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Could FAP-Targeted Molecular Imaging Replace 18F-FDG for
Standard-of-Care Oncologic PET?
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The predominant radiotracer in oncologic PET is 18F-FDG, to
the point that many clinicians refer to 18F-FDG PET scans simply as
“PET scans.” Numerous other radiotracers have been studied but
only somatostatin receptor–targeted agents and prostate-specific mem-
brane antigen (PSMA) have been widely adopted, specific tracers
largely used in neuroendocrine and prostate cancers, respectively.

18F-FDG uptake is not simply a marker of tumor glucose metab-
olism but also reflects a complex interplay of metabolism in the
stroma and immune infiltrate, hypoxic microenvironment, and
other dysregulated metabolic pathways. Despite the complex and
variable etiology of 18F-FDG uptake, 18F-FDG PET has a definite
place in the staging, prognostication, and treatment response assess-
ment in a broad range of malignancies. With precision medicine and
molecularly targeted therapies, an unmet need exists for functional
imaging techniques to provide biologic insights beyond glucose
metabolism. Several malignancies have intrinsically low 18F-FDG
avidity or are poorly imaged with 18F-FDG PET due to high back-
ground uptake, for example, in the brain.
Malignant tissues are complex and heterogeneous, consisting of

neoplastic cells and tumor microenvironment comprising stroma
(including several types of fibroblasts), neovasculature, and immu-
nomodulatory cells. Tumor microenvironment may play a vital
role in invasiveness, metastatic potential, and evading immune reg-
ulation. Imaging stromal components of tumors is very attractive,
not only in overcoming some limitations of 18F-FDG PET, but also
in providing complementary or new biologic insights. Among targets
that image tumor microenvironment, a particularly exciting one is
fibroblast activation protein (FAP), a quinolone-based compound
that is overexpressed in a subpopulation of cancer-associated fibro-
blasts (CAFs) in a wide range of malignancies (1).
There are several FAP inhibitor (FAPI) compounds available. A

comparison among a few of these showed that FAPI-46 showed
higher tumor-to-background ratio and higher uptake in malignant
and inflammatory lesions (2). In the recent study, Naeimi et al. (3)

performed FAPI-46 PET in various tumor types and confirmed
early uptake of FAPI-46. Uptake in malignant lesions occurred
early but also demonstrated some heterogeneity, with no signifi-
cant difference in the SUVmax log at 10min and 3 h for uptake in
primary but nodal uptake increased at 1 h, and uptake in the metas-
tases was highest at 10min. The rapid FAPI uptake in a variety of
tumors with low background tissue uptake leads to the attractive
possibility that FAPI PET may potentially complement or replace
conventional 18F-FDG PET in the future.
Another practical advantages to FAPI PET over conventional

18F-FDG PET is lack of dietary requirements and uptake indepen-
dent of blood glucose levels, a particular advantage for imaging of
diabetic patients. The possibility of early imaging if combined with
simultaneous whole-body PET technology is attractive for patient
convenience and throughput with a favorable dosimetry (4).
FAPI may have a major complementary role in tumor types and

anatomic sites at which 18F-FDG is known to have reduced sensi-
tivity, not least in the diagnostic setting in which lesion detection
is of paramount importance. High FAPI radiopharmaceutical uptake
has been demonstrated in certain tumors of the gastrointestinal tract
(5,6), peritoneal disease (7), and biliary tract tumors (8) in contrast
to 18F-FDG. A significant strength of FAPI imaging is low physio-
logic uptake in most organs, leading to high target to background
even if these lesions do not show absolute higher avidity for FAP
than 18F-FDG. This is especially true for cerebral lesions where
physiologic uptake limits lesion detection with 18F-FDG PET.
FAPI imaging is not without pitfalls. There is high uptake and

similar retention of FAPI in inflammatory and malignant pro-
cesses, leading to potential false-positive interpretations without
careful attention to the clinical context and accompanying anatomic
information of the CT component of the scan. With 18F-FDG, this
could be partly overcome with delayed imaging where inflamma-
tory processes show washout and in general lower avidity. FAPI
uptake in inflammatory lesions appears mostly stable over time (2).
A crucial aspect that needs to be addressed is the extent and dura-
tion of FAPI uptake after surgery or radiation. Differentiation of
viable tumor from inflammatory or fibrotic processes could be chal-
lenging when undertaking FAPI posttherapy assessments.
There is vast literature supporting 18F-FDG PET, particularly in

treatment response assessment and prognosis. There are early data
on the prognostic value of FAPI avidity (9), but clearly larger
studies in multiple tumor types are needed. Response assessment
on 18F-FDG PET is a major prognostic factor and guides adaptive
management in many conditions such as lymphomas. There are a
dearth of response assessment data with FAPI.
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Oncologic 18F-FDG PET is broadly accepted in the clinical com-
munity and reimbursed by health-care providing agencies. It would
be meaningful to generate evidence for FAP-targeted PET to better
characterize tumor biology or in areas in which 18F-FDG has short-
comings rather than replicating the entire volume of data available
with 18F-FDG. The economics of FAP-based tracers is bound to have
an influence in its acceptance in routine practice. There is currently
no literature on cost-benefit analysis of FAPI-based imaging.
Interestingly, FAP-targeted imaging is also being evaluated in

nonmalignant cardiac, pulmonary, and rheumatologic conditions
and early data appear promising.
Unlike 18F-FDG, FAP-targeting radiopharmaceuticals have thera-

nostic potential. The newer cyclic peptide compound FAP-2286 has
higher affinity, retention, and internalization than linear compound
FAPI-46 (10). Interestingly, a study by Fendler et al. (11) shows that
only a minority of tumors demonstrate high FAPI avidity (SUVmax

. 10 in 18%) if this were considered as a predictor of dose delivered
by radionuclide therapy. G3/4 hematologic toxicities, possibly related
to the isotope, occurred in more than 30% with 90Y-FAPI–mediated
therapy partly attributable to the isotope (11,12). An early study with
177Lu-FAP-2286 showed G3 toxicities in 3 of 11 patients and no G4
toxicity (13). The safety profile of 177Lu-FAP-2286 is being evalu-
ated further in clinical trials (14).
Simultaneous targeting of both tumor cells and CAFs (15), or

delivering a cocktail of isotopes are areas for future research. Bi-
specific agents could offer simultaneous targeting of tumor and
microenvironment. Clinical translation is awaited.
In conclusion, FAP-targeted imaging raises exciting opportunities

with ease of patient preparation and favorable radiation dosimetry.
Rapid uptake and high tumor-to-background ratio allow early im-
aging. Given the large volume of evidence with 18F-FDG in diagno-
sis, prognostication, and response assessment, FAP-based imaging
may be better approached, at least initially, as an agent comple-
mentary to 18F-FDG, with specific applications. FAP-based therapy
could substantially broaden the theranostics landscape.
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