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ABSTRACT (330 words) 

Introduction 

To improve diagnostic accuracy, myocardial perfusion imaging (MPI) SPECT studies can use CT–

based attenuation correction (AC) (CTAC). However, CTAC is not available for most SPECT 

systems in clinical use, increases radiation exposure, and is impacted by misregistration. We 

developed and externally validated a deep-learning model to generate simulated AC images 

directly from non-attenuation corrected (NC) SPECT, without the need for CT.   

Methods 

SPECT MPI was performed using Tc-99m sestamibi or Tc-99m tetrofosmin on contemporary 

scanners with solid-state detectors. We developed a conditional generative adversarial neural 

network that generates simulated AC SPECT images (DeepAC). The model was trained with 

short-axis NC and AC images performed in one site (n=4886) and was tested in patients from two 

separate external sites (n=604). We assessed diagnostic accuracy of stress total perfusion deficit 

(TPD) obtained from NC, AC, and DeepAC images for obstructive coronary artery disease (CAD) 

with area under the receiver operating characteristic curve (AUC). We also quantified direct count 

change between AC, NC, and DeepAC images on a per-voxel basis.  

Results 

DeepAC could be obtained in <1 second from NC images, AUC for obstructive CAD was higher 

for DeepAC TPD (0.79, 95% CI 0.72 – 0.85) compared to NC TPD (0.70, 95% Confidence 

Intervals (CI) 0.63 – 0.78, p<0.001), and similar to AC TPD (0.81, 95% CI 0.75 – 0.87, p=0.196). 

The normalcy rate in the LLK population was higher for DeepAC TPD (70.4%) and AC TPD 

(75.0%) compared to NC TPD (54.6%, p<0.001 for both).  Positive count change (increase in 
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counts) was significantly higher for AC vs NC (median 9.4, Inter Quartile Range (IQR) 6.0 – 14.2, 

p<0.001) than for AC vs DeepAC (median 2.4, interquartile range [IQR] 1.3 – 4.2).  

Conclusion 

In an independent external dataset, DeepAC provides improved diagnostic accuracy for 

obstructive CAD similar to actual AC, as compared to NC images. DeepAC simplifies the task of 

artifact identification for physicians, avoids misregistration artifacts, and can be performed rapidly 

without the need for CT hardware and additional acquisitions.   

 

KEYWORDS: 

Attenuation correction, SPECT, myocardial perfusion imaging, deep learning, artificial 

intelligence  
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INTRODUCTION 

SPECT myocardial perfusion imaging (MPI) is frequently used to evaluate patients for the 

presence of obstructive coronary artery disease (CAD) (1). Abnormalities of regional perfusion 

are used to identify patients with a higher likelihood of having obstructive CAD (1,2). However, 

perfusion abnormalities can be similar in appearance to soft-tissue photon attenuation artifacts.  

CT can be used to provide attenuation correction (AC) (CTAC) (3) and has been shown to 

improve the diagnostic accuracy of SPECT MPI and increase specificity from 81% to 88% (4). 

AC imaging has been proposed as an important method to significantly increase the proportion of 

patients who are candidates for rest scan cancellation (5). However, CTAC requires dedicated, 

expensive SPECT/CT scanners and is associated with additional radiation exposure. Importantly, 

misregistration of the separately acquired SPECT and CTAC maps is often a source of artifacts, 

which needs careful quality control and can potentially diminish the clinical value of AC images 

(6). For these reasons, despite its advantages, CTAC is currently performed in a minority of SPECT 

MPI scans. This is especially true for the latest generation of solid-state scanners where CTAC is 

performed in <5% of sites (personal communication) and is available only from one vendor.   

To provide the benefits of AC without the above shortcomings, we developed and 

evaluated a deep learning model (DeepAC) which applies AC directly to non-corrected (NC) short-

axis images, without the use of CT (or the need of re-reconstruction of the data), by generating 

simulated AC images. DeepAC is a conditional generative adversarial network (cGAN) which is 

comprised of two competing networks. A generator is tasked with creating DeepAC images while 

the discriminator differentiates the DeepAC images from actual AC images. The process is 

repeated until the discriminator network is no longer able to differentiate real AC images from 
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fake AC images. Importantly, by generating DeepAC SPECT images, physicians may be able to 

better evaluate images for potential artifacts and myocardial segmentation errors. 

