KINETICS OF RADIONUCLIDES

USED FOR BONE STUDIES

D. A. Weber, E. J. Greenberg, A. Dimich, P. J. Kenny, E. O. Rothschild, W. P. L. Myers and J. S. Laughlin

Sloan-Kettering Institute for Cancer Research, Memorial and James Ewing Hospital and Cornell University Medical College, New York, N.Y.

In this paper we report our investigation to study the kinetics of five bone-seeking nuclides and to compare their local bone and plasma kinetics and urinary excretion rates in order to establish their relative usefulness for detecting and following up the course of metastatic bone lesions. The studies were quantitative, and they used quantitative and computerized scanning methods previously developed in this laboratory (1-3).

Radionuclide scanning of bone with 47 Ca and 85 Sr is a sensitive diagnostic technique (4-9) which can frequently indicate the presence and extent of lesions before they are visible on routine or special radiographs or tomograms (10). Experience in our laboratory and in others indicates that the short-lived nuclides 18 F (11-15), 87m Sr (14-19) and 68 Ga (20,21) can also be used for bone scanning to determine and outline the probable site of lesion-involved bone. No intercomparison studies of all five nuclides have been reported, however, and this has made nuclide selection somewhat subjective in diagnostic situations where a short-lived nuclide would be desirable.

Improved methods of cyclotron and reactor production of the short-lived nuclides (22.23) and the ease of obtaining ^{87m}Sr and ⁶⁸Ga by generator elution (24-26) have recently made these nuclides available for routine use. Serious consideration should therefore be given to their use if evidence can be found that any of them has as well-defined characteristics of concentrating in bone, clearing rapidly from the soft tissues and blood and demonstrating comparable differential uptake between lesioninvolved and normal bone as has been demonstrated for ⁴⁷Ca or ⁸⁵Sr. The half-life and decay mode of each of these three short-lived nuclides are attractive. Each potentially offers (1) reduced radiation dose to the patient, (2) suitable gamma-ray energies for in vivo scanning and (3) sufficiently short half-life to allow sequential follow-up studies or other radiopharmaceutical studies within a period of days.

A comparison of the kinetics of intravenously administered doses of ⁴⁷Ca (chloride), ⁸⁵Sr (nitrate), ^{87m}Sr (chloride) and ¹⁸F (sodium fluoride) was made in man. Results of serial serum and external point-count measurements, short-term excretion data and general quantitative scan distribution characteristics are described.

The possibility of metal toxicity (27) and the additional chemical preparation procedures related to the use of ⁶⁸Ga (citrate) restricted our initial evaluation of this tracer to animal studies. Results of both scanning and *in vitro* specimen counting of rats following the intravenous administration of ⁴⁷Ca, ⁸⁵Sr, ¹⁸F and ⁶⁸Ga are given.

MATERIALS AND METHODS

Instrumentation. The scanning facility used for all *in vivo* counting was the Sloan-Kettering Institute high-energy gamma-ray scanner (1). This scanner uses two co-linearly opposed detectors, each containing a 4×4 -in. NaI(Tl) scintillation crystal (28). In vitro counting was carried out with a well-type gamma-ray detector system using a $3 \times$ 3-in. CsI(Tl) crystal.

Nuclides. Table 1 shows the basic physical characteristics and the chemical form of each nuclide that was injected for bone scanning. ⁴⁷Ca and ⁸⁵Sr are the longer-lived nuclides with half-lives of 4.5 and 65 days, respectively; ^{87m}Sr, ¹⁸F and ⁶⁸Ga are the contrasting short-lived nuclides with half-lives of 2.8 hr and less. Each nuclide gives a high photon

Received Jan. 29, 1968; revision accepted June 14, 1968. For reprints contact: J. S. Laughlin, Sloan-Kettering Institute for Cancer Research, New York, N.Y. 10021.

Nuclide	47Ca	#Sr	****Sr	¹⁸ F	**Ga
Physical half-life	4.5 days	65 days	2.8 hr	110 min	68 min
Primary gamma energy (No./100 disintegrations)	1.31 MeV (76)	0.513 MeV (100)	0.388 MeV (78)	0.511 MeV (97, β+)	0.511 MeV (87, β+)
Chemical form	Chloride	Nitrate	Chloride	Sodium fluoride	Citrate + carrier Go
Specific activity*	>140 mCi∕gm Ca	>7 Ci∕gm Sr	>5 Ci∕gm Sr	Carrier free	Carrier free
Admin. activity	100 <i>µ</i> Ci	100 <i>µ</i> Ci	1 mCi	1 mCi	1 mCit
Counts/min/µCi in std geom‡	4.3 × 10 ⁸	1.01 × 104	9.5 × 10°	1.96 × 104	1.76 × 104
Dose-to-bone (rads)	6.3**	5.2	0.14	0.26	0.38

* Specific activities listed refer to the time of injection.

† Proposed dose.

\$ 2-in.-diameter X 4-in.-long cylindrical bore collimator: Channel width = 100 keV, fixed source-to-crystal distance.

** Includes dose from 5% contaminant of ⁴⁵Ca and ⁴⁷Sc daughter product of ⁴⁷Ca consequent on injecting 3 days post 7-day irradiation of ⁴⁶Ca.

yield for the major gamma-ray energy; a range of 0.76-1.94 photons per disintegration is available from these five nuclides. The primary gamma-ray energies are of the same order of magnitude with the exception of ⁴⁷Ca. The latter is considered a highenergy gamma-ray nuclide in terms of diagnostic tracer studies (28).

