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Despite improvements in neuroblastoma treatment, survival figures
lag behind those of many other childhood malignancies. New treat-
ments, and better use of existing treatments, are essential to reduce
mortality. Neuroblastoma expresses several molecular targets for
radionuclide imaging and therapy, of which the most widely exploited
is the norepinephrine transporter. [123I]metaiodobenzylguanidine (MIBG)
imaging and [131I]MIBG treatment, which target this physiologic path-
way, have been in clinical practice for 40 y. Although therapy outcomes
have been favorable, [131I]MIBG use has not yet been optimized.
Somatostatin receptors and the disialoganglioside are alternative tar-
gets, but their use remains experimental. The charity Children’s Cancer
Research Fund organized a workshop bringing together a broad
range of scientists including radiochemists, radiobiologists, radiation
physicists, clinical researchers including pediatric oncologists and
nuclear medicine physicians, and patient advocates from the United
Kingdom, United States, and continental Europe to share their
experiences with molecular imaging and radiotherapy of neuroblas-
toma and discuss potential ways of improving treatment outcomes
and access. These include development of alternative vectors target-
ing somatostatin receptors and disialoganglioside, isotopes such as
a-particle and Auger electron emitters with different radiation charac-
teristics, and combinations with external-beam radiotherapy, immu-
notherapy, and DNA damage repair inhibitors. Barriers to progress
discussed included the unpredictable radioisotope supply, produc-
tion of novel radiopharmaceuticals, lack of data regarding which
are the best combination therapies, and insufficient clinical facilities.
The aim was to stimulate the development and assessment of more
effective treatments.
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Approximately half the children with neuroblastoma have
high-risk disease (1). Despite therapeutic advances, survival is poor
(2). Neuroblastoma is characterized by biochemical pathways and
cell membrane molecules not found in most normal tissues (3),
providing opportunities for nuclear medicine imaging and molecu-
lar radiotherapy (MRT).
[123I]metaiodobenzylguanidine (MIBG) is the gold standard for

imaging neuroblastoma, and semiquantitative scoring systems are of
prognostic value (4). Labeled with a b-emitting isotope, [131I]MIBG
MRT is used to treat neuroblastoma (5). Despite 40 y of clinical
experience, [131I]MIBG therapy is not yet regarded as a standard
first-line treatment. Various strategies have been explored to try
and improve outcomes. Use of vectors aimed at other molecular
targets, or radionuclides emitting radiation with different characteris-
tics, may also be advantageous (6). Progress in imaging technology
combined with innovative radiotracers may allow for improved dis-
ease assessment (7,8).

MATERIALS AND METHODS

The charity Children’s Cancer Research Fund (https://www.
childrenscancerresearchfund.co.uk/) convened a symposium in Manches-
ter, U.K., in September 2024. Twenty-one invited speakers included
pediatric oncologists (5); cellular, radiation, and molecular biologists
(4); nuclear medicine physicians (3); radiochemists (3); radiation (clini-
cal) oncologists (2); a pediatric surgeon; a nuclear medicine physicist; a
therapeutic radiographer; and a parent of a child with neuroblastoma
who had received MRT for neuroblastoma (speaker list in supplemental
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materials, available at http://jnm.snmjournals.org). In addition, there was
an invited audience of 20 people including clinicians, scientists, and par-
ents mirroring the mix of speakers. In addition to questions and debate
after each presentation, informal networking continued in the breaks, with
the aim of creating new research proposals and collaborations.

