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Researchers use dynamic PET imaging with target-selective tracer
molecules to probe molecular processes. Kinetic models have been
developed to describe these processes. The models are typically fit-
ted to the measured PET data with the assumption that the brain is in
a steady-state condition for the duration of the scan. The end results
are quantitative parameters that characterize the molecular pro-
cesses. The most common kinetic modeling endpoints are estimates
of volume of distribution or the binding potential of a tracer. If the
steady state is violated during the scanning period, the standard
kinetic models may not apply. To address this issue, time-variant
kinetic models have been developed for the characterization of
dynamic PET data acquired while significant changes (e.g., short-lived
neurotransmitter changes) are occurring in brain processes. These
models are intended to extract a transient signal from data. This work
in the PET field dates back at least to the 1990s. As interest has grown
in imaging nonsteady events, development and refinement of time-
variant models has accelerated. These newmodels, which we classify
as belonging to the first, second, or third generation according to their
innovation, have used the latest progress in mathematics, image pro-
cessing, artificial intelligence, and statistics to improve the sensitivity
and performance of the earliest practical time-variant models to detect
and describe nonsteady phenomena. This review provides a detailed
overview of the history of time-variant models in PET. It puts key
advancements in the field into historical and scientific context. The
sum total of the methods is an ongoing attempt to better understand
the nature and implications of neurotransmitter fluctuations and other
brief neurochemical phenomena.
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Researchers use PET imaging with target-selective tracer
molecules to probe brain physiology by calculating the strength or
weakness of critical molecular processes. Often, the goal is to
observe the brain’s steady state functioning (e.g., the concentration
of enzymes, receptors, or cells of a certain type). From a modeling
standpoint, the steady state is characterized by macroparameters
quantifying important characteristics of brain function that do not

change from minute to minute. The most common of these charac-
teristics includes the volume of distribution (VT) of a tracer molecule
(i.e., the carrying capacity of a tissue for that molecule [Table 1]
summarizes variables used in the text]) or the binding potential
(BP) of a tracer (i.e., the steady-state ratio of the density of a mole-
cule’s binding sites to its affinity for those sites). PET is often the
tool of choice for revealing the workings of the living brain as they
occur in the world. To conduct a PET experiment on a human sub-
ject, we require the subject to lie still in an unfamiliar, sterile envi-
ronment and be injected by a stranger with a radioactive material.
We do all this while assuming that the experiment itself does not
alter the state of the subject’s brain. Our assumption may be unreal-
istic. But technically, many such assumptions underlie any proper
measurement of the steady state of the brain. The act of observing
must not alter the observed.
In other circumstances, however, the purpose of the experiment

is expressly and intentionally to perturb the steady state—that is,
to alter the observed. In such circumstances, the experimental con-
ditions are selected specifically by the investigator to temporarily
increase or decrease an otherwise steady function. The intent may
be to alter the available number of specific binding sites. This could
be accomplished experimentally by stimulating or suppressing the
amount of neurotransmitter that binds to the site. It could be done
by changing the confirmation of the binding site or by altering its
steady level of trafficking from the cell interior to the cell surface.
Yet another type of experiment is one configured to abruptly alter
brain blood flow regionally. Short-acting drugs often change the
steady state of the system.
There are innumerable experiments in which studying the brain

in its disturbed steady state is valuable and informative. For exam-
ple, dopamine transmission is not static. A story is emerging from
preclinical and clinical research that temporal patterns of dopamine
transmission in response to a stimulus encode important information
that may be relevant for understanding drug addiction and treatment.
These patterns may differ by location. Volkow and Swanson (1)
linked temporal patterns of [11C]cocaine uptake—an indirect marker
of elevated synaptic dopamine—to temporal patterns of subjective
reports of feeling high and craving cocaine. Rapid elevation of dopa-
mine has thus come to be associated with a fast onset of a drug high
and drug craving (1). Work on this topic continues (2,3). On the
basis of microdialysis work in rats, it has been hypothesized that
the partial nicotinic agonist, varenicline (Chantix; Pfizer), reduces the
reinforcing properties of nicotine by eliminating sharp peaks in the
dopamine response to nicotine (4)—that is, by altering the temporal
pattern of dopamine release. Microdialysis and PET have been used
jointly to examine dopamine transmission in the cortex of monkeys,
leading to claims that dopamine transmission in response to a drug
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may be slow (and therapeutic) in the cortex but fast (and addictive)
in the striatum (5,6). These are just a few examples to motivate the
use of PET to study the nonsteady state of the brain.
Thus, we can think about 2 classes of experimental goals: to probe

the steady state unobtrusively, or to perturb it intentionally and mea-
sure its response. If the temporal pattern of dopamine release is of
interest, for example, the latter class of experiment is required and
demands that the design of the experiment and the mathematic treat-
ment of the data be approached differently from the more common
scenarios in which the steady state is to be probed.
For a bolus injection of a tracer in a steady state experiment, a

kinetic model containing static parameters may be all that is needed
to describe the resulting dynamic data. The parameters typically
describe rate constants governing the uptake and retention of the
tracer. They are assumed not to change—at least for the duration of
the measurement (i.e., the scan) period. When the system is at steady
state, the use of a model with static parameters, also known as a
time-invariant (parameter) model, is appropriate and sufficient.
On the other hand, for a bolus injection of a tracer in a non–

steady state experiment (i.e., one with an intentional perturbation
of the steady state), a time-invariant model may be inadequate to
describe the resulting dynamic PET data. In fact, the application
of a time-invariant model to data from a system not at steady state
could be folly. It could lead to grossly incorrect and misleading
interpretations of the data. Some possible misinterpretations of
dynamic raclopride data, acquired during a dopamine-altering per-
turbation but subjected to analysis by a time-invariant model (and
used to estimate change in BP), have been described by Yoder
et al. (7). The susceptibility to misinterpretation of common forms
of kinetic models used in PET has been cataloged and explained
by Sullivan et al. (8).
Faced with a non–steady state system, what is the diligent PET

modeler to do? Luckily, there has been sustained progress in the
development of time-varying kinetic models for the purpose of char-
acterizing dynamic PET data acquired while significant changes are
occurring in brain processes (Table 2 lists some important features of
the different time-variant models). In effect, these models are
intended, first, to describe the underlying biology of competition for
receptor binding sites between a radioligand and a neurotransmitter or
administered drug and, second, to detect and extract a transient signal
from the dynamic PET data arising from this competition (Fig. 1).
What is more, as awareness has grown of the need for yet better-
performing models and algorithms (better sensitivity, better robust-
ness to noise), the development, refinement, and even rethinking of

the earliest incarnations of the time-variant models have accelerated.
These new variations on an earlier theme have drawn on innovations
in mathematics, image processing, artificial intelligence, and statistics
to improve the performance of the earliest practical time-variant mod-
els introduced to describe non–steady state conditions.
This article reviews some of the history and noteworthy applica-

tions of early time-variant models and then describes and contrasts
more recent innovations and their theoretic underpinnings (Table 2).
We conclude with some discussion of a parallel development in
Bayesian statistics that could afford synergies with time-variant
models. Bayesian analysis methods offer the advantages of use
of prior information, as well as the important ability to assess the
posterior probability (i.e., confidence) of a given result, even at the
individual-subject level.