The gamma-ray emitting isotopes of calcium, strontium and fluorine were obtained from commercial suppliers in the chemical form and specific activities listed in Table 1. 68Ga as the EDTA complex was obtained from a commercially available 68Ge-⁶⁸Ga generator by elution with 0.005 M EDTA. ⁶⁸Ga-citrate with stable carrier gallium was prepared by the ⁶⁸Ga-EDTA-Ga(III) exchange method suggested by Hayes (21). "Carrier-free" ⁶⁸Ga-citrate was prepared by evaporating the ⁶⁸Ga-EDTA generator eluate to dryness in a platinum crucible under an infrared lamp, ashing at about 400°C for 20 min and dissolving the ash in 2% (W/V) citric acid. Aluminum content in the eluate was estimated to be in microgram amounts by the generator supplier. Columns are normally washed with water and 0.005 M EDTA (pH 7) to remove fines from the alumina before shipment. 68Ge leakage was verified experimentally to be less than 0.01% of its total activity in the column.

Patient studies. Eleven patients with radiographic evidence of localized active cancer involving bone were included in this study. The primary diagnoses for these patients are shown in the box at the right.

Each patient received two nuclides intravenously: six patients received ¹⁸F and ⁴⁷Ca; three, ¹⁸F and ⁸⁵Sr; and two, ^{87m}Sr and ⁸⁵Sr. One millicurie of ¹⁸F

or ^{87m}Sr was given on the first day of the study, and 100 μ Ci of ⁴⁷Ca or ⁸⁵Sr was given from 24 to 72 hr later. Heparinized blood samples were taken four times during the first hour and then hourly until 5 hr after each injection. The 5-hr urine excretion also was collected and measured. Local uptake or point-count measurements over both normal and lesion-involved bone were carried out at 30 min and 1 hr and then at hourly intervals until 5 hr. Continuous scans were run at selected times between point count measurements. For the longerlived nuclides, additional external point counts were taken at 24 hr and 5 days after injection.

Animal studies. Each of the nuclides studied in man was also studied in Sprague-Dawley rats. In addition 68Ga citrate, both with and without carrier, was also studied in rats. Relative distribution characteristics were studied between soft tissue and bone and also between normal bone and repairing bone. Tracer studies were carried out on rats 11 days after the fracture of a single tibia. Published studies indicate that bone-healing processes are well underway by 11 days after fracture (29,30). While

Primary diagnosis
Breast carcinoma Thyroid carcinoma
Chondrosarcoma
Prostatic carcinoma Lung carcinoma

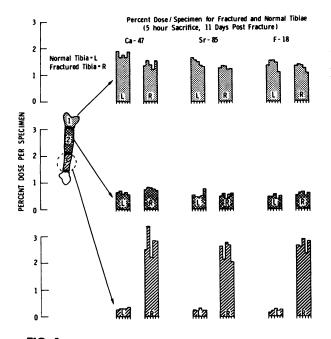


FIG. 1. Comparison of activities in different regions of normal and fractured rat tibiae for calcium, strontium and fluorine tracers. Five rats were studied with each tracer. (¹⁷Ca rats: 233– 294 gm, 56 days old; ³⁶Fr rats: 273–340 gm, 66 days old; ¹⁸F rats: 262–295 gm, 60 days old.)

under light ether anesthesia, the rats were given one of the five tracer solutions intravenously into the tail vein. The animals were sacrificed by excess ether 5 hr later.

In the first series of experiments, a total of 20 rats was studied. Following sacrifice, radiographs were taken to verify the position of fracture, scans were run and specimens were dissected for *in vitro* counting and for determinations of percent dose/gram tissue (wet weight). The specimens included the left and right tibiae and femora, and samples of the calvarium, rib, vertebrae, thigh muscle, kidney, pancreas, lung, spleen, heart, liver, testes, whole blood and fat.

Fifteen additional rats were injected and then sacrificed to evaluate specifically the different regions of the normal and fractured tibiae. ¹⁸F, ⁸⁵Sr and ⁴⁷Ca were each studied in five rats. The fractured and normal tibiae were each divided into three specimens for counting: (1) the proximal head, including the epiphysis; (2) the shaft extending to the proximal edge of the callus; and (3) the portion of the shaft containing the callus and the contralateral distal portion of the shaft (Fig. 1). The specimens were counted separately.

RESULTS

Counting efficiency. Counting-rate sensitivity for a standardized geometry with a constant 100-keV

window setting centered on the primary gamma-ray energy varied by more than a factor of four for the five nuclides on a microcurie-to-microcurie comparison. Table 1 shows ${}^{18}\text{F} > {}^{68}\text{Ga} > {}^{85}\text{Sr} >$ ${}^{87}\text{m}\text{Sr} > {}^{47}\text{Ca}$.

Patient studies. The radiation dose to bone calculated for each of the five nuclides in a 70-kg man is listed in Table 1. Conservative assumptions were made: the total administered dose was assumed to be distributed homogeneously in bone, and the effective half-life was taken to be equal to the physical half-life for each nuclide. For the proposed administered activity of 100 μ Ci of 47 Ca or 85 Sr and 1 mCi of 18 F, 87m Sr or 68 Ga, the radiation dose for the short-lived nuclides is less than 10% of that received from 47 Ca or 85 Sr.