In this study, we compared image quantification using non-attenuation corrected (NC) 

images to CT-based AC and DeepAC images. In an independent external dataset, we compared 

the diagnostic accuracy of quantitative perfusion analysis for obstructive CAD, DeepAC, NC, and 

CT-based AC imaging. We also performed change analysis to better understand the potential 

improvement in DeepAC images compared to actual AC images.  

 

MATERIALS AND METHODS 

Patient Populations 

We included two separate populations from separate centers. The model was trained with 

4886 patients (45% female) from a single center (Yale University) who underwent SPECT MPI 

with CTAC (details in Supplemental Table 1). The model was then tested in an external population 

of 604 patients (48% male) from two different centers (University of Zurich and University of 

Calgary). All data and images were de-identified and transferred to Cedars-Sinai. The study 

protocol complied with the Declaration of Helsinki and was approved by the institutional review 

boards at each participating institution. The overall study was approved by the institutional review 

board at Cedars-Sinai Medical Center. Written informed consent or waiver of consent was 

obtained at each institution. 

 

SPECT Image Acquisition 

All scans were performed per SPECT/CT MPI guidelines (7), and only stress images were 

used in the present analysis. In the training population, patients underwent stress-rest/stress-only 
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(n=4112, 84%), rest-stress (n=684, 14%), or two-day (n=90, 2%) imaging using 99mTc-tetrofosmin 

with a Discovery 570c or Discovery 530c scanner (GE Healthcare, Haifa, Israel). In the external 

testing populations, patients underwent either a 99mTc-Sestamibi rest-stress or a 99mTc-tetrofosmin 

stress-rest protocol with a Discovery 570c scanner (GE Healthcare, Haifa, Israel). Weight-adjusted 

(± standard deviation [SD]) stress imaging doses of 403 ± 207 MBq (4.8±2.5MBq/kg, 10.9 ± 5.6 

mCi) were used in the training population and 413 ± 157 MBq (5.0±1.9MBq/kg, 11.2 ± 4.2 mCi) 

for the external population. Stress images were acquired 15-60 minutes after stress over a total of 

4-6 minutes (7). Patients underwent exercise or pharmacologic stress using standard clinical 

parameters. Details of CT acquisitions and image quality control are available in the supplement. 

 

Model Architecture 

The model architecture is outlined in Figure 1. We developed a cGAN which generates 

simulated AC images (DeepAC). The model was developed using 4886 (train 4398: validation 

488) pairs of NC and AC short axis SPECT slices from stress acquisitions from a single site.  Our 

proposed method focuses on CT-free direct estimate of SPECT AC generation and is independent 

of any imaging information from CT (8). Ground truth short-axis SPECT AC images 

(reconstructed at 4x4 mm with slice thickness of 4 mm) were used to compare DeepAC. Additional 

details are available in the Supplement (9-14). 

 

Processing Speed 

Batch mode was used for model testing. Using a graphics processing unit (GeForce RTX 

2080), the mean time to generate DeepAC images volume from AC volume was 9 milliseconds. 
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Using a computer similar to a standard reporting workstation (AMD Ryzen 9 5950X 16-Core 

Processor, 64 Gb RAM), the mean inference time was 66 milliseconds.  

 

 Quantitative Image Analysis 

All quantitative image comparisons were performed in the external testing population. 

Stress total perfusion deficit (TPD) was quantified with Quantitative Perfusion SPECT (QPS) 

software (Cedars-Sinai Medical Center, Los Angeles, CA) (15). Quantification of TPD for 

DeepAC images was performed using existing sex-specific databases for AC studies. Additionally, 

we utilized “change” analysis, as implemented in clinical software to perform voxel-by-voxel 

comparisons between AC, NC, and DeepAC images (16). The “change” analysis allows derivation 

of positive and negative count change between image pairs (sum of absolute voxel-by-voxel count 

changes in both directions) without normal databases. Positive change integrates image voxels 

with an increase in counts on AC images and negative change integrates voxels where AC image 

has decreased counts compared to NC image. Thus, positive change identifies perfusion defects 

which are corrected by the reference technique and negative change identifies relative perfusion 

defects unmasked by the reference technique. Change analysis can be used clinically to detect 

subtle differences in image sets; for example, when comparing stress and rest images, it could be 

used to identify areas of ischemia (16). This analysis was also performed on a per-vessel basis. 