HISTORICAL PERSPECTIVE ON THE DEVELOPMENT OF
NONSTEADY MODELS IN PET

In the late 1980s and early 1990s, what were then called activa-
tion studies were exclusively the domain of PET and blood flow
tracers, most commonly [15O]water (9). These studies, involving
tasks (control/stimulus) performed repeatedly by a subject after
serial injections of the tracer, were technically difficult (the half-
life of [15O] is 2min). The desired signal was a local change in
blood flow. Such studies have now been almost entirely sup-
planted by blood oxygenation level–dependent functional MRI,
which can measure a surrogate of blood flow changes with much
greater spatial and temporal resolution. But PET studies of brain
activation are of historical interest because they indicate that the
PET imaging field, even as early as the 1980s, was concerned with
transient brain responses to external stimuli.
Coupled with an interest in brain activation was a rapidly

expanding library of receptor- and enzyme-specific PET tracers
that were being used primarily to measure the density of targets. A
prominent early target was the dopamine receptor (and its various
subtypes); another was the aromatic amino acid decarboxylase, a
critical enzyme in the synthesis of dopamine from L-3,4-dihydroxy-
phenylalanine. [11C]raclopride and [11C]-N-methylspiperone were
two of the earliest dopamine-receptor tracers in use. Aromatic amino
acid decarboxylase was successfully imaged with [18F]-6-L-3,4-
dihydroxyphenylalanine. In 1983, two watershed papers were pub-
lished within a week of each other. One (10) reported the first
dopamine receptor images in a living human brain, and the other (11)
revealed the first images of aromatic amino acid decarboxylase in
the same. An image from the latter was actually the cover image of
the issue of Nature in which it appeared. Some of the earliest work
to turn the images into quantitative assessments was done by Mintun
et al. (12), who introduced time-invariant kinetic models based on
mass balances to fit dynamic PET data. The group at Brookhaven (13)
also introduced some of the earliest time-invariant kinetic models
to quantify uptake and retention of 18F-labeled tracers for the dopa-
mine receptor—spiperone, benperidol, and haloperidol—all based
on neuroleptic drugs.
In a landmark study, Koepp et al. (14) demonstrated the feasi-

bility of using [11C]raclopride PET and a time-invariant model to
measure elevated dopamine levels in subjects playing a video
game (14). The investigators assumed their subjects could main-
tain an elevated but steady dopamine state for the duration of a
50-min PET activation scan and performed a groupwise compari-
son with control scans performed on the same subjects without the
rewarding stimulus. Under this assumption, BP is an appropriate

NOTEWORTHY

� If the available number of binding sites for a PET tracer
changes within the time frame of a PET scan, steady-state
models (with time-invariant parameters) may be inadequate to
describe time–activity curves derived from the PET data.

� There is a long history (at least 3 distinct generations) of kinetic
models that have been introduced in the PET-modeling field
that accommodate transient (time-varying) effects in dynamic
PET data.

� As models and methods continue to improve, the ability to
detect brief transient effects (the sensitivity) improves. With
these improvements, our ability to test yet more subtle hypoth-
eses about neurotransmitter action and other brief neurochem-
ical events improves.
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TABLE 1
Definitions of Variables and Terms

Term Unit Description

Bmax nM Receptor density

kon (1/nM)(1/min) Association rate constant*

koff 1/min Dissociation rate constant*

KD 5 koff/kon nM Equilibrium dissociation constant (1/affinity)

CT(t) nM Concentration of tracer in tissue

CP(t) nM Concentration of tracer in plasma

VT mL (plasma)/mL (tissue) Volume of distribution 5 CT/CP (at steady state)

BP 5 Bmax/KD Unitless Binding potential (also nondisplaceable BP†)

DBP Unitless Fractional changes in binding potential 5
(BPcondition 1 2 BPcondition 2)/BPcondition 1

K1 1/min‡ Influx rate constant from blood to tissue*

k2 1/min Efflux rate constant from tissue to blood*

k3 1/min Binding of ligand to receptor

k4 1/min Dissociation of ligand from receptor

R1 Unitless Relative influx (K1 tissue/K1 reference)

B(t) nM Concentration in bound compartment

F(t) nM Concentration in free compartment

g 1/min Magnitude of transient change in neurotransmitter level (21,42)

h(t) Unitless Activation profile (typically pure exponential or Gamma-variate)

T Min Take-off time of neurotransmitter response (21)

t 1/min Control rate at which activation effects are attenuated (21)

k2a(t) 5 k2a1 g 3 h(t) 1/min Apparent efflux rate constant accounting for time dependency

k2a 5 k2/(1 1 nondisplaceable BP) 1/min Apparent efflux rate constant given 1-compartment representation (21,42)

g/k2a Unitless Normalized magnitude of neurotransmitter change

Basal nM Neurotransmitter concentration at steady state

G nM Amplitude of fluctuation in neurotransmitter

(t 2 tD)
a 3 (exp (b(t 2 tD))) nM Temporal pattern of fluctuation in neurotransmitter

tD Min Take-off time of neurotransmitter response

tP Min Peak time of neurotransmitter response (42)

a Unitless Steepness and duration of function’s ascent after take-off (tD) of neurotransmitter
response (37,41) or sharpness of neurotransmitter response as defined by
Normandin et al. (42) (depends on Gamma-variate equation used)

b — Two meanings of b: rapidity with which Gamma-variate curve returns to
basal state (37,41) or regression weight in units of % signal change in
residual space detection equation (61)

RSD — Residual space detection

FPR — False-positive rate

peff — Effective number of parameters (it can be fractional number) applied to
statistical metrics with lp-ntPET model (54)

P(X|Y) — Conditional probability of outcome X given Y is true

Yobs — Observed PET data (typically time–activity-curve)

um — Vector of model parameters

P(Yobs|um) — Likelihood function, that is, probability of observed PET measurements Yobs

given model parameters um

P(Yobs) — Marginalized likelihood

P(um) — Prior probability of model parameters um

P(um|Yobs) — Posterior probability of model parameters um given PET measurements Yobs

*ref and DA added as superscript refer to reference tissue and dopamine, respectively.
†Refer to Innis et al. (74).
‡[mL (plasma)/mL (tissue)]/min.
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TABLE 2
Characteristics of Time-Varying Models

PET model or
implementation Description/innovation Assumptions Limitations Application

Extensions of 2-tissue-
compartment neuro-
transmitter model
(16,17)

First generation: shift in
perspective; explicit aim of
detecting dopamine
fluctuations

Transient dopamine
elevation modeled as
square wave

Is impractical because
of computationally
demanding nonlinear
estimation of many
parameters

LSRRM (21) First generation: extended
version of MRTM, a
linearization of simplified
reference tissue model;
accommodates non–steady
state conditions; includes
time-variant efflux, presumed
to be due to increased
competition by
neurotransmitter with tracer

Temporal pattern of
dopamine release
fixed in shape: pure
exponentials

Cannot represent the
dopamine function as
a fixed shape
function, h(t), if the
hypothesis is about
the shape of the
dopamine function

(25–33)

ntPET (37) First generation: description of
competition between
neurotransmitter and labeled
tracer; set of 3 explicit mass
balance equations coupled by
bimolecular binding term
made up of product of
instantaneous concentration
of available receptor sites
and free competitor

Use of reference
tissue

Is not linearizable
because of nonlinear
binding term; has 12
parameters, some of
which were not
identifiable; estimates
multiple possible
dopamine curves that
could fit each dataset
equally well

(38,41,42)

Nonparametric
ntPET (39)

Second generation:
nonparametric singular value
decomposition of PET time–
activity curves; data-based
method does not assume
shape of dopamine curve