Figure 2 shows the mean plasma concentration curves expressed as percent dose per liter for the patients during the first 5 hr postinjection for ⁴⁷Ca, ⁸⁵Sr and ¹⁸F. The mean curve for ^{87m}Sr is not indicated because it had the same characteristic slopes and amplitudes as that for ⁸⁵Sr. ¹⁸F disappeared from the plasma much more rapidly than did ⁴⁷Ca, ⁸⁵Sr and ^{87m}Sr. The second rate constant of the ¹⁸F

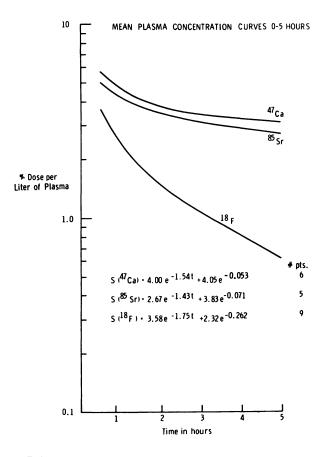


FIG. 2. Variation of mean plasma concentration with time for ⁴⁷Ca, ⁸⁵Sr and ¹⁸F. (⁴⁷Ca, six patients; ⁸⁵Sr, five patients; ¹⁹F, nine patients.)

URINE			CALCIUM,		rium		
Cumulative 5-hr urine excretion (% of injected dose)							
Patient	47Ca	¹⁹ F	Patient	#Sr	²⁰ 1F		
IG	0.2	7.4	JB	8.9	23.5		
IL.	1.6	17.9	EC	4.1	24.8		
СМ	1.4	11.9	DM	5.1	22.3		
MS	4.3	22.0	Patient	#Sr	#73 Sr		
ΤL	2.2	22.4	RC	5.2	5.3		
GW		_	VS	3.0	2.7		

TABLE 3. COMPARISON OF UPTAKES OFCALCIUM, STRONTIUM AND FLUORINE TRACERS4-5 HR POSTINJECTION IN MIDSHAFTS OF
NORMAL TIBIAE*

Patient		Relative percent of injected dose			Relative percent of retained dose		
	47Ca	¹⁸ F	Ca/F	47Ca	¹⁸ F	Ca/F	
IG	0.30	0.15	2.0	0.30	0.16	1.9	
n.	0.49	0.22	2.2	0.50	0.27	1.9	
CM	0.31	0.25	1.2	0.31	0.28	1.1	
MS	0.30	0.13	2.4	0.31	0.16	1.9	
JT	0.40	0.28	1.5	0.41	0.36	1.2	
GW	0.44	0.29	1.5	-			
	⁸⁵ Sr	¹⁸ F	Sr/F	#Sr	¹⁸ F	Sr/F	
JB	0.30	0.22	1.3	0.32	0.29	1.1	
EC	0.29	0.18	1.6	0.30	0.24	1.2	
DM	0.30	0.18	1.6	0.31	0.23	1.3	

* Measured by external counting with a 2-in.-diameter \times 4-in.-long collimator at contact. Results are expressed both in terms of percent of injected dose and percent of retained dose, relative to counting rate of aliquot of injected dose measured in standard geometry and scaled up to counting rate of whole injected dose.

curve shows the plasma clearance to be four to five times faster than that for the other nuclides. For the different patients included in the paired studies, the resultant mean plasma concentrations calculated from the activity integrated over 5 hr varied from 1.1 to 2.6% of dose/liter for 18 F, 3.4 to 6.2 for 47 Ca and 3.3 to 4.9 for 85 Sr and 87m Sr.

Table 2 summarizes the 5-hr cumulative urineexcretion measurements for the four nuclides. The urine excretion of ¹⁸F was consistently greater than that for the other nuclides in paired studies: the range of injected dose that was excreted in eight patients was 7.4–24.8%. Within experimental variation, the excretion of ⁸⁵Sr and of ^{87m}Sr in urine was observed to be the same. The urinary excretion of strontium varied from 2.7% to 8.9% of the injected dose in five patients. ⁴⁷Ca showed the lowest 5-hr excretion in urine: 0.2% to 4.3% of injected dose in five patients.

Serial external point counts over both normal and lesion-involved bone of the skeleton were measured with a cylindrical collimator with a bore 2 in. in diameter and 4 in. long. The data revealed considerable differences in the relative percent of administered activity present at different times following injection for each nuclide. The measured values over normal compact bone, such as the shafts of the tibiae or femora, generally indicated greatest uptake for ⁴⁷Ca per unit dose, less for ⁸⁵Sr and ^{87m}Sr isotopes and least for ¹⁸F. Relative percent of administered dose measured for ⁴⁷Ca or ⁸⁵Sr over these areas tended to remain constant or to increase slightly during the period from 30 min to 5 hr. The same measurements for ¹⁸F show continuously decreasing values during the same interval.

TABLE 4. COMPAR	SON OF UPTAKES C	OF CALCIUM, STRONTIUM	AND FLUORINE TRACERS
	AT 4-5 HR POSTINJI	ECTION IN BONE LESION	SITES*

Patient	Location of lesion	Relative p	ercent of inj	ected dose	Relative p	ercent of ret	ained dose
		47Ca	¹⁰ F	Ca/F	47Ca	¹⁸ F	Ca/F
IG	Greater trochanter	1.77	1.48	1.2	1.77	1.60	1.1
IL	Femur	0.77	0.65	1.2	0.78	0.80	1.0
СМ	Femur	0.79	0.31	2.5	0.80	0.36	2.2
MS	Humerus	0.54	0.33	1.6	0.56	0.43	1.3
ΤL	Femur	0.95	1.44	0.7	0.97	1.85	0.5
GW	Tibia	0.94	0.87	1.1			
		#Sr	¹⁸ F	Sr/F	#Sr	¹⁸ F	Sr/F
JB	Lumbar vertebrae	1.35	1.98	0.7	1.48	2.59	0.6
EC	Femur	0.87	1.00	0.9	0.91	1.33	0.7
DM	Femur	1.11	1.04	1.1	1.17	1.34	0.9
		⁸⁶ Sr	87mSr	⁸⁶ Sr/ ^{87m} Sr	⁸⁶ Sr	^{87m} Sr	85Sr/87mSr
RC	Thoracic vertebrae	0.73	0.67	1.1	0.77	0.71	1.1
VS	Humerus	0.40	0.37	1.1	0.41	0.38	1.1

* Measured by external counting with 2-in.-diameter \times 4-in.-long collimator at contact. Results are expressed both in terms of percent of injected dose and percent of retained dose, relative to counting rate of aliquot of injected dose measured in standard geometry and scaled up to counting rate of whole injected dose.