 

Diagnostic Accuracy for Obstructive CAD 

Diagnostic accuracy was assessed in patients with same-day SPECT and coronary CT 

angiography (n=280) and low likelihood of coronary disease (LLK) (n=324). Patients from the 

University of Zurich underwent coronary CT angiography on the same day as SPECT MPI. 
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Obstructive CAD was defined as any stenosis ≥ 70% or ≥50% in the left main coronary artery. To 

ensure the prevalence of obstructive CAD is similar to that seen in a suspected CAD referral 

cohort, the population was enriched with a LLK population from the University of Calgary. The 

LLK population included patients who did not undergo revascularization within 90 days of SPECT 

MPI and met the following criteria: 1) low-probability of CAD based on the Diamond-Forrester 

model (17), 2) normal expert visual interpretation of perfusion, 3) coronary artery calcium (CAC) 

score of 0 and 4) left ventricular ejection fraction >50%. We also evaluated diagnostic accuracy 

on a per-vessel basis, with left main disease attributed to both the left anterior descending and left 

circumflex territories. 

 

Statistical Analysis 

Standard descriptive statistics were used. Normality for continuous variables was assessed 

with the Shapiro-Wilks test. Continuous variables were not found to have a normal distribution 

and difference in median was assessed using the Wilcoxon signed-rank test. The Pitman-Morgan 

test was used to compare variance between the differences of AC and DeepAC and AC and NC 

data. Diagnostic accuracy of obstructive CAD was assessed using area under the receiver operating 

characteristic curve (AUC). DeLong’s test was used to evaluate for differences in AUC. Lastly, 

we evaluated normalcy rates in the LLK population, with abnormal quantitative perfusion defined 

as stress TPD > 3% (integer) (4).  

All statistical tests were two-sided with p-value<0.05 considered significant. Statistical 

analyses were performed using R (version 4.1.2) and Stata/IC version 14.2 (StataCorp, College 

Station, Texas, USA). 
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RESULTS 

Population Characteristics 

Characteristics of the training and external testing populations are shown in Table 1. 

Patients in the training population were older (median age 64 vs 60 years, p<0.001) and more 

likely to be male (55% vs 48%, p<0.001) compared to patients in the testing population.   

 

Diagnostic Accuracy  

Obstructive CAD was present in 64/604 (10.6%) patients in the external testing population 

compared to 10.7% in a large randomized controlled trial (18). Diagnostic accuracy for obstructive 

CAD is shown in Figure 2. The AUC for DeepAC stress TPD (AUC 0.79, 95% CI 0.62 – 0.85) 

was higher compared to NC TPD (0.70, 95% CI 0.63– 0.78, p<0.001). There was no difference in 

the AUC of DeepAC TPD compared to AC TPD (AUC 0.81, 95% CI 0.725– 0.87, p=0.196). At 

80% sensitivity, the specificity of DeepAC TPD was 64% (cut point ≥3.3%), compared to 65% for 

AC TPD (cut point ≥3.3%) and 36% for NC TPD (cut point ≥2.0%). Using standard previously 

established threshold of TPD >3% for abnormal, DeepAC had sensitivity 80% and specificity of 

63% compared to sensitivity 78% and specificity 66% for AC TPD and sensitivity 70% and 

specificity 56% for NC TPD.  The normalcy rate at this threshold in the LLK population was 

higher for DeepAC TPD (70.4%) and AC TPD (75.0%) compared to NC TPD (54.6%, p<0.001 

for both).  

We also assessed diagnostic accuracy for obstructive CAD on a per-vessel level, with 

results in Supplemental Table 2. The diagnostic accuracy for left anterior descending disease was 

significantly higher for DeepAC stress TPD (AUC 0.77, 95% CI 0.69-0.86) compared to NC TPD 

(AUC 0.69, 95% CI 0.59 – 0.79, p=0.007). Diagnostic accuracy was also higher for left circumflex 
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disease for DeepAC stress TPD (AUC 0.74, 95% CI 0.60-0.88) compared to NC TPD (AUC 0.60, 

95% CI 0.45 – 0.76, p=0.024). 