Requires training set (40,43)

lp-ntPET (42) Second generation: linearized
version of ntPET model; same
operational equation as
Equation 1 (LSRRM) except
that h(t) is allowed to vary in
shape; multiple choices of h(t)
are represented as basis
functions

Library of basis
functions created
with discretized
parameters that span
realistic range

Possibly overfits noise;
has possible overly
conservative model
selection criteria

(42,47,48,50,52)

Denoising as
preprocessing (55)

Third generation: controls
FPR—feed-forward neural
network that was trained to
denoise PET time–activity
curves by predicting
noiseless time–activity curve

Requires training set

Corrected model
selection (54)

Third generation: controls
FPR—adaptive model
comparison metrics that
control FPR regardless of
number of basis functions
used

Requires simulation of
null data for every
application

(33,56,72)

Direct reconstruction
(57)

Third generation: controls
FPR—noise is well known
(Poisson) in sinogram
domain; consequence is
reduction of FPR

Assumes same kinetic
model at all locations

Machine learning (58) Third generation: controls
FPR—preselects voxels most
likely to contain activation

Requires training set

Monte Carlo
modeling/F-statistic
correction (59)

Third generation: improves
sensitivity—corrects F
distribution for errors
introduced by partial volume

Needs to simulate null
and activated data
for every application

(continued)
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outcome measure of receptor availability. But what if the assump-
tion is incorrect?
That any of these ligands—unlike [18F]-FDG—might be displace-

able by an endogenous ligand presented both a concern and an
opportunity. To address the concern, Logan et al. (15) introduced a
more elaborate compartmental model than in earlier papers. It
described the kinetics of both the tracer raclopride and the endoge-
nous competitor (dopamine). They did so to assess and minimize the
sensitivity of estimates of BP or VT to unintended fluctuations in
endogenous dopamine. Specifically, they showed that these para-
meters were underestimated in the presence of a hypothesized dopa-
mine perturbation and that the greater the amplitude or duration of
the perturbation, the greater the underestimation. Their underlying
goal, however, as demonstrated via simulations, was to show that
the sensitivity of estimated BP to dopamine fluctuations was low
and therefore manageable. By contrast, the group of Morris and
Fisher at Massachusetts General Hospital (16,17) introduced a com-
partmental model with the opposite concern. That is, they wanted to
explore and optimize a scanning protocol that would maximize the
sensitivity of the PET signal to dopamine fluctuations with the
explicit aim of detecting these endogenous indicators of brain activa-
tion. Their rather simple simulations (transient dopamine elevation
was modeled as a square wave) suggested that a short time delay in
the onset of a dopamine rise after a bolus tracer injection could max-
imize the dopamine effect on the measured PET data. This work
represented the start of an important shift in perspective—away from
steady state parameters (e.g., BP and VT) and toward perturbations
of the steady state and the parameters that characterize them. At
about the same time, the Hammersmith group was presenting a

modification of the 1-compartment model that included a time-
varying component of k2, the efflux constant, to detect a transient
response to an infusion of midazolam (18). This group chose a fixed
exponential to model the effect of displacement.
The sensitivity of steady state parameters to experimental condi-

tions (specifically, those that cause fluctuations in dopamine) was
further characterized mathematically by Endres and Carson (19).
Their primary finding was that the estimated change in VT (DVT)
of a tracer (caused by the change in an endogenous competitor)
can be formulated as a weighted average of the instantaneous VT

over the course of the scan. And, critically, the weighting function
depends on the instantaneous concentrations of both free tracer
and endogenous ligand in the tissue. Thus, anything that alters the
free tracer concentration or the endogenous ligand (e.g., dopa-
mine) even for a short time affects the estimate of DVT. So, timing
matters. A follow-up simulation study by Morris and Yoder (20)
leveraged the Endres and Carson (19) derivation of DVT in the
presence of a time-variant endogenous competitor to demonstrate
that the rate constant of dissociation of the tracer from the receptor
(which does not always follow the affinity) was the most important
characteristic in selecting the best tracer to maximize the detect-
ability of transient changes in endogenous ligand.

METHODS OF DETECTING DOPAMINE TRANSIENTS IN
DYNAMIC PET DATA

First-Generation Innovations
Once the limitations of conventional kinetic models with time-

invariant parameters were recognized, a series of extensions to the
standard 2-compartment model was proposed and developed (16,17).

TABLE 2
Characteristics of Time-Varying Models (cont.)

PET model or
implementation Description/innovation Assumptions Limitations Application

Personalized neural
nets (60)

Third generation: improves
sensitivity—differentiates
noisy time–activity curves
with and without effect of
dopamine release;
outperformed F-test in
identified real activations

Needs to simulate null
and activated data
for every application

Residual space
analysis (61)

Third generation: improves
sensitivity—converts time–
activity curves into residual
curves, defining canonic
baseline curve (no effect of
activation) and subtracting it
from each voxel time–activity
curve

Requires sufficient
nonactivated voxels
to serve as baseline

b-ntPET (64) Beyond third generation:
Bayesian method, uses
Markov chain Monte Carlo
sampling; produces posterior
distribution of model
parameters

Validity of prior
distributions

Requires analytic
expression of
likelihood function;
convergence is slow;
not easily extended
to voxels

(64)

PET-ABC (65,66) Beyond third generation:
simplifies Bayesian
computation; is extensible to
voxel level; produces
probability-of-activation maps
for individuals

Validity of prior
distributions

Generates approximate
posterior distribution

(56,66,67)
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Some extensions were computationally demanding (they required
nonlinear estimation of many parameters) and were thus impractical
for widespread use. The earliest practical solution to the presence
of transient effects in PET data was addressed by the introduction
of the linear simplified reference region model (LSRRM) by Alpert
et al. (21). In this review, we refer to LSRRM as a first-generation
nonsteady kinetic modeling innovation. In effect, it incorporates

nonsteady behavior into the time-variant dissociation rate constant
of a 1-compartment model. The model allows for the identification
of region- or voxel-level effects of neurotransmitter (specifically,
dopamine) release on tracer uptake and efflux immediately after a
drug or behavioral challenge. LSRRM derives its strength and
practicality from its simplicity. First, it is a reference region model.
The input function can be derived from the image data. Second, it
is an integral equation. Its parameters of interest can be estimated
via linear regression. It is useful for detecting neurotransmitter
release if the release begins at a known time, for example, after
administration of a fast-acting intravenous drug. But it achieves its
simplicity by assuming an instantaneous effect of a stimulus on
neurotransmitter concentration and a fixed rate constant for return
of neurotransmitter level to baseline. Thus, it may not be well
suited to characterize a slow response or one that occurs at an arbi-
trary time, for example, after a behavioral task or delayed reward.
In every experiment, one must keep in mind the end goal. If detec-
tion of an event is primary, then a biologically simplistic model
may yet be preferred over greater biologic accuracy, provided the
simple model is the most sensitive.
Strengths. LSRRM, introduced in 2003 (21), was derived as an

extension of the simplified reference tissue model (22,23). But
because LSRRM is formulated as an integral equation, it is conve-
nient to think of it as an extended version of the popular time-
invariant model, namely, the multilinear reference tissue model
(MRTM) (24). The simplified reference tissue model is based on a
1-compartment model. In turn, MRTM is a linearization of the
1-compartment model. It is routinely applied to data, via multi-
linear regression, to estimate the static parameter nondisplaceable
BP (the level of available receptors) assuming steady state condi-
tions. By contrast, LSRRM (Eq. 1) can accommodate non–steady
state conditions. LSRRM contains a term (at far right in Eq. 1)
that acts as a time-variant efflux, presumed due to increased com-
petition by dopamine (or other endogenous ligands) with the tracer
(e.g., [11C]raclopride) at the receptor site.