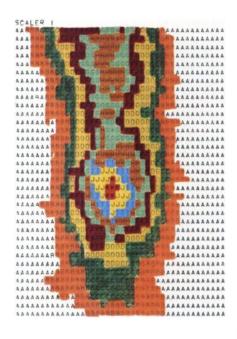
This may be due in part to differences in soft tissue and blood clearance of the different nuclides.

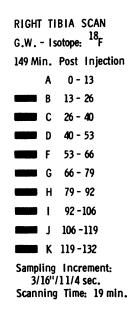
Calculation of relative percent retained dose did not compensate for the differences in uptake seen by external counting. Table 3 illustrates the results of measurements over the tibial shafts between 4 and 5 hr postinjection. The uptake gradient among the different nuclides retains the same order when expressed as local uptake relative to dose injected or as local uptake relative to percent dose retained in the body.

The same correlation for external point counts recorded over the lesion site between 4 and 5 hr is shown in Table 4. The data indicate that ⁴⁷Ca has the greatest uptake with respect to administered dose while ¹⁸F is somewhat less and ⁸⁵Sr and ^{87m}Sr is the least. For calculations of local relative percent retained dose, three out of five patients showed an uptake of ¹⁸F equal to or greater than that of ⁴⁷Ca. All three paired Sr/F studies showed considerably greater values for the local relative percent of the retained dose with ¹⁸F. As expected, the uptake of ⁸⁵Sr and ^{87m}Sr are almost identical. The differential of relative percent of the retained dose obtained with ¹⁸F compared with ⁴⁷Ca or ⁸⁵Sr (^{87m}Sr) indicates that the specificity for uptake of ¹⁸F in the bone-lesion area at 5 hr is similar to that for ⁴⁷Ca and probably is greater than that for ⁸⁵Sr or ^{87m}Sr. This is indirectly supported by the observation that the plasma concentration of ¹⁸F at 5 hr

(FOR VERTEBRAE) BONE* Time after injection								
		¥2-	5 hr					
.		Range of	Time of max.	- • •	F J			
Patient	Nuclide	values	(hr)	1 day	5 days			
IL	¹⁸ F	1.5-2.0	5					
-	47Ca 18F	1.2-1.3	5	1.3	1.7			
CM	•	1.1-2.0	.*4	1.3	1.0			
	47Ca ¹⁸ F	1.7-2.0	3	1.3	1.0			
MS	∽r ⁴7Ca	1.7-2.2	4%	2.8	5.1			
0 14/	¹⁸ F	1.8-2.2	5	2.8	5.1			
GW	⊷r 47Ca	3.5-4.8 2.8-3.1	5		~~~			
	¹⁸ F		*	3.0	3.4†			
JB	⁸⁵ Sr	1.9-2.6	3	2.3	3.0			
EC	¹⁸ F	1.7–2.2 3.6–4.4	2 4 1/2	∡.3	3.0			
EC	85Sr	3.0-4.4 2.5-3.0			_			
			1	_				
DM	⁸⁵ Sr	3.1–5.0 2.1–2.5	4	3.5	6.1±			

was 12-34% of the values found with ⁴⁷Ca or ⁸⁵Sr. Consequently, the percent dose measurements for ⁴⁷Ca and ⁸⁵Sr presumably have a proportionately greater contribution from the nontarget soft tissue and blood than do the measurements for ¹⁸F.


In eight of the nine patients studied with 18 F, the maximum ratio of counts over lesion-involved bone to either contralateral, adjoining or other normal bone was determined between 3 and 5 hr postinjection. Table 5 shows these ratios for seven patients who had either normal contralateral or adjoining bone. In six of these seven patients, the maximum ratio seen for 18 F between 3 and 5 hr was equal to or greater than that seen for 47 Ca or 85 Sr. The one exception was patient CM.


Additional measurements at 24 hr and at 5 days were taken with the longer-lived nuclides, and the ratio was greatest for the latest measurement in five out of six patients. In two of these cases, however, the ratio with ¹⁸F was still greater at 5 hr than was the ratio with ⁴⁷Ca or ⁸⁵Sr at 5 days. The remaining subjects had a lesion-to-normal bone ratio of ≥ 2 at 5 hr with ¹⁸F.

The short-lived nuclides gave better counting statistics than the longer-lived ones during the early period following injection. Table 6 shows the improvement in statistics at 3 and 5 hr for measurements taken over normal tibia with the 2-in.-diameter by 4-in.-long cylindrical bore collimator. The data are normalized to 100 μ Ci doses of 47 Ca and 85 Sr and 1 mCi doses of 18 F and 87m Sr. The improvement is marked at 3 hr and is still present at 5 hr despite the considerable decay of 18 F and 87m Sr.

Figures 3A and B and 4A and B show scans from paired nuclide studies with ⁴⁷Ca and ¹⁸F and with ⁸⁵Sr and ¹⁸F, respectively. Figures 3A and B are computer-analyzed scans from punched paper tape with net counting-rate information printed out in 10 equally spaced levels, each an integral multiple of 10% of the maximum counting rate. Both are focusing-collimator* scans taken over the proximal one third of the shaft of the right tibia in patient GW who had sustained a pathological fracture at the site of recurrent chondrosarcoma. This site is located in the central area of each scan. Localization of the lesion is seen with each nuclide. Improved contrast between bone and soft tissue is seen in the ¹⁸F scan. Counting statistics are also improved with ¹⁸F. The maximum counting rate over the lesion (red or K level) was 132 counts/1.25 sec with ¹⁸F; for ⁴⁷Ca the same position gave 67 counts/5 sec.