RESULTS

Imaging and Therapy Targeting the Norepinephrine Transporter
The physiologic pathway that has been most exploited is the

norepinephrine transporter, expressed in over 90% of neuroblas-
toma patients, which can be targeted using MIBG.
[123I]MIBG planar scintigraphy and SPECT/CT is the standard

imaging technique for neuroblastoma, including selection of patients
for [131I]MIBG therapy (9). This 2-d procedure is a 45-min scan
requiring general anesthesia in younger patients performed 24 h
after radiopharmaceutical injection. Thyroid blockade is coadminis-
tered to reduce uptake of free iodide by the thyroid gland (10).
PET/CT with [18F]FDG is recommended when the tumor is
[123I]MIBG-negative (11). However, it is a metabolic tracer not
conducive to theranostics.
PET/CT with [18F]metafluorobenzylguanidine is a single-day

procedure with scanning an hour after injection; resolution is much
greater, identifying more lesions, and thyroid blockade is not required
(12). The short half-life of 18F (110 min) may require national pro-
duction of the tracer [18F]metafluorobenzylguanidine because of the
potential time taken for international supply lines.
The positron emitter 124I is an alternative to 123I, and [124I]MIBG

can be visualized on PET/CT. The longer half-life (4.2 d) allows
sequential scanning over days, and measurement of retention in tis-
sues over time enables prediction of tumor and normal-organ radia-
tion doses that would follow [131I]MIBG therapy (13).
The introduction of long-axis-field-of-view (total-body) PET/CT

technology with exquisite sensitivity and spatiotemporal resolution
expands the technologic constraints on the 3-way trade-off between
image quality, scan duration, and radiation dose reduction. This may
reduce scan time so that general anesthesia may be unnecessary (14).
There have been several clinical trials of [131I]MIBG therapy over

4 decades; mostly early-phase studies on refractory or relapsed high-
risk neuroblastoma. The main exception is the Children’s Oncology
Group phase III randomized trial ANBL1531 (NCT03126916), a
comparison of the addition of [131I]MIBG therapy to standard induc-
tion therapy. Recruitment is complete; results are not yet available.
Recent clinical trials of MRT are detailed in Table 1.
A review of [131I]MIBG therapy reported response rates varying

from 0% to 75% (mean, 32%). This wide range was due to a highly
variable case mix, highly variable administration schedules, and no
use of standardized response criteria (5). Another review concluded
that [131I]MIBG therapy can be an effective treatment to reduce
tumor burden in about one third of patients (15).
Administration of [131I]MIBG therapy to children faces various

logistic challenges. These include irregularities in radiopharmaceutical

supply, the need for specialized inpatient facilities in a pediatric envi-
ronment, provision for accommodation and training in radiation pro-
tection for adult carers, regular staff training, a prolonged admission
for radiation protection, radioactive waste storage and disposal, and
the requirement for multiple-time-point scanning, often under gen-
eral anesthesia, for dosimetry. In addition, medical complications
require more complicated management when the patient is highly
radioactive. Nausea and vomiting are usually prevented with pro-
phylactic antiemetics. Myelosuppression is common, requiring regular
blood tests while the child is radioactive, necessitating special han-
dling in the laboratory, and may indicate the need for blood and plate-
let transfusions. For whole-body radiation doses exceeding 2 Gy,
hematopoietic stem cell transfusion is usually required.

Administered Activity, Whole-Body Dosimetry, and
Tumor Dosimetry
There are different administration schedules in use for MRT.

For instance, a fixed administered activity may be used, regardless
of the size of the patient. In some studies, the administered activity
is adjusted by weight.
However, the amount of radioactivity administered, even if weight-

adjusted, does not result in a uniform radiation dose to the whole
body (16). This lack of uniformity is because of differing kinetics
between patients, due to a heterogeneous burden of disease, and vary-
ing avidity of and retention by neuroblastoma cells for the radiophar-
maceutical, which may change even within the same course of
treatment (17). It may be helpful to standardize whole-body dose, as
this is a proxy for toxicity (18). Standardization can be achieved by
initially administering a weight-based activity, measuring the resulting
whole-body radiation dose received, and administering a second activ-
ity calculated to raise the total whole-body dose from the 2 adminis-
trations combined to a desired level (19). This method has been used
in several clinical trials, including MINIVAN (NCT02914405),
with a prescribed whole-body dose of 2 Gy to avoid the need for
stem cell support, and MIITOP (NCT00960739) and VERITAS
(NCT03165292), with a prescribed whole-body dose of 4 Gy (20).
It is not known if this split administration strategy achieves more
favorable outcomes. Even when the whole-body dose is standardized,
the tumor dose may vary by an order of magnitude (21). This varia-
tion matters, as response relates to tumor dose received (22). Accurate
tumor dosimetry is therefore highly desirable, despite the additional
practical difficulties inherent in younger children such as the need for
serial imaging under general anesthesia.