CTðtÞ5R1CRðtÞ1 k2

ðt
0
CRðuÞdu2 k2a

ðt
0
CTðuÞdu2g

ðt
0
CTðuÞhðuÞdu,

Eq. 1

where, hðtÞ5 0, t,T
e2tðt2 TÞ, t$T

� �
Eq. 2

is the dopamine curve over time, CT(t) is the tissue curve, and
CR(t) is the reference tissue curve. g is the magnitude of dopamine
response. CT(t) and CR(t) are derived from target and reference
regions, respectively, in the PET images. In the original publication
by Alpert et al. (21), LSRRM was used to fit PET time–activity
curves at the voxel level acquired during a planned motor task
(Fig. 1C).
LSRRM has subsequently been used by many to detect dopa-

mine activation in response to a behavioral task (25–32). Zakiniaeiz
et al. (33) used it recently to demonstrate that spatial patterns of
cigarette-induced dopamine activation during smoking are altered
by nicotine replacement therapy (i.e., the nicotine patch). Supple-
mental Figure 1 (supplemental materials are available at http://jnm.
snmjournals.org) shows images of the change (both positive and
negative) in the magnitude of dopamine release, g/k2a, derived
from the application of LSRRM at the voxel level to dynamic
[11C]raclopride PET images of smokers smoking in the scanner
under nicotine replacement therapy and placebo. The primary con-
cern of the investigators in the study was to identify spatial patterns

FIGURE 1. Schematic of transient dopamine release and effect on
dynamic PET curve. (A) Under steady-state conditions (left half of panel),
number of D2/D3 binding sites available for binding are approximately con-
stant. After external stimulus (right half of panel), neurotransmitter dopamine
is released from synaptic vesicles into synaptic cleft. (B) Rise in dopamine in
synapse (right half of panel) causes non–steady-state scenario, reflected by
transient change in dopamine signal and fewer available binding sites. (C)
Transient drop in available binding sites (right half of panel) causes deflec-
tion in PET time–activity curve from steady-state trajectory (dotted curve)
in regions of specific binding (open circles) but not in regions lacking
dopamine receptors, such as cerebellum (filled symbols). (A created using
BioRender.com; C reprinted with permission of (21).)

6 THE JOURNAL OF NUCLEAR MEDICINE � Vol. 00 � No. 00 � XXX 2024

http://jnm.snmjournals.org
http://jnm.snmjournals.org


rather than timing, that is, presence and
location of activation. Their findings were
made all the more interesting by the obser-
vation that the patterns of dopamine activa-
tion were related to known markers of
smoking treatment outcome, namely,
severity of dependence, Fagerstrom test for
cigarette dependence, and nicotine-to-
metabolism ratio. The subtle differences in
dopamine release under placebo and patch
are unlikely to have been observed using
conventional time-invariant models. But
what other support can we find for the use
of g over change in BP as an endpoint for
detecting dopamine change?
A beautiful demonstration of the added

power of the first-generation model,
LSRRM, over conventional time-invariant
kinetic models is available thanks to a natu-
ral experiment in the PET literature. Two
prestigious research groups each conducted
PET imaging experiments applying the
same stress task (the Montreal Imaging
Stress Task, which combines mental arithmetic by the subject with
negative feedback by the investigator (34)) for a limited time in the
scanner during the scan session with the intent of stimulating dopa-
mine release but used different analysis methods (29,35). The
cohorts were similar. One group of investigators (35) estimated
change in BP, based on conventional time-invariant models, whereas
the other (29) estimated the amplitude of the transient dopamine
component, g, using LSRRM. Supplemental Figure 2 shows the
uncorrected t score maps for the respective analyses. The first-
generation analysis (with a non–steady state term for dopamine)
detected a more widespread effect than the conventional one. A
comparison of the 2 analyses (including differences in search
volume) is detailed in a review by Liu et al. (36). LSRRM and g
are better suited than conventional time-invariant models and change
in BP for detecting short-lived dopamine responses to stimuli pre-
sented during the scan.
Limitations. The main limitation of the first-generation model,

LSRRM, is that the temporal pattern of dopamine release is fixed in
shape. h(t) (Eq. 2) is prescribed as a decaying exponential with instan-
taneous take-off at the presumed time of activation and a fixed decay
rate of dopamine back to baseline. If one has a hypothesis about the
time course of dopamine release (e.g., a drug or condition is affecting
the particular shape of the dopamine response to a stimulus), then a
model with a predetermined shape, h(t), cannot be used to test it.
In response to perceived limitations of LSRRM, Morris et al. (37)

introduced neurotransmitter PET (ntPET), diagrammed in Figures 2A
and 2B (37). ntPET was originally developed to describe dopamine
responses to drugs, such as ethanol (28) or methamphetamine (29),
(both of which increase dopamine release directly or indirectly) in
animals. The difficulty of taking blood samples in rodents, however,
demanded the development of a reference region model (i.e., a model
whose plasma input function is described in terms of an image-
derived reference region curve; Fig. 2B). For flexibility, ntPET was
configured as a set of 3 explicit mass balance equations (Eqs. 3–7)
coupled by a bimolecular (and thus nonlinear) binding term made up
of the product of the instantaneous concentration of available receptor
sites (in brackets) and the free competitor (either dopamine or tracer).
This term describes the critical phenomenon being imaged, namely,

competition between the neurotransmitter dopamine and the labeled
tracer. Unfortunately, the use of a nonlinear binding term meant the
model was not linearizable �a la MRTM (24) or LSRRM (21).
The following equations describe the ntPET model:

dFðtÞ
dt

5K1CpðtÞ2 k2FðtÞ2 kon½Bmax 2BðtÞ2BDAðtÞ�FðtÞ1 koffBðtÞ
Eq. 3

dBðtÞ
dt

5 kon½Bmax 2BðtÞ2BDAðtÞ�FðtÞ2 koffBðtÞ Eq. 4

dBDAðtÞ
dt

5 kDAon ½Bmax 2BðtÞ2BDAðtÞ�FDAðtÞ2 kDAoff B
DAðtÞ

Eq. 5

FDAðtÞ5 basal1G3 ½t2 tD�aexpð2b½t2 tD�Þ Eq. 6

CpðtÞ5 1

Kref
1

dFref ðtÞ
dt

1 kref2 Fref ðtÞ
� �

: Eq. 7

In practice, the ntPET model was unwieldy. It contained 12
parameters, some of which were not identifiable, resulting in esti-
mation of multiple possible dopamine curves that could fit each
dataset equally well. Reflecting the nonidentifiability, a collection
of multiple possible estimated free dopamine curves, FDA(t), in the
striatum from images of a rat administered methamphetamine is
shown in Figure 2C. The curves are nonetheless consistent and plau-
sible, as demonstrated (Fig. 2C) by comparison with simultaneous
microdialysis measurements of striatal dopamine (from Morris
et al. (38)). With regard to practicality, nonlinear terms in the model
required iterative numeric solution and nonlinear fitting. The compu-
tation time to solve the ntPET equations was long.