^{*} Tungsten 7-hole focusing collimator; FWHM for **Co in air is 2.8 cm.

Α

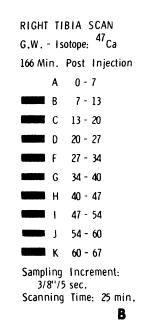


FIG. 3. A is scan of proximal third of right tibia with 7-hole tungsten focusing collimator 166 min after injection of ${}^{47}Ca$. Counts were summed for every $\frac{1}{2}$ -in. increment of distance travelled by the scanner, Scan speed was $\frac{1}{2}$ in./5 sec or 4.5 in./min. B is scan of same area after injection of 18 F. Counts were summed for every 3/16-in. increment of distance travelled by the scanner. Scan speed was 3/16 in./1 $\frac{1}{2}$ sec or 9 in./min.

The patient had first received 407 μ Ci of ¹⁸F and then 73 μ Ci of ⁴⁷Ca. Both scans were taken at approximately equal times postinjection.

Figure 4A and B are scans with a 1.5-in.-diameter cylindrical-bore collimator on a patient (JB) who had received 568 μ Ci of ¹⁸F first and then 107 μ Ci of ⁸⁵Sr. The scans extend from the level of the suprasternal notch to the patella. Counting-rate-level transitions are purposely coarse, and each color transition represents four standard deviations. The scans are computer corrected for background subtraction and for physical decay of the nuclides. The known lesion sites include metastatic involvement of the 4th lumbar vertebra and the right wing of the ilium. The lesion sites are seen with each nuclide; how-

ever, much better definition of the bony skeleton is seen with ¹⁸F. The counting rates for ¹⁸F over bony areas were more than twice those of ⁸⁵Sr. Both scans were carried out approximately 4.5 hr postinjection.

Animal studies. The main purpose of these studies was to evaluate the localization of ⁶⁸Ga-citrate in comparison with the other nuclides for normal and healing bone and for soft tissue before use in humans. Recent studies by Hayes *et al* (20,21) indicate that ⁶⁸Ga may be used as a bone-scanning agent when injected as the citrate with stable gallium carrier added. The chemical toxicity of stable gallium has not been studied thoroughly, but the estimated LD₁₀ for man is 20 mg Ga³⁺/kg body weight (27). Hence, we restricted our ⁶⁸Ga studies to rats

				1 s.d. (9	ate) for counting	j times:	
Nuclide	No. of patients	Av. counting rate at 3 hr	Av. counting rate at 5 hr	½ min at 3 hr	1 min at 3 hr	½ min at 5 hr	1 min at 5 hr
"Ca	6	1,546	1,585	3.6	2.6	3.6	2.5
⁸⁶ Sr	5	2,831	2,841	2.7	1.9	2.7	1.9
¹⁸ F	9	15,184	6,354	1.1	0.8	1.8	1.3
^{87m} Sr	2	12,441	7,883	1.3	0.9	1.6	1.1

with 11-day-old fractures. In each of these animals, radiographs and specimen dissection revealed healing fractures along the distal shaft of the fractured tibia.

Definition of the bony skeleton was detailed best with ¹⁸F. ⁴⁷Ca and ⁸⁵Sr gave somewhat poorer contrast between bone and soft tissue. ⁶⁸Ga gave the least contrast. The same relationships among these nuclides were seen for decreasing degrees of contrast of fracture site with adjoining and contralateral normal bones.

The ratio of fractured to normal contralateral tibia

determined by the ratio of the percent dose/gram wet weight of whole tibia specimens varied by less than a factor of two for all scan agents for the 20 rats included in Table 7. To evaluate more closely the differential available for *in vivo* scan procedures, the ratios of normal tibiae to muscle were calculated. Table 7 shows that this ratio for ¹⁸F is more than an order of magnitude greater than for the other nuclides. ⁶⁸Ga showed minimum contrast between bone and muscle.

The activity level of all soft tissues averaged considerably less with ¹⁸F than with the other nuclides

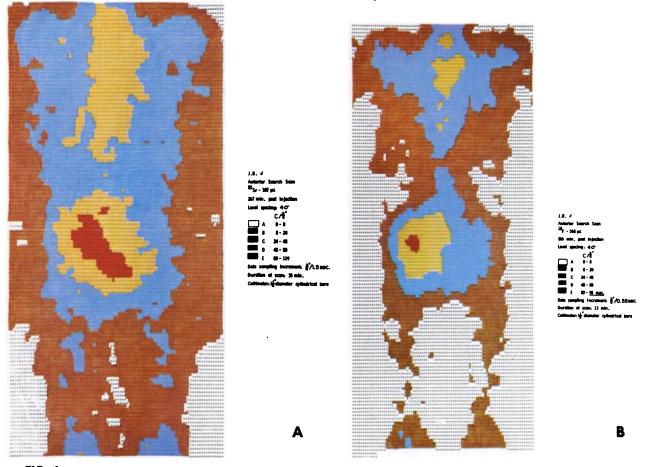


FIG. 4. A is scan extending from suprasternal notch to level of patella with a 1.5-in.-diameter \times 4-in.-long cylindrical-bore collimator after injection of ⁸⁵Sr. Counts were summed for every $\frac{3}{2}$ -in. increment of distance travelled by the scanner. Scan speed

was $\frac{3}{4}$ in./1.5 sec or 30 in./min. B is scan of same area after injection of ¹⁸F. Counts were summed for every $\frac{3}{4}$ -in. increment of distance travelled by the scanner. Scan speed was $\frac{3}{4}$ in./0.55 sec or 82 in./min.

