Estimating the risk for secondary cancer following targeted alpha therapy with astatine-211 intraperitoneal radioimmunotherapy

Erik Leidermark^{1,2}, Andreas Hallqvist^{1,3}, Lars Jacobsson², Per Karlsson^{1,3}, Erik Holmberg^{3,4}, Tom Bäck², Mia Johansson^{1,3}, Sture Lindegren², Stig Palm²* & Per Albertsson^{1,3*†}

 ¹Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg Sweden
 ²Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
 ³Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg,

Gothenburg, Sweden ⁴Regional Cancer Center West, Sahlgrenska University Hospital, Gothenburg, Sweden

Disclaimer: LJ, TB, SL, SP and PA are co-founders of Aprit Biotech AB. SL is co-founder of Atley Solutions AB. PK and EH declares research contract with PFS Genomics Inc. and PreludeDX. The other authors have declared no conflicts of interest.

*Contributed equally to this work

+Correspondence to:

Dr. Per Albertsson, MD, PhD Department of Oncology, University of Gothenburg Blå stråket 2 SE-413 45 Göteborg phone: +46-31-342 79 51, fax: +46-31-82 78 43 per.albertsson@oncology.gu.se

First author:

Erik Leidermark, licensed hospital physicist, PhD-student Department of Radiation Physics, University of Gothenburg Gula stråket 2b SE-413 45 Gothenburg, Sweden phone: +46 722 048305, fax: +46-31-82 78 43 erik.leidermark@gu.se

Word count: 5818 (total in document)

Funding:

This work was supported by the Swedish Research Council; the Swedish Cancer Society; the King Gustav V Jubilee Clinic Research Foundation; the Swedish Radiation Protection Authority; Gösta Miltons foundation; and grants from the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-435001).

Running title: Excess cancer following ²¹¹At TAT

Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications.

License: <u>https://creativecommons.org/licenses/by/4.0/</u>. Details: <u>https://jnm.snmjournals.org/page/permissions</u>.

ABSTRACT

Intraperitoneal ²¹¹At-based targeted alpha therapy (TAT) may hold most promise as an adjuvant therapy following surgery and chemotherapy in epithelial ovarian cancer to eradicate any remaining undetectable disease. This implies it will also be delivered to patients possibly already cured by the primary treatment. An estimate of long-term risks is therefore sought whether to justify the treatment. Methods: Baseline data for risk estimates of alpha-particle irradiation were collected from published studies on excess cancer induction and mortality for subjects exposed to either ²²⁴Ra treatments or Thorotrast contrast agent (25% ThO₂ colloid, containing ²³²Th). Organ dosimetry for ²²⁴Ra and Thorotrast irradiation were taken from the literature. These organ-specific risks were then applied for our previously reported dosimetry for intraperitoneal (i.p.) ²¹¹At-TAT patients. **Results**: Risk could be estimated for 10 different organ or organ groups. The calculated excess relative risk per Gray (ERR/Gy) could be sorted into two groups. In the lower ERR/Gy group, up to approx. 5, were: Trachea, bronchus and lung 0.52 (Cl 95% 0.21-0.82), Stomach 1.4 (CI 95% -5.0-7.9), Lymphoid and hematopoietic system 2.17 (CI 95% 1.7-2.7), Bone and articular cartilage 2.6 (CI 95% 2.0-3.3), Breast 3.45 (CI 95% -10-17) and Colon 4.5 (Cl 95% -3.5-13). In the higher ERR/Gy group, ranging from approx. 10 to 15 were: Urinary bladder 10.1 (CI 95% 1.4-23), Liver 14.2 (CI 95% 13-16), Kidney 14.9 (CI 95% 3.9-26) and Lip, oral cavity and pharynx 15.20 (CI 95% 2.73-27.63). Applying a typical candidate patient (female, age 65 years) and correcting for reference population mortality rate, a total estimated excess mortality of an i.p. ²¹¹At-mAb treatment amounted to 1.13 per 100 treated. More than half of this excess originated from urinary bladder and kidney, 0.29 and 0.34 respectively. Depending on various adjustments in calculation and assumptions on competing risks excess

mortality could range from 0.11 – 1.84 per 100 treated. **Conclusion**: Published epidemiological data on life-long detriment following alpha-particle irradiation and its dosimetry allowed calculations to estimate the risk for secondary cancer following ²¹¹At-based i.p. TAT. Measures to reduce dose to the urinary organs may further decrease the estimated relative low risk for secondary cancer from ²¹¹At-mAb based i.p. TAT.

Key words: secondary cancer, alpha particle, targeted alpha therapy, human, astatine-211, radium-224, thorium-232, Thorotrast

INTRODUCTION

Alpha particle emitting radionuclides are evaluated for targeted alpha therapy (TAT). However, estimates of long-term risks, such as for induction of secondary cancer, has not been a priority in the performed early phase studies. This is probably because most patients considered for TAT at this early phase of drug development have late-stage disease where treatment is not aimed at curing the patient.

The combination of high energy and short range makes alpha irradiation most promising for delivering high absorbed dose to target volumes <1 mm³ (1). This makes TAT ideal for adjuvant therapy, i.e. following the primary treatment of surgery, radiation therapy and/or pharmacological therapy, where patients are disease free by objective measures but carries a statistical risk of recurrence. Since all use of radiation in medicine must be properly justified, the treatment benefit must outweigh any possible and probable risks. Such justification becomes more delicate for an adjuvant setting where a proportion of the patients are already cured by the primary treatment.