Alternative Targets for Molecular Imaging and Radiotherapy
in Neuroblastoma
Alternative molecular targets in neuroblastoma can be imaged

(Fig. 1). The somatostatin receptor, particularly subtype 2, is fre-
quently expressed (23). [68Ga]Ga-DOTATATE or DOTATOC PET
CT is used to show and quantify the distribution of somatostatin
receptors on neuroblastoma (24). Interestingly, sometimes disparate
distributions from [123I]MIBG scans are apparent, indicating the phe-
notypic heterogeneity of different neuroblastoma deposits (25).
Demonstration of somatostatin receptor avidity on [68Ga]Ga-

DOTATATE PET scans allows treatment with the radiolabeled
somatostatin analog [177Lu]Lu-DOTATATE (26). An initial clinical
trial showed limited antitumor activity, though several newer trials
evaluating [177Lu]Lu-DOTATATE for neuroblastoma are in progress:
LuDO-N (NCT04903899) and NEUROBLU-2 (NCT03966651). At
present, [177Lu]Lu-DOTATATE MRT for neuroblastoma is experi-
mental and should be used only in clinical trials.

NOTEWORTHY

� Several theranostic pairs are available to image and treat
neuroblastoma.

� Various clinical trials are under way to evaluate novel MRT
agents and combinations.

� Further research is required to optimize treatments.
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Neuroblastoma cells also highly express disialoganglioside GD2,
which is a well-established immunotherapy target with monoclonal
antibodies including dinutuximab, dinutuximab b, and naxitamab
(hu3F8) (27). Anti-GD2 antibodies have been radiolabeled for therag-
nostic applications. Radioimmunotherapy using [131I]3F8 was initially
explored in neuroblastoma patients but with dose-limiting myelotoxi-
city (28). More recently, [131I]dinutuximab was evaluated (29).
In addition to MRT, clinical PET/MRI of GD2 expression of neu-
roblastoma lesions using [64Cu]Cu-dinutuximab b has recently
been reported (30,31) and may allow stratification of anti-GD2
therapies based on tumor lesion GD2 expression in patients.
Finally, neuroblastomas also commonly express B7 homolog 3,

which is a cell surface immunoregulatory glycoprotein. A radiola-
beled antibody 8H9 ([131I]omburtamab) has been evaluated, mainly
in children with central nervous system relapsed neuroblastoma
(NCT03275402) (32).

Radiation Sensitizers
The coadministration of various drugs alongside MRT has been

shown in preclinical studies and sometimes clinical studies to
enhance its cytotoxicity. This occurs via increasing the amount of
DNA damage, inhibiting repair of DNA damage, or redistributing
cells into radiation-sensitive phases of the cell cycle. Examples
include the camptothecin-derived topoisomerase I inhibitors topote-
can and irinotecan (33), which both increase DNA damage and
inhibit repair (34). There is preclinical evidence of synergy with
[131I]MIBG therapy (35). Combinations of [131I]MIBG therapy
with topotecan or irinotecan have been explored in clinical trials
(20,36). Preclinical research has shown that the histone deacetylase
inhibitor vorinostat increases expression of functional norepinephrine
transporter and decreases expression of DNA damage repair proteins
in neuroblastoma (37,38). The MIITOP study of [131I]MIBG therapy
with topotecan reported an objective response rate of 13%, but there
was no comparator arm (20). The NANT 2011-01 trial reported
objective response rates of 14% for both the [131I]MIBG-alone arm