(see Table 7). The normal tibia is compared with the lowest- and highest-activity soft-tissue specimens (per gram wet weight) for each individual rat and averaged for a series with each radionuclide. ¹⁸F showed the greatest contrast between bone and soft tissue, and ⁶⁸Ga showed the poorest contrast.

Fifteen additional rats were injected similarly and then sacrified specifically to evaluate sections of the normal and fractured tibia. ¹⁸F, ⁸⁵Sr and ⁴⁷Ca were each studied in five rats. Figure 1 contains a sketch of the dissected sections and compares graphically the percent dose/specimen for each section.

The ratio of fractured to contralateral normal bone was calculated from the values of percent dose/ specimen for each rat. ¹⁸F showed an average ratio of 12.6 compared to 9.4 for ⁴⁷Ca and 9.9 for ⁸⁵Sr. The average ratio in terms of percent dose/gram wet weight was 2.6 for ¹⁸F, 2.1 for ⁸⁵Sr and 1.7 for ⁴⁷Ca.

DISCUSSION

The deposition of bone tracer nuclides is generally thought to be the result of cellular activity causing the deposition of mineral in bone formation and exchange, both rapid ion exchange in and/or on the crystal surfaces and slow incorporation of ions within the crystal by intracrystalline ion exchange (31,32).

The mechanism of deposition varies with the element used as a tracer. For example, ¹⁸F is injected in the chemical form of NaF and is available for exchange as a monovalent anion. Exchange deposition in bone of this anion is considered to be a heteroionic exchange for hydroxyl groups and perhaps for other anions in the surfaces of the mineral phase. Fluoride can also be incorporated in the hydroxyapatite crystals of bone mineral as they are being laid down and can exchange with hydroxyl ions within crystals previously formed. These mechanisms, while important in long-term biological processes, are too slow to be demonstrated with an isotope with the short 110-min half-life of ¹⁸F. ⁴⁷Ca, ⁸⁵Sr and ^{87m}Sr are injected as CaCl₂, SrCl₂ or Sr $(NO_3)_2$. Each is available for exchange as a divalent cation for Ca²⁺ ions in bone crystal and for primary incorporation into new crystals. The possible ion interactions for these elements are discussed in detail in Ref. 32. 68Ga is administered as gallium citrate with added stable carrier. The mechanism of apatite crystal interaction with gallium has not been fully investigated. The availability for exchange on bone surfaces of either trivalent ⁶⁸Ga ions or the ⁶⁸Ga citrate complex apparently depends, however, on competition with binding sites on serum proteins (33). At a dose of 2 mg/kg body weight of carrier gallium, the number of stable gallium atoms far exceeds the number of ⁶⁸Ga atoms. More ⁶⁸Ga is thus made available for bone and other tissues by the administration of stable carrier gallium.

The deposition of the different nuclides used in tracer work in bone is not necessarily affected in the same way by hormones known to affect bone metabolism. For example, Rodan (34) investigated ¹⁸F and ⁴⁷Ca deposition in the rat skeleton after the administration of pharmacologic doses of cortisone, estrogen, testosterone, vitamin D and parathyroid hormone. The rates of deposition of both nuclides were observed to be altered qualitatively in the same way by each agent. Quantitatively, however, more marked changes in uptake following hormone treatment were observed in the animals receiving ¹⁸F.

These and other variations in the *in vivo* handling of different tracers such as different renal resorption rates may explain the observations made in this study. The data obtained from this investigation illustrate some baseline criteria which may be used to select the appropriate scanning agent for *in vivo* studies of bone.

In general, the "uptake" of ⁴⁷Ca, ⁸⁵Sr, ^{87m}Sr and ¹⁸F during the first 5 hr after injection is sufficiently large to make each useful as a bone tracer in diagnosis (Tables 3, 4, 6). The reduced radiation dose to the patient from the short-lived nuclides, however, makes their use advisable when possible. The suggested microcurie doses in Table 1 gives better

SOFT TISSUE ACTIVITY CONTENT*							
Ratio	Nuclide	Num- ber of rats	Mini- mum ratio	Maxi mum ratio	Aver- age ratio		
	¹⁸ F	5	800	13,350	4,800		
Normal Right	47Ca	5	50	120	90		
Tibia/	⁸⁶ Sr	5	60	180	130		
Muscle	⁶⁶ Ga(l)	3	40	60	50		
	⁶⁸ Ga(II)	2	10	20	15		
	¹⁸ F	5	490	5,130			
Normal Right	47Ca	5	55	180			
Tibia/Soft	**Sr	5	70	230	-		
Tissue	⁶⁶ Ga(l)	3	3	50			
	⁶⁶ Ga(II)	2	2	10	-		

*Ga(I): Hayes (21) preparation of **Ga-citrate with stable carrier gallium, using 2.7–3.2 mg stable Ga carrier/kg rat.

⁶⁶Ga(II): "Carrier free" preparation.

Soft tissues included: Thigh muscle, kidney, pancreas, lung, spleen, heart, liver, testes, whole blood and fat.