Second-Generation Innovations
Strengths. In efforts to make the estimation of dopamine tran-

sients more practical, Constantinescu et al. (39,40) and Norman-
din et al. (41,42) took complementary mathematic approaches and
introduced a nonparametric ntPET model and a linear parametric
ntPET model (lp-ntPET), respectively. The former was based on a
singular value decomposition of the PET time–activity curves. In

FIGURE 2. Graphical representation of ntPET model and estimated dopamine curves with ntPET
model compared with microdialysis. (A) Two-species model for tracer uptake from plasma to free
and bound states in presence of time-varying dopamine (in free and bound states). Note absence of
supply of dopamine from plasma to free compartment (as in case of tracer) because dopamine does
not originate in plasma. It is injected into synapse by presynaptic neuron. Hence, dopamine genera-
tion can be modeled as originating within free dopamine compartment. (B) One-compartment model
description of reference region lacking dopamine receptors. (Reprinted with permission of (37).) (C)
Family of dopamine curves resulting from multiple best fits to PET data (blue) compared with smooth
function fit directly to microdialysis data (red curve through red circles). There is some ambiguity in
magnitude of estimated dopamine curves, but temporal agreement between PET estimates and
microdialysis is quite good. DA5 dopamine. (Reprinted with permission of (38).)
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2010, the singular value decomposition approach was used to cre-
ate parametric images of the timing of a dopamine response to fin-
ger tapping (43). Nonparametric ntPET was an early attempt at a
data-based method of analysis of dynamic PET data. The need to
train the nonparametric ntPET model on simulated data anticipated
the use of the machine learning methods discussed below.
Although nonparametric ntPET was based on a signal-processing

approach to the problem, lp-ntPET resulted from a modeling
approach. As we show below, later methods have merged signal pro-
cessing and modeling to great effect. lp-ntPET is a linearized version
of the ntPET model. It is structurally similar to Equation 1 (LSRRM)
except that h(t) is allowed to vary in shape. For lp-ntPET, h(t) takes
a more complicated but also better-behaved form that facilitates esti-
mation of an explicit peak time term, tp (44),

hiðtÞ5 t2 tD
tP 2 tD

� �a

exp a 12
t2 tD
tP 2 tD

� �� �
uðt2 tDÞ: Eq. 8

The combination of Equations 1 and 8 would still require non-
linear fitting because of the unknown parameters of h(t) were it
not for the key innovation of Normandin et al. (42) to implement
lp-ntPET using preselected basis functions (22,45). Each basis
function corresponds to a preselected combination of a, tp, and tD
to represent a unique h(t). Thus, in practice, lp-ntPET is fit to data
through a series of linear fittings to CT(t), one for each of the pre-
determined basis functions. There are only 4 linear parameters to
be estimated: R1, k2, k2a, and g. The computation time is greatly
reduced compared with ntPET, and fitting data at every voxel to
produce parametric images becomes more tractable.
Because lp-ntPET allows for different possible shapes of the

dopamine curve in time, the group at Yale used it to test the
hypothesis that there are distinct areas of the ventral striatum in
which male and female smokers respond at different speeds to
smoking cigarettes (46). In their analysis of a cohort of 8 male and
8 female smokers smoking in the scanner (47), they were able to
identify an area of dorsal putamen in which
women responded with faster dopamine
release (shorter rise time) than men to
smoking a cigarette. Supplemental Figure 3
(left) shows this result as an image, and
Supplemental Figure 3 (right) shows the
temporal differences between the sexes as
mean time curves for the identified cluster
of activation. The mean curves include the
responses of some subjects in each cohort
whose dopamine response was estimated to
begin before the start of smoking. Such
responses, if confirmed, could be inter-
preted as anticipation of reward.
lp-ntPET analysis has been applied to

other forms of drug administration in the
scanner because, like cigarette smoking,
they must also be described by a model
that accommodates transient responses.
Calakos et al. (48) applied lp-ntPET analy-
sis to cannabis smoking in the scanner and
detected consistent areas of activation in
the ventral striatum. Supplemental Figure
4 shows the location of a cluster of activa-
tion in the right ventral striatum. The tim-
ing of the response was preliminarily
found to be related to the level of d9-

tetrahydrocannabinol in the plasma before scanning (i.e., the level
due to habitual drug use).
The second-generation model, lp-ntPET, has also found applica-

tions beyond human imaging. Kyme et al. have perfected open-field
PET imaging of freely moving awake rats (49). This capability
makes possible experiments to examine the brains of awake animals
responding to drugs and other stimuli without the confounds of anes-
thesia. In this study, lp-ntPET was used to estimate the temporal pat-
tern of [11C]raclopride displacement by a pharmacologic dose of
unlabeled raclopride in awake rats (Fig. 3) (49). The responses of 4
rats were consistent in time and magnitude (Fig. 3D). When the lim-
its of first-generation methods are considered, the gradually peaking
shape of the estimated dopamine curve (Fig. 3D) is not consistent
with an instantaneous peak and single exponential decay (as imposed
on the response shape by LSRRM).
The lp-ntPET model was initially applied at the region-of-interest

level. But its great promise is at the voxel level to identify and charac-
terize localized brain clusters of unique kinetics because of unique
temporal effects of transient neurotransmitter activation. As mentioned
above, fitting models with nonlinear terms is generally iterative. Thus,
applying models on the voxel level can be computationally
demanding. Furthermore, voxel-level PET time–activity curves are
much noisier than region-of-interest–level curves. To address these
challenges, lp-ntPET was implemented as a 4-step pipeline (first
introduced by Kim et al. (50)).
The first step is preprocessing. Highly constrained backprojec-

tion filtering applied to the dynamic PET images is a method of
spatial filtering that has the desirable property of preserving tem-
poral edges without compromising spatial resolution (51). The
contribution of highly constrained backprojection to the overall
sensitivity of the pipeline has been isolated via the analysis of
simulations by Wang et al. (52).
The second step is selection of basis functions. The lp-ntPET

model is discretized by preselecting a library of h(t) curves. Each

FIGURE 3. Application of second-generation model, lp-ntPET, to awake rats. (A) Motion-corrected
PET data showing integrated [11C]raclopride distribution in brain of representative freely moving rat
over first 20min of study (before administration of unlabeled raclopride), superimposed on spatially
registered MRI brain template. (B) Reconstructed PET image integrated over last 20min of study,
after administration of unlabeled raclopride. (C) PET time–activity curves averaged across 4 animals
(mean 6 SD) for striatal and cerebellar regions of interest. (D) Four individual (gray) and mean (red)
estimated replacement of [11C]raclopride by (unlabeled) raclopride (k2a) curves obtained from kinetic
modeling of dynamic PET data in C using lp-ntPET. %ID 5 percentage injected dose. (Reprinted
with permission of (49).)
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basis function in the library is a curve resulting from a fixed set of
parameters tp, tD, and a. For each given basis function, fitting the
model to the data is a linear problem and so proceeds almost instan-
taneously. For a limited number of basis functions, the lp-ntPET
model can be applied at each voxel quickly.
The third step is model selection. To determine whether trans-

mitter activation is significant, each voxel-level time–activity
curve is fit with MRTM and lp-ntPET. The activation is deemed
significant (and a nonzero g value is retained) if the lp-ntPET fit is
statistically better than the MRTM fit based on standard model
comparison metrics such as the F test (or the corrected Akaike
information criterion or corrected Bayesian information criterion)
(42,50,53,54).
The fourth step is application of a cluster-size threshold. To coun-

teract the false positives that occur whenever multiple comparisons
are performed (at large numbers of voxels), a cluster-size threshold is
applied to retain only those clusters of activated voxels that are large
enough to not have occurred by chance in null data (i.e., dynamic
PET data in the absence of any neurotransmitter activation).
Limitations. The main limitations of the second-generation

model, lp-ntPET, as with all detection methods, are too many false
positives or too many false negatives. Understanding what causes
what leads directly to improvements. False positives are generally
the result of oversensitivity of lp-ntPET (i.e., overfitting) to noise,
the magnitude of which rivals, in some cases, that of the signal of
interest (i.e., the dopamine effect). False negatives are generally
attributable to overly conservative rejection of activated voxels by
model selection criteria or cluster-size thresholds intended to control
false positives at the voxel or image level, respectively.