Low organ absorbed doses, well below estimated tolerance doses were found in a phase I study with intraperitoneal (i.p.) delivery of therapeutic amounts of ²¹¹At conjugated to MX35 $F(ab')_2$ (²¹¹At-mAb) (2). No radiation-linked acute toxicity was observed including four patients with 6 – 12 years survival, no other observable side effects were revealed (3). As the risk to induce secondary cancer by radiation can be calculated, effective dose for this treatment has been published (4). Effective dose is, however, only intended for application in radiation protection and can at best provide a rough estimate of the long-term risk. For alpha-particle irradiation, a conservative radiation weighting factor of 20 is applied, whereby risk might be overestimated. If this leads to overly cautious (e.g., lower) amounts of the therapeutic agent being delivered, then the therapy results might be negatively affected. There is an obvious need for estimating the risk of induction of secondary cancers, particularly for planning further clinical studies in the adjuvant setting, where long-term survival is expected.

In this work, we estimate carcinogenic risks for a novel TAT by comparing resulting organ absorbed doses with the best data available on cancer incidence and mortality from long-term follow-up of patients who received alpha-emitting substances. By directly calculating risk following alpha irradiation from the known long-term effects of other alpha irradiations, the uncertainty involved in determining a radiation weighting factor for alpha irradiation is eliminated. Published organ-by-organ relative risks for secondary cancer following administration of alpha-emitting compounds Thorotrast (*5-9*) and ²²⁴Ra (*10-12*) were used.

The aim of this work was to compile and evaluate published data relevant to the estimation of carcinogenic risk that could prove useful for justifying adjuvant intraperitoneal TAT. It could also serve as a reasonable method for estimating long-term toxicity also for other TATs.

MATERIALS AND METHODS

Background Data

All data used in this study are from published studies or public registers where no individual data can be distinguished. The ²¹¹At-mab study was approved by the Regional Ethical Committee and signature of written informed consent was obtained (*2*).

Only studies with injected alpha-emitting solutions used for medical purpose were included, i.e. excluding environmental exposure studies. Two types of studies were identified as suitable: Follow-up studies of patients who received the ²³²Th-containing X-ray contrast medium Thorotrast (*5-9*) and patients who received ²²⁴Ra for the treatment of tuberculosis and ankylosing spondylitis (*10-12*). In all, six Thorotrast series (Table 1) and two ²²⁴Ra-studies (Table 2) were identified. A small overlap of included subjects is reported from the Japanese autopsy study (*8*) (Table 1). We excluded the data on lung cancer from the ²²⁴Ra-studies and from the Thorotrast autopsy study. A lower than expected lung cancer incidence or mortality is reported that is thought to be due to less smoking among the treated patients due to the underlying medical condition as discussed in Wick et al. Nekolla et al. (*10,11*) and Mori et al. (*8*).

To estimate risk, the standardized mortality ratio (SMR), standardized incidence ratio (SIR) or the ratio between observed cases in the exposed group and a control group were extracted

directly or calculated from the studies. Both sexes were included while, where possible, individuals <20 years of age were excluded. All six Thorotrast studies administered similar amounts of Thorotrast (Table 1), but the injected activity of ²²⁴Ra differed pending on the illness treated (Table 2).

In each study excess relative risk per Gray (ERR/Gy) was calculated for the organ sites where absorbed doses was given (Supplemental Table 1). The extracted observed and expected numbers of cancer/deaths per organ and study are presented in Supplemental Table 2. The absorbed doses used are presented in Table 3. Confidence intervals for SIR/SMR/RR were calculated based on a Poisson distribution for counts. For each analyzed organ site, appropriate studies were pooled together and weighted with an inverse-variance approach (*13*). The metan macro for Stata statistical software was used for the pooling calculations (*14*).

The typical candidate being treated with ²¹¹At-mAb for ovarian cancer is a female aged 50-60 years and the lag period for long term risk is assumed to be 10 years. Therefore, cancer site specific mortality rates by 5-year age groups for females aged 65+ in Nordic countries from 2007 to 2016 were derived from Nordcan (*15*). Weighting factors, based on the fraction of the population alive compared to the total population aged 65+, were applied to all-cause mortality rates to account for patients dying of other causes. All-cause mortality data was taken from Statistics Sweden (*16*), for Swedish females aged 65-85+. It was assumed that within each age group, the mortality rate was constant when calculating the weighting factors for each site. The weighting factors can be seen in Supplemental Table 3.

$$m_{w\,65+} = \sum_{i=age\,group} m_i * w_i$$

Equation 1. Calculation for weighted reference population mortality for ages 65+ ($m_{w 65+}$) for each site, m_i is the site specific mortality for the age group and w_i is the fraction alive in the age group of the total population aged 65+.

Dosimetry Data

Absorbed dose to liver following Thorotrast injection were derived from Ishikawa *et al.* (17), to bone and bone marrow from Kaul *et al.* (18), and to the remainder of organs from Ishikawa *et al.* (19), with assumed distributions of radioactive daughters. Absorbed doses following ²²⁴Ra irradiation were taken from Lassman *et al.* (20). The resulting absorbed doses used are given in Table 3.

Outcome

The excess mortality for each cancer site was calculated from the estimated ERR/Gy for this cancer site from the published epidemiological studies, and multiplied with the dose received in the corresponding organ (Gy) following an i.p. treatment with 200MBq/L ²¹¹At-mAb (4) and further multiplied by the weighted reference population mortality rate for this cancer site after 65 years of age ($m_{w 65+}$).