and the [131I]MIBG-with-vincristine-and-iri-
notecan arm and 32% for the [131I]MIBG-
with-vorinostat arm (36).
Poly(adenosine diphosphate ribose)po-

lymerase inhibitors, such as olaparib and
talazoparib, also potentiate cytotoxicity in
experimental models (39,40). They may
have increased benefit in neuroblastoma
patients with homologous recombination
repair pathway alterations, such as ATRX
mutations (41) or germline BARD1 variants
(42). Others have shown that increased
levels of oncogene-induced replication stress
(e.g., MYCN amplification (43)) also result
in preclinical sensitivity to poly(adenosine
diphosphate ribose)polymerase inhibitors.
The use of olaparib with [131I]MIBG ther-
apy and subsequent maintenance talazoparib
has been reported (44). A clinical trial of
[131I]MIBG therapy with talazoparib is in
preparation.
For optimal outcomes, DNA repair inhi-

bitors are desirable, as they sensitize—to
radiation damage—tumor cells differently
from normal tissue. Otherwise, the effect
is simply equivalent to dose escalation with

no change in the therapeutic index. In addition to poly(adenosine
diphosphate ribose)polymerase inhibitors, polymerase u inhibitors are
in this category and offer a novel prospect of synergy with MRT
but have yet to be investigated for neuroblastoma (45,46).

Combinations with Immunotherapy
There is preclinical evidence of a complex interplay between

radiation effects and response to immunotherapy (47). Empiric
support for the concept that MRT potentiates immunotherapy
can be found in the significantly superior outcomes of patients
with relapsed neuroblastoma who received [131I]MIBG therapy
before allogeneic bone marrow transplantation and dinutuximab
b-immunotherapy, compared with those treated with allogeneic
transplantation and immunotherapy only (48). One current trial,
MINIVAN (NCT02914405), is evaluating treatment of patients
with [131I]MIBG therapy before double immunotherapy with
dinutuximab b and the anti–programmed cell death protein 1
monoclonal antibody nivolumab. Another trial (NCT03332667)
evaluated [131I]MIBG with dinutuximab with and without vorino-
stat. Results of both trials are awaited.

Combining External-Beam and Molecular Radiotherapy
External-beam radiotherapy to the primary tumor site is part of stan-

dard treatment for high-risk neuroblastoma. However, as most patients
have disseminated disease, there is a rationale for combining external-
beam radiotherapy with MRT, which simultaneously targets metastatic
deposits. An important benefit of this combination is that external-
beam radiotherapy and MRT have nonoverlapping toxicity profiles.
This means that it may not be necessary to compromise on the admin-
istered dose of either component. Sequencing of the 2 treatments is
likely to be important. For example, preclinical research suggests that
external irradiation of a tumor alters blood vessel permeability, which
in turn may enhance tumor uptake of subsequently delivered
MRT (49). Conversely, however, external radiation may provoke
intratumoral inflammation, fibrosis, or an increase in the hyp-
oxic fraction among surviving cells, leading to impaired tumor

FIGURE 1. Imaging and therapeutic radiopharmaceuticals for treating neuroblastoma and their
molecular targets. (A) Norepinephrine transporter targeted by radioiodinated and radiofluorinated
metabenzylguanidine analogs. (B) Somatostatin receptor 2 can be targeted by radiolabeled peptides
DOTATOC and DOTATATE for PET imaging and therapy. (C) GD2 has been targeted using variety of
radiolabeled antibodies, 3F8, dinutuximab (ch14.18), and dinutuximab b (ch14.18/CHO), as well as
using self-assembling and disassembling bispecific antibody for 2-step pretargeted radioimmunother-
apy. (D) Finally, B7-H3 has been targeted with radioiodinated antibody, omburtamab. B7-H3 5 B7
homolog 3; GD2 5 disialoganglioside; NET 5 norepinephrine transporter; SADA 5 self-assembling
and disassembling; SSTR2 5 somatostatin receptor 2. (Created in BioRender; https://BioRender.
com/j40j096.)
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uptake or reduced radiotoxicity of subsequently administered
MRT. Although there is currently a dearth of research into the opti-
mization of external-beam radiotherapy and MRT combinations in
neuroblastoma, preclinical research in other tumor types has shown
that maximum benefit is usually achieved when the 2 treatments
are given synchronously rather than sequentially (50).
A computational system that allows absorbed radiation dose