Third-Generation Innovations
Strengths—Controlling False Positives. To control the false-

positive rate (FPR, defined in Table 2), investigators have
worked to better model the noise or to reduce it. Reduction of
noise by a naïve method (i.e., not accounting for the expected time–
activity curve shape), such as gaussian
smoothing in time, runs the considerable
risk of smoothing out any abrupt effect of
neurotransmitter release. Angelis et al. (55)
introduced a feed-forward neural network
that was trained to denoise the PET time–
activity curves by predicting the noiseless
time–activity curve. The method was suc-
cessfully trained on 40 million simulated
time–activity curves that contained or did
not contain the effect of dopamine release
caused by an idealized stimulus starting at
20min into a dynamic raclopride scan. The
true response to the stimulus (portrayed in
red in Supplemental Fig. 5) persists for
about 20min. The performance of neural
network denoising exceeded the perfor-
mance of second-generation denoising with
highly constrained backprojection. The
comparison of the denoised images and the
resultant fits of lp-ntPET to realistic simu-
lated rat data containing a dopamine pertur-
bation is shown in Supplemental Figure 5.
In third-generation work, Liu and Mor-

ris (54) discovered an unwanted depen-
dence of FPR on the number of basis

functions in the lp-ntPET implementation. This is because a lim-
ited basis created from triplets of discretized parameters, tp, tD,
and a, cannot span all of parameter space. Consequently, the
degrees of freedom (number of parameters in a model subtracted
from number of data points in time–activity curve) used by a
model-comparison metric (e.g., the F statistic) to determine the
best-fit model is too strict and must be adjusted. By introducing
the concept of effective number of parameters (peff), Liu and
Morris were able to control the FPR regardless of the number of
basis functions used. Looking across the rows in Figure 4A, one
observes that the correction for peff applied to the model com-
parison metric (the Akaike information criterion) controls the
FPR across a wide range of basis function library sizes (8–60 basis
functions).
As a further illustration of the potential impact of the correction for

peff, a dataset from Zakiniaeiz et al. (33) was recently analyzed with
LSRRM, lp-ntPET, and lp-ntPET with the Bayesian information
criterion corrected for the peff. The preliminary result of this com-
parison of methods is shown in Figure 4B (56). Looking at a single
human dataset, we cannot assess the accuracy of the analysis.
But the progressively larger areas of detected activation support
the claim that sensitivity to transient dopamine activation is
improved from first- to second- to third-generation innovations.
We recognize that sensitivity is not the same as accuracy. Whether
the detection of additional activation is correct (more true positives)
or not (more false positives) can be determined only through the
analysis of simulated data for which ground truth is known.
Angelis et al. (57) also incorporated lp-ntPET into direct recon-

struction. Because direct reconstruction fits the data in the sinogram
domain, where the noise model is better characterized than in the
image domain, the effect of noise on model fitting is minimized.
This, in turn, has the result of reducing the FPR of lp-ntPET.
Fuller et al. (58) used various machine learning algorithms both

to denoise and to identify time–activity curves that were activated
(containing a dopamine transient) on the basis of training with

FIGURE 4. (A) Performance of third-generation innovation: demonstration of correction for peff in
model implementation. Number of bases declines to right. True image is in far right column. Cluster-
size threshold is increased down columns. White indicates pixel for which full model (lp-ntPET) is
found to be superior to restricted model (MRTM). Visible in center of phantom is 10310 pixel posi-
tive region; rest of phantom is null. All white voxels in null region are false positives. FPR decreases
with increased cluster-size threshold but remains stable across number of bases. (Reprinted from
(54).) (B) Performance of first, second, and third generations (Reprinted from (56).) Shown is activation
(red) detected at voxel level in dynamic raclopride images of cigarette smoking in scanner by first gener-
ation (LSRRM), second generation (lp-ntPET), and third generation (lp-ntPET with adaptive model com-
parison (54)); method’s performance is described in A. Gen5 generation.
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256,000 noisy simulations of activated and nonactivated (dopa-
mine transient absent) time–activity curves. This approach aimed
to reduce the overfitting of lp-ntPET to noise. The incorporation
of machine learning algorithms far outperformed the second-
generation lp-ntPET pipeline for specificity (true negatives/[true
negatives 1 false positives]) by reducing false positives. The
superior performances of 4 different machine learning algorithms
as compared with lp-ntPET are demonstrated by the authors for a
wide range of noise levels and activation levels (at strict and
relaxed thresholds on g). See Figure 5 in original paper (58).
Strengths—Controlling False Negatives. The second major

thrust of third-generation innovations has been to improve sensi-
tivity, that is, to reduce the overexclusion of bona fide instances of
activation (yielding a high false-negative rate). Investigators have
introduced to the original second-generation pipeline various crea-
tive improvements that substitute new procedures for the model
comparison and the cluster-size threshold steps. The second-
generation steps were intended to identify activation and correct
for multiple comparisons. But if either of these steps is too strict or
invalid, it can diminish the overall sensitivity of the pipeline.
One approach has been to correct invalid assumptions that are

not strictly satisfied regarding noise and parameter distributions
that underlie the second-generation model selection step. Beving-
ton et al. (59) have argued persuasively that partial-volume error
(spill-in from surrounding areas not containing activation) skews
the shape of time–activity curves at the periphery of clusters of
activation. The altered shape leads to underestimates of g and alters
the resulting F values calculated from the fits of MRTM and
lp-ntPET. In turn, these calculated F values are improperly distrib-
uted. They no longer adhere to a true F distribution. This calls into
question the use of the F statistic as an indicator of best fit by
lp-ntPET over MRTM and, hence, activation. Bevington et al. (59)
proposed a method for finding the underlying F distribution in the
presence of underestimation and then restoring the voxels that
would otherwise have been rejected. The need for reassignment
of F values on the F distribution is illustrated in Figure 5A.
The improved recovery of activation clusters (missed by the

second-generation method) in the striatum of a human volunteer
performing a gambling task is shown in Figure 5B.
A second approach to FNR has been to replace the model selec-

tion step with a neural network. Klyuzhin et al. (60) trained 4 dif-
ferent architectures of neural networks to differentiate noisy time–
activity curves with and without the effect of dopamine release.
The 2 most sensitive architectures turned out to be a dense neural
net with 3 hidden layers and a convolutional neural net with 3 con-
volutional layers. The dense and convolutional neural nets were
both trained on 100,000 noisy baseline time–activity curves and
100,000 noisy time–activity curves containing transient dopamine
release. Training was performed for 300 epochs. These time–activ-
ity curves were personalized, that is, simulated to resemble
[11C]raclopride PET data obtained in a human subject performing a
gambling task at 36min into a 75-min scan session. The dense and
convolutional neural nets both outperformed the F test in identify-
ing activation. Supplemental Figure 6 shows the voxels that are
identified as positive by the 3 methods in 2 different digital phantoms.
Bevington et al. (61) took another approach to the model selec-

tion step. They merged a data-driven approach with modeling of a
step function—reminiscent of functional MRI analysis—to replace
the model selection step. The investigators introduced what they
called residual space analysis. By defining a canonic baseline curve
(containing no effect of activation) and subtracting it from each
voxel time–activity curve, they converted time–activity curves into
residual curves. These residual curves were fitted to a simple model
made up of a step function convolved with a smoothing function.
The estimated magnitude of the step is tested for significance. The
fitted residual curve and the resulting improved sensitivity are dem-
onstrated in Figure 6. It is interesting to note that Morris et al. (17)
observed that transient activation was identifiable from unique
characteristics in what they called the normalized residuals (equiva-
lent to residual space), but as is often the case, it remained for
another group of investigators (61) to bring the necessary mathe-
matic rigor to bear on the observation.
It is reasonable to assume that neural network denoising (55) could

be combined with other methods. In theory, incorporating any model
method into direct reconstruction (57)
should improve the FPR because of the bet-
ter modeling of the noisy data in sinogram
space. In fact, Fuller et al. (58) showed a
decrease in g in all machine learning algo-
rithm methods if they were incorporated
into a direct reconstruction framework (Fig.
10 in the original paper (58)). Any use of
direct reconstruction is, however, predicated
on the availability of the list-mode data.