Excess mortality = ERR/Gy * Gy * $m_{w 65+}$ Equation 2. Calculation for Excess mortality

To calculate the total excess mortality from a treatment the results from the different sites were summed up.

RESULTS

Published Thorotrast studies were based on 5,870 (69% male, 31% female) patients and the ²²⁴Ra studies comprised 2,153 patients (86% male, 14% female). Thus, the total for both treatment cohorts was 8,023 patients (74% male, 26% female). Median follow-up time was 26 years (range 15 to 55 years). In total 1,638 observed cancer events were used, the excess number of reported cancers were 1,071 and 119 for the Thorotrast and ²²⁴Ra cohorts, respectively. Details of number observed, expected, risk ratio and excess cancer per organ site and per study are presented in Supplemental Table 2. Included studies and patient

characteristics are presented in Table 1 (Thorotrast) and Table 2 (²²⁴Ra). The calculated absorbed dose data per organ or group of organs are presented in Table 3.

Excessive Relative Risk per Gray

The resulting pooled excess relative risk per Gray (ERR/Gy) for the 10 different organs/ organ groups were calculated with 95% confidence interval, and presented in Figure 1. Generally, the 95% confidence interval was wide: Lip, oral cavity and pharynx 15.20 (2.73 -27.6); Stomach 1.43 (-5.01 - 7.86); Colon 4.53 (-3.95 - 13.01); Breast 3.45 (-10.44 - 17.34); Urinary bladder 10.01 (1.39 - 22.28); Kidney 14.93 (3.94 - 25.92), but narrow for: Trachea, bronchus and lung 0.52 (0.22 - 0.83); Lymphoid and hematopoietic system 2.17 (1.68 - 2.66); Bone and articular cartilage 2.63 (1.97 - 3.30); and Liver 14.20 (12.82 - 15.57). Forest plots demonstrating the ERR/Gy from the respective individual studies and the resulting weighted overall ERR/Gy are found in Supplemental Figure 1 and Supplemental Table 1.

Excess Mortality

The resulting excess mortality of cancer induction following an i.p. treatment with 200Mbq/L ²¹¹At-mAb were estimated by multiplying treatment organ dose with the ERR/Gy and with the weighted natural mortality for a typical patient, i.e. female of 65 years, (eq 2). The total expected excess lifetime mortality of the treatment summed up to 1.13 per 100 when applying the most solid background data to derive ERR/Gy i.e. using both male and female observed/expected data. The influence of various assumptions and competing risk is presented in Table 4 and Supplemental Table 4. More than half of the excess cancer mortality were identified as from the urinary bladder (0.29) and the kidney (0.34). The lowest contribution to excess mortality per 100 were from bone and articular cartilage (0.002), and from the lymphoid and hematopoietic system (0.02).

DISCUSSION

With the introduction of TAT for clinical use, reliable risk estimations of long-term detriment, such as cancer induction are needed to justify the procedure. The alpha particles have a short path length with a high LET (linear energy transfer), that make them an ideal treatment for small-scale malignant disease. Adjuvant treatment in cancer aims at reducing the relapse rate for a cohort of patients subjected to treatment when compared to no treatment. Since only a fraction of these patients will relapse, it follows that the others are cured by the primary therapy. For the latter group, the adjuvant treatment will be of no benefit while carrying a possible risk. Therefore, a shared decision-making process is recommended when proposing an adjuvant therapy to the patient. The risks from all suggested treatments need to be disclosed and be related to the expected gain of the therapy.

Estimation of risk is valuable for at least two reasons: For proper optimization and planning of effect-finding studies, and to provide patients adequate information about possible benefits and risks. To state that the risks are unknown for a radiation-based therapy would not be correct nor ethical. While the risks are uncertain, some estimates would be useful background to discussions with patients prior to their informed consent.

A recent study estimated excess cancer risk from a cohort of almost 150,000 patients following ¹³¹I treatment of well differentiated thyroid cancer. A very small but statistically significant risk of second hematological malignancy was found (*21*). That work initiated a debate on both the necessity and the difficulties involved in performing such excess risk estimates (*22,23*). It is evident that true risk can only be assessed after long follow-up of patients exposed to a specific therapy, preferably in a randomized controlled trial.

We have previously used i.p. infusion of up to 200 MBq/L of ²¹¹At-mAb in a phase-I study resulting in absorbed doses well below tolerance doses (using RBE=5) with low radiation-induced toxicity (*2,3*). Using biokinetic modelling, an activity concentration of 200 MBq/L was assumed sufficient to achieve radical absorbed doses to microtumors (*24*). When we applied the International Commission on Radiological Protection (ICRP)-recommended radiation weighting

factor of 20 for alpha irradiation, the studied patients received an effective dose of 2.6 Sv (4) at this activity concentration. This would indicate a life-long lethal cancer risk of around 10%. Effective dose should not, however, be used for any radiotherapy as clearly stated by the ICRP itself (25). More specifically, the fundamental weaknesses of the effective dose as applied to alpha irradiation has been thoroughly discussed (26). In the present work, we investigated if published literature contained relevant amounts of data to calculate risk directly, i.e. data on epidemiologically derived carcinogenic risk following alpha-particle irradiation.