 

Comparison of AC, NC, and DeepAC SPECT Images 

Results of the change analysis is shown in Figure 3. Positive change was significantly 

lower, representing closer agreement, for AC vs DeepAC (median 2.4, IQR 1.3 – 4.2) compared 

to AC vs NC (median 9.4, IQR 6.0 – 14.2, p<0.001). However, negative change was similar for 

AC vs DeepAC (median 2.0, IQR 0.9 – 3.5) compared to AC vs NC (median 2.0, IQR 1.2 – 3.6, 

p=0.935). Similar findings were seen in the subset of patients undergoing stress-first imaging for 

positive change (AC vs DeepAC median 2.6, IQR 1.6 – 4.9; AC vs NC median 12.9, IQR 8.5 – 

17.8, p<0.001) and negative change (AC vs DeepAC median 2.7, IQR 1.5 – 5.1; AC vs NC median 

2.5, IQR 1.5 – 4.2, p<0.001). Results of the per-vessel change analysis are shown in Supplemental 

Figure 1. Median positive change was significantly higher with AC vs NC compared to AC vs 

DeepAC in the left anterior descending (2.61 vs 2.02), left circumflex (4.22 vs 0.32) and right 

coronary artery territories (18.96 vs 1.18, p<0.001 for all). 

Absolute differences between AC TPD vs DeepAC TPD were lower compared to the 

absolute differences between AC TPD and NC TPD (median 1.2 vs 2.3, p<0.001) (Figure 4). The 

Bland-Altman analysis for TPD is outlined in Supplemental Figure 2. Limits of agreement for AC 

TPD vs DeepAC TPD (bias -0.2, 95% limits of agreement -6.5 to 6.1; Spearman’s Rho 0.78) were 

closer compared AC TPD vs NC TPD (bias -1.0, 95% limits of agreement -8.7 to 6.7; Spearman’s 

Rho 0.55; p<0.001).  
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Case Examples 

Cases illustrating AC, DeepAC, and NC images as well as the concept of positive change 

analysis are shown in Figures 5-7. 

 

DISCUSSION 

We developed a cGAN deep learning model, which directly generates DeepAC images, 

without CT, from NC images. It eliminates the possibility of CT misregistration, leverages 

optimized vendor-specific reconstruction algorithms for dedicated collimators and solid-state 

scanners, and allows physicians to evaluate full image sets for potential artifacts using the same 

approaches they would for any other clinical study. The model generates DeepAC images in a 

fraction of a second on standard computer hardware and could readily be implemented in clinical 

workflows as an automatic pre-processing step.  

Critically, we demonstrate that the diagnostic accuracy of DeepAC was higher compared 

to NC using a large, external testing population. Additionally, using clinical quantitative analysis, 

we conclusively demonstrate that DeepAC images are more similar to AC images compared to 

NC images. The significant improvement in positive change suggests that DeepAC corrects 

attenuation artifacts relative to NC images. Importantly, similar findings were seen in the subset 

of patients undergoing stress-first imaging, which typically are noisier images. While the absence 

of difference in negative change suggests that it is not inducing (or uncovering) defects in a manner 

that would not be expected with actual AC. DeepAC could be applied clinically in laboratories 

without dedicated SPECT/CT hardware (majority of SPECT MPI laboratories) to increase 

normalcy rates and diagnostic accuracy, without affecting existing imaging protocols. 
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Several AI approaches have been proposed recently to generate simulated AC SPECT MPI 

(9,19-21). Nguyen et al. developed a generative adversarial network (GAN) to simulate AC images 

from non-AC data with data from 491 patients for training and 112 for testing, demonstrating 

higher structural similarity index compared to 3D UNet (19). Chen et al. proposed a dual squeeze 

and excitation residual dense network, trained and tested with 172 studies, using images from 3 

scatter windows together with NC images to predict AC images (9). Yang et al. developed a 

convolutional network to generate simulated AC images directly from NC images using 100 paired 

datasets for training and testing and 10-fold cross-validation (20). In the only other study, which 

evaluated the clinical impact of the deep learning AC, Hagio et al. developed a convolutional 

network which generates simulated AC polar maps from NC maps (rather than images) (21). The 

authors trained and trained and tested the model in a population from a single center, demonstrating 

improvement in diagnostic accuracy for CAD in patients with either correlating angiography 

(n=351) or LLK cases (n=327). Improvement in specificity was 26% (higher quality studies) and 

8% (lower quality studies) in internal testing. However, none of these studies included external 

testing populations. In the present work, we show higher diagnostic accuracy with DeepAC 

compared to NC images and up to 28% higher specificity, in a large external testing population 

from two different sites using standard clinical quantification of SPECT MPI.  We also show 

improved similarity between AC and DeepAC SPECT images as compared to NC images.  

