
Itili/ LETTERS TO THE EDITOR

ON THE DIFFERENTIAL METHOD OF IMAGE FOCUSING

A recent article by Nagai, Fukuda and linuma
(7) discussed a differential operator method of cor
recting for imperfect spatial resolution in digital
radioisotope scan images formed by scanning sys
tems with a "nearly . . . but not necessarily Gaus
sian" point-spread function. Although the first-order

focusing correction applied by the authors is correct
for system point-spread functions which are sym
metric about the x and y axes under certain condi
tions shown below and is often a good approximation
for nearly symmetric spread functions, the general
deconvolution operator expressed by Eqs. 4-6 of
the article in fact results in convergence to the object
distribution if and only if the imaging system point-
spread function is truly Gaussian. To my knowledge
the general differential deconvolution technique has
not been treated in the literature. The purpose of
this note is to establish the proper form and con
ditions of applicability of a general differential de-
convolution operator and to discuss the effects of
image noise on the usefulness of the approach.

THE GENERAL OPERATOR

The correct general differential deconvolution op
erator derived below is
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dx2

d2
dxdy

I terms involving higher order moments
[and derivatives

in which the moments Mra,n of the system point-
spread function PSF(x,y) are defined by

Mm.n = yu pSF(x,y) dxdy

and PSF(x,y) is assumed normalized to M00 =
ff PSF(x,y) dxdy = 1. Application of the differential
deconvolution operator to an image distribution
g(x,y) converges to the object distribution f(x,y)
in the absence of noise if and only if the system
frequency response function (i.e., the two-dimen

sional Fourier transform of the system point-spread
function) is analytic and non-zero at all frequencies.
Although higher order terms of the operator can be
calculated by the method outlined below, no gen
eral form for the terms is apparent, and higher order
terms quickly become quite complicated. I have
calculated the third- and fourth-order terms, but limi
tations of space prevent their inclusion here.

The first few terms clearly show that if odd mo
ments are non-zero â€”that is, if the point-spread
function is asymmetric about its originâ€”then a first-
order derivative term must be included, and that
the general second-order coefficients are more com
plicated than those stated by Nagai et al. Higher
order terms involve moments of order greater than
2, contrary to the general form given by Nagai et al.

DERIVATION

Derivation of the general differential deconvolu
tion operator will be outlined here for the one-
dimensional case; extension to two-dimensional
images is straightforward.

Since the Fourier transform of an nth order de
rivative of an image function g(x) is given by (2)

where G(w) is the Fourier transform of g(x). ex
pansion of an object function f(x) in terms of a
series of derivatives of the image g(x) is clearly
equivalent, in frequency space, to multiplying the
image spectrum G(w) by a complex polynomial in
<u.In the absence of noise, the object spectrum F(w)
is related to G(w) by

F(Â«0= 1
M(o>)

where M(o>) is the system frequency response func
tion (the Fourier transform of the system line-spread
function).* Thus the derivative expansion should

correspond, in frequency space, to a convergent
polynomial expansion of [M(Â«j)]-1.

If and only if M(Â«) is analytic and non-zero for
all w, its reciprocal can be expanded in a unique

* For the two-dimensional case, the system frequency re
sponse function is the two-dimensional Fourier transform
of the system point-spread function.
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Taylor series about <a= 0 which will converge for
all <u.Noting that M(<u) is the Fourier transform of
the line-spread function LSF(x).

00

= J e-*Â«LSF(x)dx,

we have (2)

where the /*â€žare central moments of the system line-
spread function. Taking the inverse Fourier trans
form of the product of the series and G(w), one
obtains the one-dimensional equivalent of the general
operator above. The general /wo-dimensional oper
ator involves moments of the system pomi-spread
function.

The series expansion of the two-dimensional ob
ject distribution in terms of spatial derivatives of the
image converges if and only if the Taylor expansion
of [Miw^wy)]"1 in frequency space converges, and

hence converges if and only if M(a)x,wy) is analytic
and non-zero for all <ax,<o}..

One can show that if the system point-spread
function is isotropie about its origin, then the two-
dimensional differential deconvolution operator re
duces to the much simpler form

1~2T ^ + Â¿(6^ -,0V*

- - (90 ,,,Â»- 30 /i^ + ,Â«,)?â€¢

in which the /Â¿mare even moments of the symmetric
line-spread function LSF(x) defined by

xmLSF(x)dx

and

dx2^ dy2 J

If the system point-spread and hence line-spread
functions are truly Gaussian, then the operator re
duces to the well-known inverse Laplacian (3). For
this special case the "general" operator stated by

Nagai et al is correct.
It is possible that in some situations a low-order

correction using derivatives of the image might be
useful even when the general method does not con
verge, or that low-order corrections weighted dif
ferently from the convergent terms might "improve"

features of an image in some sense. The effect of
such enhancement on overall frequency response
can be predicted since the method can be viewed as
multiplication of system response by a polynomial
in frequency space. In any case, the technique must
be applied with care.

EFFECT OF IMAGE NOISE ON

USEFULNESS OF THE METHOD

Since the differential deconvolution method is
equivalent to multiplying the image spectrum by a
polynomial in w, high-frequency image noise will
obviously be enhanced very strongly. Although one
can attempt to filter out high-frequency image noise
by appropriate smoothing, excessive smoothing will
tend to counteract the resolution-correcting effect of
the deconvolution technique. The experimental scan
image to which Nagai et al applied their first-order
differential operator was composed of extraordinarily
high count densities (up to 1,200 counts/mm2), yet

noise enhancement in the processed image was still
severe. The much poorer statistics of clinical scan
images seem to leave the practical usefulness of the
technique open to question.

SUMMARY

A general differential deconvolution operator is
derived and the conditions necessary for conver
gence in the absence of noise are established. The
usefulness of the differential operator in the presence
of image noise is discussed.
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THE AUTHORS' REPLY

We wish to congratulate Dr. Metz on the excellent
presentation of his Letter to the Editor on "Differen
tial Operator Methods." We agree with his com

ments but would like to make a few remarks.

Volume 11, Number 3 143


