-T₄ values in diagnostic ranges obtained from large numbers of serum samples of patients with various thyrometabolic disorders. The euthyroid FTI-T₄ range of 4.56–10.45 thus correlates well with accepted T_4D ranges (13). This is not unexpected as the RT₄, which is multiplied by the T_4D to obtain the FTI- T_4 , is expressed as a ratio of a standard reference serum. The hypothyroid-"normal" overlap is divided into two subcategories because of an isolated hypothyroid FTI-T, value of 4.56. In all practicality, however, FTI-T₄ values between 3.84 and 4.56 probably represent the euthyroid state. The relatively low percentage of "normal" and hyperthyroid values in the 10.45-12.73 range negate a similar subdivision here.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to Ray E. Gleason and S. Robert Hagen for their support and professional assistance.

This work was supported in part by an Endocrinology Grant from the John A. Hartford Foundation and by General Research Grant 5-SOI-FR-05489-05 of the USPHS.

ATIENT NUMBER	TAD	RT4	FTI-T4	NUMBER OF	DIAG.	CATEGORY
1	6.81	1.02	6.94		4	
8	13.53	.62	8.38		4	
3	2.92	1.59	4.64		4	
4	4.31	.82	3.53		0	
5	5.24	.49	2.56		ĩ	
6	21.67	1.02	22.10		6	
7	9.50	1.21	11.49		5	
8	3.32	1.22	4.05		3	
9	3.55	1+34	4.75		4	

REFERENCES

1. MILLIKEN JA, WARTAK J, ORME W, et al: Use of computers in the interpretation of electrocardiograms. Canad Med Ass J 101: 39-43, 1969

2. BURBANK F: A computer diagnostic system for the diagnosis of prolonged undifferentiating liver disease. Amer J Med 46: 401-415, 1969

3. WHITEHEAD TP: The computer in the laboratory. *Practitioner* 203: 294-305, 1969

4. DECOSTRE PL, PHAIR RD, DINGWELL IW, et al: A thyroid model and its analysis by computer. *Endemic Goiter*, Stanbury JB, ed, Washington, D.C., Scientific Publication #193 of PHHO-WHO, 1969, pp 49-66

5. BARKER DJP, BISHOP JM: Computer-based screening system for patients at risk of hypothyroidism. Lancet ii 835-838, 1968

6. BOYLE JA, GREIG WR, FRANKLIN DA, et al: Construction of a model for computer-assisted diagnosis: application to the problem of nontoxic goiter. *Quart J Med* 35: 565-588, 1966

7. FITZGERALD LT, WILLIAMS CM: Modified program for computer diagnosis of thyroid disease. *Radiology* 82: 334, 1964

8. WINKLER C, REICHERTZ P, KLOSS G: Computer diagnosis of thyroid diseases: comparison of incidence data and considerations of the problem of data-collection. Amer J Med Sci 254: 27-39, 1967

9. SPRAWLS P: Digital-computer interpretation of radioisotope distribution patterns. J Nucl Med 10: 618-620, 1969 10. TAUXE W: Estimation of thyroid uptake of ^{1m}I from

digitized scintiscan matrices. J Nucl Med 10, 258–260, 1969

11. ROBIN NI, HAGEN SR, COLLACO F, et al: Free thyroxine index-T₄ (FTI-T₄) in diagnosis of thyroid disease (abstract). Program of the 52nd Annual Meeting of the Endocrine Society, St. Louis, Missouri, June, 1970

12. ROBIN NI, HAGEN SR, COLLACO F, et al: Serum tests for measurement of thyroid function. *Hormones* (in press)

13. MURPHY BEP, JACHAN C: The determination of thyroxine by competitive protein-binding analysis employing an anion-exchange resin and radiothyroxine. J Lab Clin Med 66: 161-167, 1965

14. SNEDECOR GW, COCHRAN WG: Statistical Methods, Ames, Iowa, State University Press, 1967

15. STERLING K, HEGEDUS A: Measurement of free thyroxine concentration in human serum. J Clin Invest 41: 1031-1040, 1962

16. OPPENHEIMER JH, SQUEF R, SURKS MI, et al: Binding of thyroxine by serum proteins evaluated by equilibrium dialysis and electro-phoretic techniques: alterations in nonthyroidal illness. J Clin Invest 42: 1769-1782, 1963

17. ROBIN NI, REFETOFF S, GLEASON R, et al: Thyroid hormone relationships between maternal and fetal circulations in human pregnancy at term: A study in patients with normal and abnormal thyroid function. *Amer J Obstet Gynec* 108: 1269-1276, 1970

18. FANG VS, SELENKOW HA: Determination of free thyroxine in serum by low-temperature equilibrium dialysis. Clin Chem 16: 185–190, 1970

19. ROBIN NI, REFETOFF S, FANG V, et al: Parameters of thyroid function in maternal and cord serum at term pregnancy. J Clin Endocr 29: 1276-1280, 1969

20. CLARK F, HORN DB: Assessment of thyroid function

by the combined use of the serum protein-bound iodine and resin uptake of ¹³¹I-triiodothyronine. J Clin Endocr 25: 39-45, 1965

21. SELENKOW HA, REFETOFF S: Common tests of thyroid function in serum. JAMA 202: 135-136, 1967

22. HOWORTH PJN, MACLAGEN NF: Clinical application of serum-total thyroxine estimation, resin uptake, and free-thyroxine index. *Lancet i:* 224–228, 1969

23. WELLBY M, O'HALLORAN MW: Measurement of the plasma free thyroxine level as a test of thyroid function. Brit Med J 2: 668-670, 1966

24. ANDERSON BG: Free thyroxine in serum in relation to thyroid function. JAMA 203: 577-582, 1968