To do this we selected studies, by focusing on long-term reports of carcinogenic risk following medical use of alpha-particle irradiation, i.e. Thorotrast (²³²Th) (*5-9*) and ²²⁴Ra (*10-12*). These studies from multiple research groups contain well-documented radionuclide exposure to several thousand patients including life-long follow-up. Notably, most reported organ doses for ²³²Th and ²²⁴Ra are low and comparable with the organ doses received following adjuvant i.p. TAT with ²¹¹At-labelled antibodies. Contributions from electrons and photons were considered negligible.

Thorotrast was a colloidal suspension of 25% ThO₂ (including ²³²Th) used as injectable contrast agent in the 1930s-40s (27). The long biological half-life resulted in life-long irradiation (28) and lifetime doses of several gray (Gy) were received in reticuloendothelial organs with a resulting clear excess risk of cancers (17). Approximately 5% of the ²³²Th will distribute to other tissues with absorbed doses of 0.01 - 0.1 Gy (19), where cancer excess is not always statistically significant, but is included in this combined analysis. The strength of the dose calculations for Thorotrast lies in the use of actual measured thorium concentrations, in several tissues, from a reasonable number of individuals, while the main uncertainty lies in estimating the contribution from ²³²Th daughters (17,19).

²²⁴Ra-radium chloride, as a component of Peteosthor, was used to treat bone tuberculosis or ankylosing spondylitis until the early 2000s (*11*). Its use for the treatment of children and juveniles suffering from bone tuberculosis was stopped in 1956 due to the reported growth retardation and excess occurrence of bone sarcomas (29). The amount of ²²⁴Ra radioactivity administered up to that time was approximately 50 MBq in the "high-dose" treatment. Thereafter activity was reduced to about 10 MBq for treatment of ankylosing spondylitis in young adults. For the ²²⁴Ra dosimetry we used data from Lassman *et al.* (20) that are based on the age-dependent biokinetic model for alkaline earth elements as described in ICRP Publication 67 (*30*). In the current work, we have excluded patients <20 years, but the mean age of remaining patients is still comparatively low at 37 years. The mean latency time for ²²⁴Ra induced bone cancer was reported to be approximately 15 years (*31*). For other malignancies, the mean latency times were approximately 25 years, though presented with large uncertainty (*10,11*).

The ovarian cancer patients intended for an i.p. ²¹¹At-mAb therapy have a median age of 63, which is clearly higher than those exposed to Thorotrast and ²²⁴Ra (33 and 37 years, respectively). For low-LET irradiation, the age dependence is not trivial (*32*). Although latency is generally long, the risk reduction by age at irradiation is not noticeable until approximately 65 years of age. The exceptions are breast and bone cancer where risk reduction is seen already at age 50 at the time of irradiation (*33*). If a similar age dependence as for low-LET radiation also applies for ²¹¹At-mAb treated patients, the risk for breast and bone cancer (excess 0.036 and 0.002 per 100 treated, respectively) could be reduced by approximately a factor of two. However, since such data does not exist for high-LET irradiation, the main result of 1.13 excess cancer per 100 treated is without any age correction. Moreover, a younger patient has a longer life expectancy compared to an older patient (of same disease stage) and thereby a higher risk to be diagnosed with a secondary cancer. We adjusted the background mortality-rate data used accordingly with a resultant risk decrease with higher age at treatment. In Table 4 only the excess cancer numbers for 25 and 65 years are presented, but detailed in Supplemental Table 5.

In Table 4, the effects of making different assumptions or adding competing risks can be seen, all results are presented as 'number of excess cancer per 100 treated' (with 200 MBq/L ²¹¹At-mAb i.p.). For example in the analyzed cohorts (Table 1 and 2) female sex only constituted

approximately 25% of all individuals. Two studies (*5*, *10*) contained some data grouped by sex. If only the female data were used to calculate the ERR/Gy the number of excess cancer for a cancer-free female of 55 year amounted to 1.60. We find this number more uncertain as the female only derived ERR/Gy is based on much fewer observed cancer cases with a resultant much wider CI (Supplemental Table 4). Additionally, we demonstrate the effect of two kinds of competing risks. First, ovarian cancer stage is correlated to mortality, i.e. a patient in FIGO stage IV is more likely to die from ovarian cancer before developing a secondary cancer. Therefore, the excess cancer cases decrease when adjusting for the survival of ovarian cancer as shown for FIGO stages I to IV (Table 4). Secondly, patients surviving ovarian cancer are at increased risk of a second primary cancer, compared to the normal population (*34*). To account for this the excess cancer cases are multiplied with the hazard ratios for the risk to be diagnosed with a second primary cancer following an ovary cancer diagnosis (*34*). This results in an increase from 1.13 to 1.53 per 100 treated 'cancer-free' patients, no adjustment for decreased survival due to the secondary cancer was done, Table 4 and Supplemental Table 4.

The use of cancer excess data following exposure of ²³²Th and ²²⁴Ra are not ideal because of the different half-lives and biological distribution of these alpha-emitters. Also the micro distribution of decays within each organ will likely differ. On the other hand, they provide the best clinical data available for estimating long-term risk following alpha-particle therapies because the studies include solid data for some 8,000 patients with often life long-follow-up. In our estimates we have assumed that the risk is a linear function of the organ mean absorbed dose. This implies a linear no-threshold model. This presumption is reasonable if cancer induction originates from one stochastic mutation induced by an alpha particle traversing the cell nucleus (*26*). A deviation from linearity may be expected when high radiation doses are received under a short time, since an increased likelihood for cell death will reduce the cancer induction risk. For ²³²Th, several observations indicate risk increasing linearly with increasing dose. This includes the liver that receives the highest absorbed dose with a very heterogeneous dose distribution (*35*). Using a two-mutation carcinogenesis model the conclusion was that the excess absolute risk for liver tumors correlate linearly with absorbed dose (*36*).