There are several aspects of our work which are particularly relevant to the future clinical 

application of the DeepAC model. Our model generates simulated SPECT short-axis images, 

rather than corrected polar maps. This allows physicians to identify potential sources of artifact 

such as excessive gut activity and potential errors in myocardial contours. We did not need to 

exclude cases with surface mismatch or segmentation errors as was needed in previous polar map-
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based approaches (21). Our approach leverages existing vendor-specific reconstruction algorithms 

and could be implemented as a pre-processing step prior to interpretation with any SPECT MPI 

interpretation software (22). Importantly, in an independent population, we demonstrated that 

DeepAC improved diagnostic accuracy for obstructive CAD and normalcy rates, compared to NC 

SPECT. We used a very conservative definition of low-likelihood, including CAC score of 0 (23), 

to minimize any chance of misclassifying presence of obstructive CAD in the absence of defined 

coronary anatomy. We believe this is the first time the utility of simulated AC was demonstrated 

conclusively with independent, external testing—a critical step towards demonstrating the 

generalizability of the technique.    

DeepAC could be applied clinically to correct for photon attenuation without the additional 

radiation exposure, cost, and space required for hybrid SPECT/CT. The algorithm could be applied 

to correct NC SPECT MPI in sub-second times, avoiding potential issues with image mis-

registration. Importantly, it could be combined with stress-first imaging. We have previously 

demonstrated that AI can identifying low-risk patients for rest scan cancellation (24). DeepAC 

imaging could be used to further improve the accuracy of these algorithms. 

Our study has a few important limitations. Validation of DeepAC on other SPECT camera 

systems is needed. Further improvements in diagnostic accuracy may be possible by applying 

dedicated DeepAC databases. Additionally, we did not assess the performance of the DeepAC 

model on rest images. While DeepAC allows for soft-tissue AC, it does not provide the additional 

anatomic information available from CTAC, such as calcium. Therefore, the benefits of 

implementing this technique to reduce radiation exposure against the added clinical information 

available from continuing with CTAC imaging need to be carefully weighted (25). Lastly, while 
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the population level results show improved diagnostic accuracy, physicians will still need to 

review all available data to ensure that the DeepAC results make sense clinically. 

 

CONCLUSIONS 

We developed a deep learning model which generates DeepAC images from NC 

reconstructed short-axis slices. DeepAC images provide more similar quantitative assessment of 

perfusion to actual AC images compared to NC images. This translates into improved diagnostic 

accuracy for obstructive CAD in external testing. DeepAC may simplify the task of artifact 

identification for physicians compared to NC images alone and can be performed without the need 

for CTAC hardware.   
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KEY POINTS 

QUESTION:  

Can deep-learning be used to generate AC SPECT images directly from non-AC images?  

PERTINENT FINDINGS:  

We developed a method to generate simulated AC images (DeepAC) and compared them to actual 

AC and non-AC images using a large external testing population. DeepAC images were more 

similar to actual AC images compared to non-AC images and had similarly high diagnostic 

accuracy as actual AC images. 

IMPLICATIONS FOR PATIENT CARE:  

The DeepAC model could be applied clinically to generate AC image sets, on SPECT systems 

without CT capability for improved diagnostic accuracy or to help identify patients for rest-scan 

cancellation.  
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FIGURES 

 

FIGURE 1: Model Architecture. The model is a conditional generator adversarial network. First 

the generator network creates simulated attenuation corrected (AC) images from non-corrected 

(NC) images. The discriminator (green box) is tasked with differentiating actual AC images (real) 

from DeepAC images (fake). The generator (grey box) is an attention-gated 3D UNet where 

maximum pooling (MaxPool) downsamples the features. The attention gate (red box) takes input 

from the lower level (attention signal) with the skipped connection; it includes a rectified linear 

unit (ReLU) as a non-linear activation and generates an attention map which is concatenated to the 

upsampled level. This helps the generator network focus on essential image structures.   
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FIGURE 2: Diagnostic accuracy for obstructive coronary artery disease (CAD). The area under 

the receiver operating characteristic curve (AUC) for AC (blue) and DeepAC (grey) stress total 

perfusion deficit (TPD) was higher compared to non-attenuation corrected (NC) stress TPD (red). 