from both sources to be summed, and that considers the different
radiobiologic effects of both treatments, is needed to safely pro-
gress this therapeutic strategy (51).

Alternative Radionuclides
Most MRT to date has involved b-emitting radionuclides such

as 131I and 177Lu. Their physical and radiobiologic properties are
well understood, and they are clearly effective. However alterna-
tive radionuclides that emit a-particles or Auger electrons may
have advantages in certain situations.
a-particles, emitted by radionuclides including 223Ra, 211At,

212Pb, and 225Ac, offer at least 2 potential advantages over
b-emitters. First, they cause many more ionization events along
their pathlength. This higher-linear-energy transfer causes greater
DNA damage with more double-strand breaks and a lower chance
of repair. Consequently, cells are more likely to be killed. Second,
because their pathlength is much shorter than that of b-particles
(simply a few cell diameters), a greater proportion of the energy
released is located within smaller micrometastases than is the case
with, for example, 131I. Although an analog of MIBG labeled with
211At, metaastatobenzylguanidine, was first considered for use in
neuroblastoma over 30 y ago but not developed further, there has
recently been a resurgence of interest in its possible benefits (6).
The shorter pathlength of these a-particles may reduce hospital
time and the need for lead shielding compared with b-emitters.
Compared with a-emitters, Auger electrons emitted by radionu-

clides such as 125I, 201Tl, and 111In have even shorter pathlengths
but also have high-linear-energy transfer. If localized in the
nucleus of a cell—particularly if incorporated into DNA—or on
the cell membrane, they are highly toxic. Additionally, Auger
electrons may start a strong bystander response leading to cell
death (52). Although an interesting field of research, the use of
Auger-emitting radiopharmaceuticals has yet to find a place in the
MRT of neuroblastoma.

Radionuclide Supply and Radiopharmaceutical Availability
One of the biggest challenges facing the development of, and

treatment with, MRT for neuroblastoma is the availability of
radiopharmaceuticals. For example, [18F]metafluorobenzylguani-
dine and [124I]MIBG, mentioned above for imaging use, are not
commercially available. There are worldwide shortages of nuclear
reactors producing radioisotopes, and many existing reactors are
nearing the end of their lives, without replacements planned. Aca-
demic radiochemistry facilities lack the capacity for timely manu-
facture of all the radiopharmaceuticals that might be useful. Even
the commercial supply of recognized products such as [131I]MIBG
has been erratic and unreliable for clinical users, with very late
cancellation of orders to the detriment of patient care. This was a
major factor in the premature closure of the VERITAS clinical
trial previously mentioned. Despite the proven clinical value of
[131I]MIBG, the only supplier recognized by the U.K. Medicines
and Healthcare Products Regulatory Agency, GE HealthCare,
stopped supplying it across Europe at the end of 2024. One com-
mercial supplier remains in Europe; whether there is sufficient

production capacity for all users remains unclear. Previously, there
were 2 [131I]MIBG suppliers in North America. Production of a
no-carrier-added formulation has been discontinued by Lantheus,
and therefore only 1 supplier remains for all of North America.
Additional sources of production would ensure an ongoing, reliable
supply for this critical medication across both continents.
A multistakeholder group, Radionuclides for Health UK, has been

formed to raise awareness of these difficulties and to campaign for
resources for better radionuclide and radiopharmaceutical provision.
Its publication Radionuclide Supply in the UK: A Path to a Cancer
Breakthrough sets out a strategy to address this issue (53).