The resulting highest excess cancer contribution were from urinary bladder and from kidney. However, diuretics and an open indwelling urinary catheter to reduce transit time can decrease the dose to the bladder, and probably the dose to kidney. It is also likely that ²¹¹At-compounds with improved in vivo stability can reduce risk to organs associated with uptake of free ²¹¹At.

CONCLUSION

Relevant data in published literature was found that allowed carcinogenic risk estimation. The results presented herein should be viewed as a first estimate of long-term risk for cancer induction following i.p. alpha particle treatment. They carry uncertainties in both the presented excess cancer incidence and dosimetry, while still representing the best risk estimations available today. Application of this method will strengthen the risk-benefit analysis for patient selection and provides valuable information on organ(s) where we might expect to experience the largest effect of dose optimizations.

KEY POINTS

QUESTION: Can risk of secondary cancer following an adjuvant i.p. ²¹¹At-mAb-based therapy be estimated?

PERTINENT FINDINGS: Using organ dose from ²¹¹At, organ-specific risks were estimated from literature data on excess cancer for subjects medically exposed to other alpha-particle emitters (²²⁴Ra or ²³²Th). The excess relative risk was applied for i.p. ²¹¹At-TAT patients, and the total excess mortality could amount to range from 0.1 - 1.8 per 100 treated, depending on various background data or assumptions of competing risks.

IMPLICATIONS FOR PATIENT CARE: The estimation of carcinogenic risk is valuable for proper justification, optimization, and planning of effect-finding studies in forthcoming adjuvant therapy trials, and to provide patients with adequate information about possible benefits and risks.

REFERENCES

1. Elgqvist J, Frost S, Pouget JP, Albertsson P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. *Front Oncol.* 2014;3:324.

2. Andersson H, Cederkrantz E, Back T, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab')2--a phase I study. *J Nucl Med.* 2009;50:1153-1160.

3. Hallqvist A, Bergmark K, Back T, et al. Intraperitoneal alpha-emitting radioimmunotherapy with (211)At in relapsed ovarian cancer: Long-term follow-up with individual absorbed dose estimations. *J Nucl Med.* 2019;60:1073-1079.

4. Cederkrantz E, Andersson H, Bernhardt P, et al. Absorbed doses and risk estimates of (211)At-MX35 F(ab')2 in intraperitoneal therapy of ovarian cancer patients. *Int J Radiat Oncol Biol Phys.* 2015;93:569-576.

5. Becker N, Liebermann D, Wesch H, Van Kaick G. Mortality among Thorotrast-exposed patients and an unexposed comparison group in the German Thorotrast study. *Eur J Cancer*. 2008;44:1259-1268.

6. dos Santos Silva I, Malveiro F, Jones ME, Swerdlow AJ. Mortality after radiological investigation with radioactive Thorotrast: a follow-up study of up to fifty years in Portugal. *Radiat Res.* 2003;159:521-534.

7. Kido C, Sasaki F, Hirota Y, et al. Cancer mortality of thorotrast patients in Japan: the second series updated 1998. *Radiat Res.* 1999;152:S81-83.

8. Mori T, Fukutomi K, Kato Y, et al. 1998 results of the first series of follow-up studies on Japanese thorotrast patients and their relationships to an autopsy series. *Radiat Res.* 1999;152:S72-80.

9. Travis LB, Hauptmann M, Gaul LK, et al. Site-specific cancer incidence and mortality after cerebral angiography with radioactive thorotrast. *Radiat Res.* 2003;160:691-706.

10. Nekolla EA, Walsh L, Spiess H. Incidence of malignant diseases in humans injected with radium-224. *Radiat Res.* 2010;174:377-386.

11. Wick RR, Atkinson MJ, Nekolla EA. Incidence of leukaemia and other malignant diseases following injections of the short-lived alpha-emitter 224Ra into man. *Radiat Environ Biophys.* 2009;48:287-294.

12. Wick RR, Nekolla EA, Gossner W, Kellerer AM. Late effects in ankylosing spondylitis patients treated with 224Ra. *Radiat Res.* 1999;152:S8-S11.

13. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. *BMJ*. 2003;327:557-560.

14. *Stata/IC 16.0 for Mac* [computer program]. Version. StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC.; 2019.

15. Danckert B, Ferlay J, Engholm G, et al. NORDCAN: Cancer incidence, mortality, prevalence and survival in the Nordic countries, version 8.2 (26.03.2019). Available from <u>http://www.ancr.nu</u>, accessed on 14.10.2019.

16. Official Statistics of Sweden: Deaths by region, age (during the year) and sex. 2007-2016. <u>https://www.statistikdatabasen.scb.se/pxweb/en/ssd/START_BE_BE0101_BE01011/DodaHandelseK/</u> accessed on 03.12.2020.

17. Ishikawa Y, Kato Y, Mori T, Machinami R, Kitagawa T. Alpha-particle dose to the liver and spleen tissues of Japanese Thorotrast patients. *Health Phys.* 1993;65:497-506.