INTERPRETATION OF RESULTS

Once we have the results of any of the
advanced methods of analysis reviewed
above, we must assess whether we believe
them. Said another way, what is our confi-
dence in the results? Normandin et al. (42)
grappled with this question in their lp-ntPET
papers. When the data being fitted are created
by simulation, there is no cost to creating and
analyzing many repeated instances of the
same data with different noise realizations.
Normandin et al. illustrated the confidence in
their results by fitting thousands of simulated

FIGURE 5. (A) Histograms (blue) of calculated F values of ground truth baseline (i.e., nonrelease)
voxels from simulations. Also, histogram (yellow) of calculated F values of voxels classified (not
necessarily correctly) as baseline voxels by standard model selection criterion. Yellow voxels have
calculated F values that do not adhere to theoretic F distribution. These voxels should have higher
F values and be captured as activated voxels. (B) Monte Carlo modeling method (third generation) per-
formance. Shown is recovery of activation clusters in human data from subject performing gambling
task. Left column shows recovered dopamine curve for clusters captured only by Monte Carlo method
(color of cluster matches cluster number.) Middle column shows clusters captured in striatum by
second-generation lp-ntPET algorithm. Right column shows clusters captured by Monte Carlo method.
(Reprinted with permission of (59).)
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datasets (same true parameters, different noise). Supplemental Figure 7
is an example. But what if we have only one dataset from a real ani-
mal or human experiment? We need a framework for assessing our
confidence in the results. This leads us to the discussion of an
emerging technique that could be combined with any of the var-
iants and enhancements of the lp-ntPET model for a richer under-
standing of the data.

BAYESIAN STATISTICAL ANALYSIS OF NON–STEADY
STATE KINETICS

Bayesian statistical approaches have been used extensively for
PET image reconstruction and more recently have been extended to
kinetic modeling (62,63). In frequentist statistics, probabilities are
assumed to be well estimated by the frequency of random events
after repeated trials. In contrast, the Bayesian statistician interprets
probability conditionally, where a prior
belief about the likelihood of a particular
outcome is updated when new evidence
becomes available, according to Bayes’
rule. For example, in a PET neurotransmit-
ter activation study, Bayes’ rule (Eq. 9) can
be expressed as

PðumjYobsÞ5 PðYobsjumÞPðumÞ
PðYobsÞ , Eq. 9

where Yobs are the observed PET data (typ-
ically a time–activity curve), um are the
model parameters, P(Yobs|um) and P(Yobs)
are the likelihood function and the margin-
alized likelihood, respectively, and P(um)
is the prior probability of the model para-
meters. The model, in this scenario, would
be lp-ntPET or any of the other time-
variant models discussed above. Provided

we can compute the right-hand side of this expression, the term on
the left-hand side, P(um|Yobs), represents the posterior probability
density function of the model parameters. In other words, we have
more than just the point estimates of the model parameters, we
have their probability densities as well.
Two approaches have been proposed for computing P(um|Yobs) in

the context of PET neurotransmitter activation studies: Irace et al. (64)
proposed a method called Bayesian ntPET (b-ntPET), which is based
on Markov chain Monte Carlo sampling. This is a random-walk algo-
rithm that produces an unbiased estimate of the posterior distribution
based on samples drawn randomly from the model parameter prior dis-
tribution and a probabilistic accept/reject criterion. Using a Bayesian
framework allows the incorporation of prior knowledge of the para-
meters to drive the estimation. Simulation studies with null data and
gradually increasing activation levels showed that the b-ntPET method
reduced the FPR and that it is more robust to noise than least-squares
fitting of the lp-ntPET model (Supplemental Fig. 8). In a pharmaco-
logic challenge (with NLX-112, a serotoninergic 5-hydroxytryptamine-
1A agonist) in cats using the tracer [18F]MPPF, a serotoninergic
5-hydroxytryptamine-1A antagonist radioligand, the simulation results
(shown in Supplemental Fig. 8) were borne out. b-ntPET detected a
significant dose–response relationship due to increasing doses of NLX-
112, whereas the classic fitting approach with lp-ntPET was unsuc-
cessful (64). Similarly, b-ntPET successfully detected significant
endogenous dopamine release induced by transcranial direct-
current stimulation in a human [11C]raclopride experiment (64).
b-ntPET can be seen as a generalization of the lp-ntPET method

in the sense that they both aim to optimize the likelihood function
P(Yobs|um). Whereas lp-ntPET uses least-squares methods to do this
and, in the process, directly estimates single-point parameters,
b-ntPET samples the whole of the posterior probability distribution.
Although Markov chain Monte Carlo provides unbiased esti-

mates of the model parameters and their uncertainties and has
guaranteed convergence, it is computationally slow and difficult to
parallelize, making voxelwise analysis impractical (63). Further-
more, Markov chain Monte Carlo requires that the likelihood func-
tion be mathematically described, but this may not be possible.
Approximate Bayesian computation (ABC) addresses this issue by
treating the likelihood function as the data-generating process, that
is, as a model for simulating the data. Fan et al. (65,66) developed
a general method named PET-ABC that adapted the ABC algorithm
to kinetic modeling in PET (Fig. 7). Like Markov chain Monte Carlo,

FIGURE 7. (Left) Measured [11C]raclopride time–activity curve for striatum (�) and cerebellum (1) of
awake rat who received amphetamine at 20min (activity in kBq/mL, time in min), along with PET-
ABC–estimated time–activity curve (solid curve) and 95% CI (shaded area). (Middle) Estimated dopa-
mine curve (k2a(t) in % of baseline) with 95% CI (shaded area). (Right) Posterior probability distribu-
tion for lp-ntPET model parameter, g. (Adapted with permission of (66).)