Patient and Public Involvement and Engagement
Children with neuroblastoma are the focus of our efforts to

improve treatment, and so it is crucial that we listen to the views
of their parents who advocate for them (54). Charities are central
to this and work with clinical trial groups both in the U.K. and
internationally. Patient advocates should be included in developing
research priorities and in the design and delivery of clinical trials.
In addition, advocates can play an important role in expanding
access to theranostics facilities such that more patients can be trea-
ted closer to home. As new facilities are developed, advocates can
lend the patient’s voice to the design of patient and family rooms
to maximize comfort during therapy.

Clinical Service Delivery
Hospitals that provide theranostics for children with neuroblas-

toma must be appropriately equipped and staffed, not simply to pro-
vide excellent technical imaging and therapy but also to provide
holistic family-centered care. Many families travel long distances
and are away from home for several weeks at a time. Just as every
child is different, so families are different, with varying levels of
support available. Adults are required to act as comforters and carers,
and their personal radiation exposure must be kept as low as reason-
ably achievable. They, as well as ward staff, need specific radiation
protection guidance and monitoring. Specialist staff, such as thera-
peutic radiographers, are essential to deliver high-quality service.

DISCUSSION

This symposium brought together an international group of over
40 individuals from a wide range of professional backgrounds,
and also patient advocates, all interested in further developing
theranostics for neuroblastoma. There were active discussions, and
new preliminary research ideas were generated, which will be con-
sidered further. Figure 2 illustrates the range of priorities that par-
ticipants identified.
Neuroblastoma is genetically and phenotypically diverse. This dis-

ease heterogeneity is important, and so individualization should be
considered when selecting the most appropriate therapy. One strength
of molecular imaging is to identify the better target for the individual
patient. The main conclusions were that efforts are needed both to
address logistic constraints and to promote further research in imag-
ing and treatment to optimize clinical outcomes. Clearly, increased
funding is important, as both aspects require significant investment.
Radiopharmaceutical production needs strengthening, especially

for orphan drugs that may be of great value for a small number of
patients but are not commercially profitable. Similarly, a greater aca-
demic radiopharmacy capacity is needed to prepare novel com-
pounds in a timely way for research. Additional clinical facilities for
treating young children would be advantageous, as currently there
are too few, resulting in geographic inequity of service provision.
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Research priorities include both preclinical endeavors to eval-
uate innovative ideas and an expanding portfolio of clinical
trials to assess different strategies to improve results including
radiosensitization, radiation and immunotherapy combinations, and
novel agents. These will establish evidence and guide sequencing
of therapies.
Given the multidisciplinary effort required to move the field for-

ward and to implement theragnostic advances, it is essential that
leading individuals from different specialties work together with
patient advocates to raise awareness of the potential of MRT and
lobby nationally and through international collaboration for better
resourcing.

CONCLUSION

Theranostics is an important area of research and clinical prac-
tice as part of the multimodality treatment of neuroblastoma. Inter-
national multidisciplinary collaboration is the key to advancing
understanding of the use of radiopharmaceuticals in the diagnosis
and treatment of this childhood cancer of unmet need.
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KEY POINTS

QUESTION: How can research and clinical practice in nuclear
medicine imaging and MRT for neuroblastoma be enhanced and
improved for patient benefit?

PERTINENT FINDINGS: Carefully focused multiprofessional and
multidisciplinary collaboration may determine clearer priorities for
research and clinical practice in neuroblastoma theranostics.

IMPLICATIONS FOR PATIENT CARE: Use of novel
radiopharmaceuticals in clinical trials, aligned with the use of
innovative technologies, may improve outcomes in this pediatric
cancer of unmet need.
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