18. Kaul A, Noffz W. Tissue dose in thorotrast patients. *Health Phys.* 1978;35:113-121.

19. Ishikawa Y, Mori T, Kato Y, Machinami R, Priest ND, Kitagawa T. Systemic deposits of thorium in thorotrast patients with particular reference to sites of minor storage. *Radiat Res.* 1993;135:244-248.

20. Lassmann M, Nosske D, Reiners C. Therapy of ankylosing spondylitis with 224Ra-radium chloride: dosimetry and risk considerations. *Radiat Environ Biophys.* 2002;41:173-178.

21. Molenaar RJ, Sidana S, Radivoyevitch T, et al. Risk of hematologic malignancies after radioiodine treatment of well-differentiated thyroid cancer. *J Clin Oncol.* 2018;36:1831-1839.

22. Verburg FA, Giovanella L, Iakovou I, et al. I-131 as adjuvant treatment for differentiated thyroid carcinoma may cause an increase in the incidence of secondary haematological malignancies: an "inconvenient" truth? *Eur J Nucl Med Mol Imaging*. 2018;45:2247-2249.

23. Tulchinsky M, Binse I, Campenni A, et al. Radioactive Iodine therapy for differentiated thyroid cancer: Lessons from confronting controversial literature on risks for secondary malignancy. *J Nucl Med.* 2018;59:723-725.

24. Palm S, Back T, Haraldsson B, Jacobsson L, Lindegren S, Albertsson P. Biokinetic modeling and dosimetry for optimizing intraperitoneal radioimmunotherapy of ovarian cancer microtumors. *J Nucl Med.* 2016;57:594-600.

25. The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. *Ann ICRP*. 2007;37:1-332.

26. Mole RH. Carcinogenesis by thorotrast and other sources of irradiation, especially other alpha-emitters. *Environ Res.* 1979;18:192-215.

27. Abbatt JD. History of the use and toxicity of thorotrast. *Environ Res.* 1979;18:6-12.

28. Leggett RW. Basis and implications of the ICRP's new biokinetic model for thorium. International Commission on Radiological Protection. *Health Phys.* 1997;73:587-600.

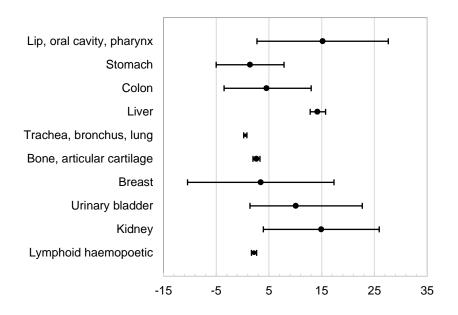
29. Spiess H. Peteosthor - a medical disaster due to Radium-224. A personal recollection. *Radiat Environ Biophys.* 2002;41:163-172.

30. ICRP. Age-dependent doses to members of the public from intake of radionuclides - Part 2. Ingestion dose coefficients. ICRP Publication 67. *Ann ICRP*. 1993;23:95-120.

31. Chmelevsky D, Kellerer AM, Land CE, Mays CW, Spiess H. Time and dose dependency of bone-sarcomas in patients injected with radium-224. *Radiat Environ Biophys.* 1988;27:103-114.

32. Pawel DJ, Puskin JS. U.S. Environmental Protection Agency radiogenic risk models and projections for the U.S. population. *Health Physics*. 2012;102:646-656.

33. Pawel DJ, Puskin JS. EPA radiogenic cancer risk models and projections for the U.S. population. EPA 402-R-11-001. In: Agency USEP, ed. Washington: United States Environmental Protection Agency, Office of Radiation and Indoor Air; 2011.


34. Nielsen SF, Nordestgaard BG, Bojesen SE. Associations between first and second primary cancers: a population-based study. *CMAJ*. 2012;184:E57-69.

35. Martling U, Mattsson A, Travis LB, Holm LE, Hall P. Mortality after long-term exposure to radioactive Thorotrast: a forty-year follow-up survey in Sweden. *Radiat Res.* 1999;151:293-299.

36. Leenhouts HP, Brugmans MJ, Andersson M, Storm HH. A reanalysis of liver cancer incidence in Danish patients administered thorotrast using a two-mutation carcinogenesis model. *Radiat Res.* 2002;158:597-606.

37. Rottmann M, Burges A, Mahner S, et al. Cancer of the ovary, fallopian tube, and peritoneum: a population-based comparison of the prognostic factors and outcomes. *J Cancer Res Clin Oncol.* 2017;143:1833-1844.

FIGURE 1

Figure 1. Pooled excess relative risk per Gray (ERR/Gy) for the different organs/ organ groups with 95% confidence interval (CI). The data for Bladder represent only one background study, Nekolla et al. 2009 (*10*).