FIGURE 6. Third-generation performance. (A) Combination of time–activity
curve at voxel i and canonical time–activity curve representing tracer uptake
in absence of activation. Together, these two curves are converted (indi-
cated by curved arrow) to residual space where model of Ri(t) is applied.
Detection becomes problem of identifying voxels with significant bi values.
(B) Bevington et al. showed their residual-space analysis to have greater
detection sensitivity than lp-ntPET with F-test as model selection step. NR
5 number of realizations (i.e., simulations); RSD5 residual-space detection;
TAC5 time–activity curve. (Reprinted from (61).)
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PET-ABC gives a complete view of the reliability of parameter esti-
mates by providing posterior probability distributions of each
model parameter, from which one can derive the mean, median,
and mode and their credible intervals. For example, the posterior
probability distribution for the activation magnitude, g, is shown in
Figure 7 for an amphetamine challenge study conducted on an
awake rat (49). The posterior distribution gives an indication of the
confidence that can be placed in the value of g.
The PET-ABC method has been adapted by Grazian et al. (67)

to enable voxel-based analysis (vPET-ABC) by leveraging a high
degree of parallelization of the algorithm. Another feature of the
PET-ABC method is that one can perform model selection, in
which alternative models are probabilistically evaluated for their
ability to describe a given dataset. In the case of PET neurotrans-
mitter activation studies, one can test the credibility of a detected
activation by assessing the posterior probabilities of lp-ntPET versus
the more parsimonious model, MRTM.
vPET-ABC can add value to lp-ntPET by virtue of its estimation

of the posterior probability distribution for each model parameter,
which is a way to assess confidence in our parameter estimates
based on single-subject data. In addition to producing a posterior
distribution for each model parameter (including the activation
magnitude, g), it also produces a probability of activation at every
voxel. Therefore, we can enrich the information in the binary acti-
vation maps of the single individual shown in Figure 4B to produce
a probabilistic map of activation in that same individual by map-
ping the posterior of the model selection parameter at every voxel
(Fig. 8) (56). Knowing the level of certainty of the activation pat-
tern is an added value provided by such methods, especially when
analyzing single-subject data.

FUTURE CHALLENGES

There remain challenges to the proliferation and widespread
adoption of lp-ntPET and other time-variant models for the analy-
sis of non–steady state PET data. The challenges can be grouped
into 3 overlapping domains: temporal accuracy, signal-to-noise
ratio, and molecular and physiologic generalizability.
The temporal accuracy of the functions that describe the transient

activation is needed to reliably differentiate activation phenomena
that differ in timing. Said another way, the timing parameters of any
time-varying model must be identifiable. For example, if the peak
time of dopamine release is altered slightly by a drug, and this
alteration is important medically, the estimate of peak time must be
precise enough to establish significant differences between groups.
It is worth noting that Normandin et al. (42) adopted a particular

formulation of the g-variate as a basis function (first introduced by
Madsen (44)) specifically because it decoupled peak time from
take-off time.
Achieving better temporal accuracy can be thought of as a model-

ing problem. To date, the basis functions have been g-variates because
the stimuli have mostly been discrete in time and very little is known
about the shape of the response curves. Best to keep it simple. But
there is nothing to keep us from using more complicated basis func-
tions—other than the increased risk that comes with more parameters
and a greater likelihood of correlation between parameters. If, how-
ever, an activation was known to be, for example, bimodal, a function
other than a g-variate might be preferable.
As discussed, false-positive detection of activation is driven in

large part by noise in the time–activity curves. Many types of analy-
ses (that we refer to as third generation) have been introduced to
reduce the noise—that is, to increase the ratio of dopamine signal to
PET noise. At the same time, the noise problem is being attacked
through the development of ultra-high-sensitivity PET scanners.
Whole-body scanners with longer axial fields of view have much
greater geometric sensitivity than previous generations of scanners
and, therefore, capture much more of the emitted radiation (68). The
result is substantially higher imaging performance, particularly an
improved signal-to-noise ratio throughout the body (69,70). Simi-
larly, the newest generation of ultra-high-sensitivity brain scanner is
an order of magnitude more sensitive (71) than the best previous
brain-dedicated machine, the Siemens HRRT. A simulation study by
Liu and Morris (72) indicated that even a 10-times increase in sensi-
tivity to coincidences would greatly improve the ability of lp-ntPET
to differentiate early from late dopamine responses. Figure 9 demon-
strates that the combination of increased sensitivity to coincidences
with a nearest-neighbor clustering algorithm performs markedly bet-
ter than the HRRT (and similar clustering) at identifying transient
dopamine activation in voxel-level time–activity curves. Continued
innovations in physics and engineering that result in even higher
signal-to-noise ratios (e.g., as a result of improved time-of-flight res-
olution) should lead to yet more reliable detection and classification
of activation events of very low magnitude.

FIGURE 8. Activation (red) detected at voxel level in dynamic raclopride
images of cigarette smoking in scanner by first generation (LSRRM), second
generation (lp-ntPET), and third generation (lp-ntPET with adaptive model
comparison; reprinted from (54)). Rightmost panel is result of lp-ntPET
embedded in vPET-ABC framework, with threshold for activation set to 0.5;
this panel is displayed as probability of activation map (color scale shows
probability values ranging from 0.5 to 1) for single subject rather than as
binary activation map. Gen5 generation. (Reprinted from (56).)

FIGURE 9. Third-generation performance: voxels with significant
responses after applying steps 2 and 3 of nearest-neighbor clustering
algorithm (as described in (72)) to phantom data simulated to reflect sensi-
tivity of HRRT scanner and phantom data simulated to reflect sensitivity
of newest generation scanner (NS). (A) True positive voxels in 1 slice of
3-dimensional phantom resembling striatum. (B) Voxels in which activation
is detected by lp-ntPET. (C) Reclassified voxels after applying nearest-
neighbor clustering to B. White outline delineates left putamen, which was
simulated to represent raclopride data without any dopamine activation.
(Reprinted with permission of (72).)
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High-sensitivity whole-body PET scanners, when coupled with
advanced time-varying models, also open up the possibility of
studying signaling between the brain and peripheral organs—in
other words, studies of neurochemical connectivity, as defined by
Liu and Morris (72). Such studies will require not only high sensi-
tivity and careful experimental design but also methods that go
beyond the detection of isolated clusters of activated voxels, that
is, methods that are capable of characterizing distributed networks
of connected activations in terms of their correlations in space and
time. The Bayesian methodology provides a natural framework for
analyzing such correlations, but there is also a body of well-studied
network-based statistical methods arising from the literature on MRI-
based functional and structural connectivity that PET researchers can
draw on (e.g., Sala et al. (73)).
For the most part, this review has focused on dopamine. The

simple fact is that most successful studies of neurotransmitter acti-
vation have been with [11C]raclopride. Raclopride has been shown
to be ideally suited, kinetically, to the detection of dopamine transi-
ents (20). An essential quality of raclopride is its dissociation rate
constant. Raclopride dissociates sufficiently rapidly in the presence
of a transient increase in its competitor, dopamine. Unfortunately,
to date, most high-affinity ligands (e.g., [18F]-fallypride) achieve
their great affinity for the dopamine receptor via slow dissociation,
which makes them less than maximally responsive to abrupt changes
in dopamine. Going forward, there are 2 challenges for chemistry.
The first is to create more displaceable tracers for more neurotrans-
mitter systems, and the second is to achieve high affinity through
increased rate constants of association rather than slower dissocia-
tion. This is the gauntlet we throw down before our drug develop-
ment and radiochemistry colleagues.
We have come a long way since the days of treating the chang-

ing state of the brain’s neurochemistry during PET imaging studies
as an experimental confound to be avoided. Now, not only do we
recognize the nonsteady state as an important phenomenon worthy
of study, but we also have the data analysis methods and instru-
ments to do so. Yet, we have barely scratched the surface. Further
innovations in time-varying modeling and PET sensitivity (as sug-
gested by simulations) will surely enable better characterization of
the location, timing, and shape of neurotransmitter responses to
specific interventions. All of this, we believe, will help untangle
the mechanisms of neurochemical signaling within the brain—and
between the brain and the peripheral organs—that regulate our
responses to a changing environment. The future is bright and
unsteady.
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