* Calculated from determinations of percent administered dose per gram. Activity of specimens was measured by well counting. (20 rats studied, 2–4 months old, 125–365 gm, 5 hr sacrifice.) counting statistics for both ¹⁸F and for ^{87m}Sr compared with ⁴⁷Ca and ⁸⁵Sr during the first 5 hr after injection. The improved statistics gained with ¹⁸F have even more significance because of the more rapid clearance of this material from blood and soft tissues. Greater counting rates are available in conjunction with an improved target-to-background ratio. A similar improvement in counting rates is seen with ^{87m}Sr; however, this is due only to its favorable decay scheme which permits a larger dose to be administered than is the case for ⁸⁵Sr. The ratio of bone to blood and soft tissues, or the target-to-background ratio duplicates that of ⁸⁵Sr.

One disadvantage of ¹⁸F, however, should not be disregarded. The high urine activity of ¹⁸F, which frequently accumulates rapidly in the bladder, can confuse scan interpretation in the area of the lower vertebrae and pelvis. Having the patient void prior to scan reduces the possibility of a false positive reading. Should abnormal uptake be seen in this area, repeating the same procedure is helpful.

Specificity of ¹⁸F to areas of lesion-involved bone during the first 5 hr following injection was observed by external scanning to be similar to ⁴⁷Ca in terms of relative percent retained dose. ⁸⁵Sr and ^{87m}Sr showed less specificity for these areas. Taken with respect to normal bone uptake of each tracer as measured by external point counting (Table 3) ¹⁸F provides the greatest contrast between the lesion involved and normal bone.

For ¹⁸F the optimum time for scanning (the time period over which maximum contrast was seen between lesion-involved and normal contralateral bone) was between 3 and 5 hr (Table 5). Even at 5 hr the counting rates for ¹⁸F are adequate for satisfactory scanning (Table 6).

The choice of the optimum time of scanning and the preference for ¹⁸F over ^{87m}Sr in the present study is not in agreement with recent results obtained by Spencer *et al* (15). It is suggested that in the quantitative measurements in this study of *in vivo* distribution, serum disappearance rates and excretion rates as a function of time provided more adequate data for comparison of these different nuclides.

In the majority of patients ⁴⁷Ca and ⁸⁵Sr showed higher lesion-involved-to-normal bone ratios at 5 days than did ¹⁸F at 5 hr. These nuclides are therefor useful when short-term scan results with ¹⁸F are equivocal. Also these nuclides will still be required for studies of calcium kinetics (35).

The decay-mode characteristics of ⁶⁸Ga are favorable for the short-term study. However, the necessity for preparation of the citrate with added carrier, the relatively unexplored problem of the toxicity of gallium in amounts as great as those added as carrier and the higher soft-tissue concentration seen in our animal studies have indicated that use of 68 Ga in its current form has no advantage over 18 F. The bone-to-tissue ratios in this study agree with data found in the extensive investigation by Hayes *et al* (21, 36) in which a wide range of stable gallium carrier was added to the preparation that was injected. The addition of 0–10 mg gallium carrier per kilogram body weight to 68 Ga-citrate with sacrifice after 2 hr and 5 mg/kg with sacrifice after 0–18 hr (using 72 Ga) by these investigators gave bone-tosoft-tissue and blood ratios which were less than were observed in this study with 18 F when sacrifice was at 5 hr.

The uptake data obtained for various regions of rat tibiae when sacrifice occurred at 5 hr generally showed that ¹⁸F gives the greatest differential compared with the healing fracture site and contralateral normal site (Fig. 1). In contrast to the lesion-to-normal bone ratios in the studies in patients, both ⁴⁷Ca and ⁸⁵Sr showed smaller ratios for the comparison of regenerating or healing fractured bone to normal bone than did ¹⁸F.

CONCLUSION

Quantitative comparisons of the kinetics of ⁴⁷Ca, ¹⁸F, ⁸⁵Sr and ^{87m}Sr were made in humans. In addition to these nuclides, the uptake of ⁶⁸Ga in rat bone has been studied. The results of studies both in patients and in animals indicate that ¹⁸F is the most suitable of the three short-lived nuclides for bone scanning. This is so despite the fact that greater precautions are needed to avoid confusion due to high radioactivity in the urine. Results with ⁶⁸Ga show poorer localization characteristics for applications in bone scanning.

In contrast to the other nuclides investigated, ¹⁸F:

1. has the highest lesion-to-normal bone differential between 3 and 5 hr after injection,

2. shows the most rapid plasma clearance and the greatest short-term excretion, giving better scans of the skeleton,

3. gives low radiation dose to the patient while providing good counting-rate statistics,

4. localizes rapidly at bony sites,

5. decays rapidly to permit sequential studies and 6. decays by positron emission and thus provides unique physical detection characteristics.

ACKNOWLEDGMENT

This work was supported in part by Atomic Energy Commission Research Contract AT(30-1)-910 and NCI Grants CA-08748 and CA-07303.

REFERENCES

I. LAUGHLIN, J. S., BEATTIE, J. W., COREY, K. R., ISAACSON, A. AND KENNY, P.: Total body scanner for high energy gamma-rays. *Radiology* 74:108, 1960.

2. LAUGHLIN, J. S., WEBER, D. A., KENNY, P. J., COREY, K. R. AND GREENBERG, E.: Total body scanning. Brit. J. Radiol. 37:287, 1964.

3. BENUA, R. S., WEBER, D. A., KENNY, P. J. AND LAUGHLIN, J. S.: Digital scanning compared with photoscanning in liver examination. J. Nucl. Med. 9:135, 1968.

4. GREENBERG, E., PAZIANOS, A., COREY, K. R., KENNY, P. J., LAUGHLIN, J. S. AND PEARSON, O. H.: Radioactive calcium (Ca-47) tracer studies in patients with bone lesions, *Proc. Conf. Res. Radiotherapy Cancer*, American Cancer Society, New York, 1961, p. 158.