Author/year	Study design/ Statistical method	Ν	Gender N (%)	Age Mean (years)	Comparis on group	Estimate Dosage ml *	Exclusion criteria	Last follow-up	Follow-up time (years)	Alive at analysis	Excess cancers	Excess per 100 subjects	Expected number of cancers
Becker 2008 Germany (5)	Site specific Mortality/ SMR	2326	M: 1717 (74%) F: 602 (26%)	31	1890	Mean 21	Survival <3 years⁺	2005	Mean 34	2%	349	15	114
Travis 2003 Sweden/ Denmark (<i>9</i>)	Site specific incidence/SIR and RR	1204	M: 670 (56%) F: 534 (44%)	35 [‡]	1180	Mean 17	Survival <2 years ⁺	1992 - 93	Mean 22	7%	229	19	77
Travis 2003 USA (<i>9</i>)	Site specific Mortality/ SMR and RR	446	M: 223 (51%) F: 216 (49%)	41 [‡]	212	Mean 25	Survival <2 years [†]	1992	Mean 20	10%	50	11	18
Dos Santos Silva 2003 Portugal (6)	Site specific Mortality/SMR and RR	1096	M: 685 (62.5%) F: 411 (37.5%)	35 [‡]	1014	Median 20	Survival <5 years [†]	1996	Mean 15	6%	86	8	5
Mori 1999 Japan (8)	Site specific Mortality/ RR	262 [§]	M: 262 (100%)	25	1630	Mean 17	Survival <10 years ⁺	1998	-	7%	79	30	30
Kido 1999 Japan (7)	Site specific Mortality	150 [∥]	M: 150 (100%)	22	1144	10-19 ml (94%)	Dead before 1979	1998	-	12%	63	42	8
Mori 1999 Japan (<i>8</i>)	Autopsy study	386	M: 348 (90%) F: 38 (10%)	9-47 (range)	172350	Mean 18	Survival <10 years ⁺	1998	Mean 38 SD 9	-	214	55	105

TABLE 1Background Thorotrast data

N, number of patients. M, male sex. F, female sex. SD, standard deviation. SMR, standardized mortality ratio. SIR, standardized incidence ratio.

* Thorotrast dosage refers to the volume (ml) of thorotrast injected.

⁺From Thorotrast injection.

[‡]Estimated age. [§]61 and \parallel 69 patients included in the Autopsy study, (8).

Author/year	Study design/ Stat. method	N	Gender N (%)	Age Mean	Comparison group	Estimated Activity MBq	Exclusion criteria	Last follow -up	Follow-up time (years)	Alive at analysis	Excess cancers	Excess per 100 subjects	Expected number of cancers
Nekolla 2010 Germany (<i>10</i>)	Site specific incidence/ SIR	682	M: 510 (75%) F: 172 (25%)	*	no	Approx. 45	Age ≤ 20 years (full cohort n=899). ‡ lag time	2007	~55	6%	92 †	13 †	56 †
Wick 2009 Germany (11)	Site specific incidence/ SIR and RR	1471	M: 1332 (91%) F: 139 (9%)	*	1324	Approx. 10 (0,17/kg)			Mean 26	32%	23 †	0.3	159

TABLE 2Background 224 Ra data

N, number of patients. M, male sex. F, female sex. SMR, standardized mortality ratio. SIR, standardized incidence ratio.

*Mean age not possible to calculate reported as < or > than 20 years.

⁺Lung cases not included.

[‡]The Nekolla 2010 study used a 5-year and 2-year lag time for solid tumors and hematological malignancies, respectively.

Organ /group of organs	ICD-10 code	†Thorotrast (mGy)	‡ ²²⁴Ra high (mGy)	§ ²²⁴Ra low (mGy)	²¹¹ At (mGy)	¶ Mortality per 100,000 in female aged 65 +
Lip, oral cavity, pharynx	C00 – C13	174	-	-	280	36,9
Stomach	C16	39	99	22	160	80
*Colo-rectum, anal	C18 – C21	42	297	-	36	397,2
Liver, intrahepatic bile ducts	C22	6900	585	130	104	69,6
Trachea, broncus, lung	C33 – C34	1094	99	22	320	570,5
Bone and articular cartilage	C40 - C41	4800	19800	-	182	3,8
Breast (female)	C50	-	99	22	28	373
Kidney	C64 – C65	45	333	74	340	67,3
Urinary bladder	C67	-	99	-	380	76,2
Lymphoid, hematopoietic and related tissues	C81 – C96	2100	1890	420	30	281,9

 TABLE 3

 Calculated absorbed dose data and background natural mortality

-, dose data not available.

*Colon (C18-19) 70%, rectum (C20) ~30%.

⁺Thorotrast mean administered 20ml and mean 30 years exposition using distribution data from Ishikawa *et al.* (*17,19*)

 224 Ra 45 MBq (high) and § 224 Ra 10 MBq (low), applied to distribution from Lassman *et al.* (20). $^{\parallel 211}$ At 200 MBq/L in i.p. infusion, 24 hrs. dwell time, from Cederkrantz *et al.* (4).

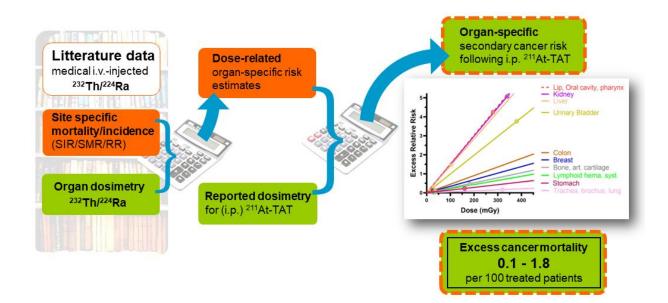
¶Mortality data from Nordcan (15) weighted by the natural mortality in the age span, data from Statistics Sweden (16).