There was no significant (ns) difference between DeepAC stress TPD and AC stress TPD (blue).  
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FIGURE 3: Change analysis (voxel-by-voxel analysis after subtraction of co-registered images). 

Actual attenuation corrected (AC) images were the reference image for comparisons of AC vs 

DeepAC (red) and AC vs non-attenuation corrected (NC) images (green). DeepAC was used as 

the reference for DeepAC vs NC (blue). Negative change was not significantly different across all 

comparisons. However, positive change was significantly lower for AC vs DeepAC compared to 

AC vs non-attenuation corrected images (* p<0.001).   
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FIGURE 4: Absolute differences in stress total perfusion deficit (TPD) between attenuation 

corrected (AC), DeepAC, and non-attenuation corrected (NC) values. Median absolute difference 

was lower for AC vs DeepAC (red), compared to AC vs NC (green) or DeepAC vs NC (blue) 

(both * p<0.001). 
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FIGURE 5: Non-attenuation corrected (NC), attenuation corrected (AC) and DeepAC images from 

a 53-year-old man with body mass index of 36. On short-axis images (top), vertical long axis 

(middle), and polar maps (bottom) there was a defect in the inferior wall on NC images only (white 

arrows), with evidence of adjacent radiotracer activity in the abdomen. Standard quantification by 

stress total perfusion deficit (sTPD) was 11% (abnormal). After AC correction, the sTPD was 0%, 

DeepAC correction resulted in sTPD 1% (both normal). There was a positive change of inferior 

wall counts for AC vs NC (red arrow). There was no change seen between AC vs DeepAC images. 

The patient had no coronary artery disease on coronary computed tomography angiography and 

the defect most likely represents diaphragmatic attenuation.  
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FIGURE 6: Non-attenuation corrected (NC), attenuation corrected (AC) and DeepAC images from 

a 63-year-old woman with body mass index of 32. On short-axis images (top), vertical long axis 

(middle) and polar maps (bottom) there was a defect in the anterolateral, inferolateral, and inferior 

walls on NC images (white arrows). Standard quantification by stress total perfusion deficit 

(sTPD) was 21% (abnormal). After AC correction, the sTPD was 17%, DeepAC correction 

resulted in sTPD 18% (both abnormal). There was positive change in the inferior and inferoseptal 

walls for AC vs NC (red arrows). There was a only a small area of positive change in the 

inferolateral wall for AC vs DeepAC. The patient had an 80% stenosis of the proximal left 

circumflex.  
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FIGURE 7: Non-attenuation corrected (NC), attenuation corrected (AC) and DeepAC images from 

a 62-year-old woman with body mass index of 29. On short-axis images (top), vertical long axis 

(middle) and polar maps (bottom) there was a defect in the inferior and inferoseptal walls on NC 

images only (white arrows). Standard quantification by stress total perfusion deficit (sTPD) was 

7% (abnormal). After AC correction, the sTPD was 2%, DeepAC correction resulted in sTPD 3% 

(both normal). There was a positive change of inferior and inferoseptal wall counts for AC vs NC 

(red arrow). There was no change seen between AC vs DeepAC images. The patient had no 

coronary artery disease on coronary computed tomography angiography.  
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Graphical Abstract 
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TABLES 

Table 1: 

Characteristic Training Population 

(N = 4,886) 

External Testing 

N=604 

p-value 

Age, median (IQR) 64(56, 73) 60(53, 68) <0.001 

Male, n(%) 2,705(55) 341(48) <0.001 

BMI, median (IQR) 29(26, 34) 28(25, 32) <0.001 

Past Medical History, n(%)    

Hypertension 3,204(67) 255(36) <0.001 

Diabetes Mellitus 1,292(27) 71(10) <0.001 

Dyslipidemia 2,649(55) 195(28) <0.001 

History of CAD 873(18) 67(9) <0.001 

Stress test type, n(%)    

Exercise 1,775(36) 393(56) <0.001 

Pharmacologic 3,106(64) 313(44) <0.001 

 

TABLE 1: Population characteristics of the training and external testing populations. BMI -body 

mass index, CAD – coronary artery disease, CCTA- coronary computed tomography 

angiography, IQR – interquartile range. 