5. COREY, K. R., KENNY, P. J., GREENBERG, E. AND LAUGHLIN, J. S.: Detection of bone metastases in scanning studies with Ca-47 and Sr-85, J. Nucl. Med. 3:454, 1962.

6. GREENBERG, E., ROTHSCHILD, E. O., DEPALO, A. AND LAUGHLIN, J. S.: Bone scanning for metastatic cancer with radioactive isotopes, *Med. Clinics N. Am.* 50:701, 1966.

7. BAUER, G. C. H. AND WENDEBERG, B.: External counting of Ca^{47} and Sr^{55} in studies of localized skeletal lesions in man. J. Bone Joint Surg. 4, 1-B:558, 1959.

8. GYNNING, I., LANGELAND, P., LINDBERG, S. AND WALDESROG, B.: Localization with Sr-85 of spinal metastases in mammary cancer and changes in uptake after hormone and roentgen therapy. A Prelim. Report. Acta. Radiol. 55:119, 1961.

9. SKLAROFF, D. M. AND CHARKES, N. D.: Studies of metastatic bone lesions with strontium-85. *Radiology* 80: 270, 1963.

10. GREENBERG, E., WEBER, D. A., KENNY, P. J., POCHACZEVSKY, R., MYERS, W. P. L. AND LAUGHLIN, J. S.: Detection of neoplastic bone lesions by quantitative scanning and radiography. J. Nucl. Med. 9:613, 1968.

11. BLAU, M., NAGLER, W. AND BENDER, M. A.: F-18: a new isotope for bone scanning. J. Nucl. Med., 3:332, 1962.

12. Progress Report to U.S. Atomic Energy Commission from Sloan-Kettering Institute: Metabolic Studies in Cancer with Radioactive Isotopes, Section B.3, August 1966.

13. VAN DYKE, D., ANGER, H. O., YANO, Y. AND BOZ-ZINI, C.: Bone blood flow shown with F-18 and the positron camera. Am. J. Physiol. **209**:65, 1965.

14. FRENCH, R. J. AND MCCREADY, V. R.: The use of ¹⁸F for bone scanning. *Brit. J. Radiol.* 40:655, 1967.

15. SPENCER, R., HERBERT, R., RISK, M. W. AND LITTLE, W. A.: Bone scanning with ^{#S}Sr, ⁸⁷^mSr, and ¹⁸F. Brit. J. Radiol. 40:641, 1967.

16. MYERS, W. G.: Radiostrontium-87m. J. Nucl. Med. 1:125, 1960.

17. MYERS, W. G. AND OLEJAR, M.: Radiostrontium-87m in studies of healing bone fractures. J. Nucl. Med. 4:202, 1963.

18. CHARKES, N. D., SKLAROFF, D. M. AND BIERLY, J.: Detection of metastatic cancer to bone by scintiscanning with strontium-87m. Am. J. Roentgenol. Radium Therapy Nucl. Med. 91:1,121, 1964.

19. MECKELNBURG, R. L.: Clinical value of generator produced 87m strontium, J. Nucl. Med., 5:929, 1964.

20. HAYES, R. L., CARLTON, J. E. AND BYRD, B. L.: Bone scanning with gallium-68: a carrier effect. J. Nucl. Med. 6:605, 1965.

21. HAYES, R. L.: Radioisotopes of gallium, in Radioactive Pharmaceuticals. CONF-651111, 1966, p. 603.

22. THOMAS, C. C., JR., SONDEL, J. A. AND KERNS, R. C.: Production of carrier-free fluorine-18. Intern. J. Appl. Radiation Isotopes 16:71, 1965.

23. CLARK, J. C. AND SILVESTER, D. J.: A cyclotron method for the production of fluorine-18. Intern. J. Appl. Radiation Isotopes 17:151, 1966.

24. GLEASON, G. I.: A positron cow. Intern. J. Appl. Radiation Isotopes, 8:90, 1960.

25. GREENE, M. W. AND TUCKER, W. G.: An improved gallium-68 cow. Intern. J. Appl. Radiation Isotopes, 12:62, 1961.

26. ALLEN, J. F. AND PINAJIAN, J. J.: A Sr-87m generator for medical applications. Intern. J. Appl. Radiation Isotopes 16:319, 1965.

27. BRUCER, M., et al.: A study of gallium. Radiology 61:523, 1953.

28. KENNY, P. J., LAUGHLIN, J. S., WEBER, D. A., COREY, K. R. AND GREENBERG, E.: High energy gamma ray scanner, in *Progress in Medical Radioisotope Scanning* U.S. A.E.C., TID-7673, 1963, p. 236.

29. BAUER, G. C. H.: **Sr, and *'Ca in the study of bone, in *Radioisotopes and Bone*, F. A. Davis Company, Philadelphia, 1962, p. 95.

30. WOODARD, H. Q.: The influence of x-rays on the healing of fractures. *Health Physics* 13:935, 1967.

31. MCLEAN, F. C. AND URIST, M. R.: Bone, Univ. of Chicago Press, Chicago, 1961.

32. NEWMAN, W. F. AND NEWMAN, M. W.: The Chemical Dynamics of Bone Mineral. Univ. of Chicago Press, Chicago, 1958.

33. HARTMAN, R. E. AND HAYES, R. L.: Binding of Gallium by Blood Serum. Research Report—Medical Division, ORAU 101, 1966, pp. 84–86.

34. RODAN, G. A.: The Weizmann Institute of Science, Personal communication.

35. HEANEY, R. P.: Evaluation and interpretation of calcium kinetics in man. Clin. Ortho. 31:153, 1964.

36. HAYES, R. L., BYRD, B. L. AND CARLTON, J. E.: Basic studies of gallium distribution, ORINS 53, 1965, p. 64.