		Excess cancer cases per 100 treated +					
	Adjustment in calculation or			FIGO s	stage*		
	used background	Cancer free	Ι	II	III	IV	
Using ERR/Gy bas	ed on 'Male and female' ‡	1.13	0.90	0.64	0.25	0.11	
Using ERR/Gy bas	ed on 'Female sex only' §	1.60	1.28	0.91	0.35	0.16	
Age dependence adjustment ‡ If low LET equals high LET,		1.11	0.89	0.63	0.24	0.11	
Other 2 nd cancer r primary, k ‡	isk following an Ovarian Cancer	1.53	1.24	0.87	0.34	0.15	
Age (25 or 65	ERR/Gy 'Male and female' ‡	1.24 - 0.90					
<i>year)</i> at time of treatment ¶	ERR/Gy 'Female sex only' §	1.84 - 1.21					

 TABLE 4

 Influence of Various Assumptions and Competing risk*

*10 year ovarian cancer relative survival according to FIGO (International Federation of Gynecology and Obstetrics) stage I – IV (0.80 / 0.57 / 0.22 / 0.11), (37).


+Female patients, 55 year at treatment.

‡Calculations made with the 'Male and female' derived ERR/Gy in Supplemental Table 4. §Using ERR/Gy based on 'Female only'.

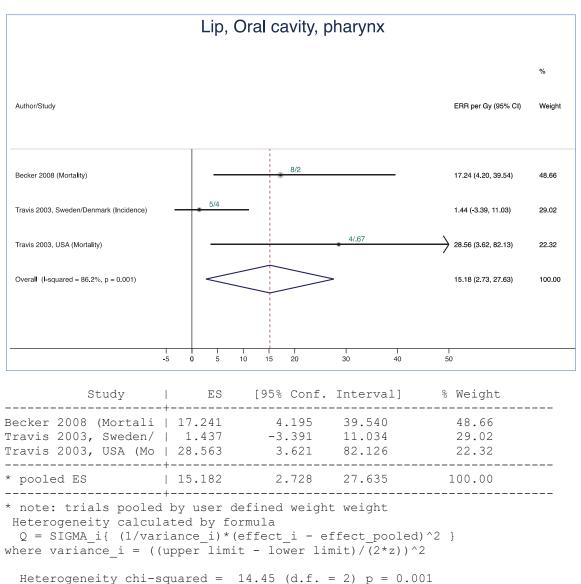
kHazard risks (*34*), specified in Supplemental Table 4. No adjustment for decreased survival due to the second primary cancer is performed.

¶The influence of 'age at treatment' (25 and 65 years) is presented, specified in Supplemental Table 5.

Graphical Abstract

SUPPLEMENTAL FIGURE 1A – 1J

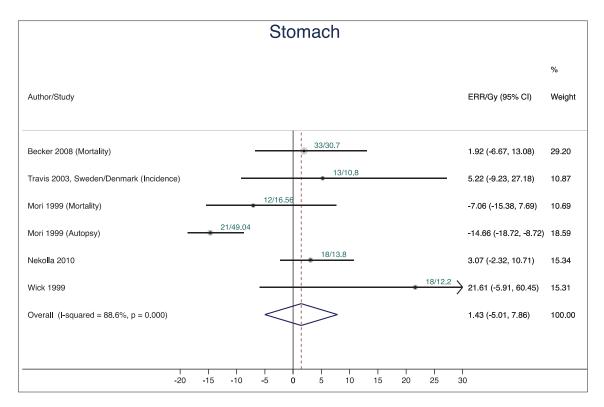
Forest plots demonstrating the Excessive Relative Risk per Gray (ERR/Gy) from the respective individual studies and the resulting weighted overall EER/Gy.


Note

- In Figure 1A (Lip oral cavity and pharynx), the ERR/Gy is based only on Thorotrast data as there are no ²²⁴Ra dose data available.
- Figure 1B (Stomach); 1C (Colon); 1D (Liver and intrahepatic bile ducts); 1G (Bone and articular cartilage); 1I (Kidney) and 1J (Lymphoid, hematopoietic and related tissues) are based on data from both Thorotrast and ²²⁴Ra studies.
- Figure 1E (Trachea, bronchus and Lung) is presented with all ²²⁴Ra-studies excluded and the Thorotrast autopsy study (Mori 1999) excluded due to bias from different smoking habits as discussed in main article. For reference we present Figure 1F (Trachea, bronchus and Lung) a forestplot were the ²²⁴Ra studies and the Mori autopsy study are included.
- Figure 1H (Breast) is based only on ²²⁴Ra data, as no dose data for breast is available for thorium.
- No pooling, with demonstrating Forest plot is done for Bladder as only one data point is available (Nekolla 2010):

	-			
Urinary	v B	lad	der:	

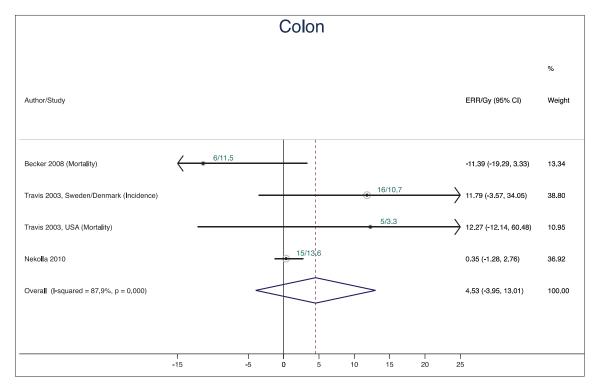
Study		ES	[95% Conf.	Interval]	% Weight
Nekolla 2010		10.10	1.40	22.20	100.00


Sup. Figure 1A, Lip oral cavity and pharynx

I-squared (variation in ES attributable to heterogeneity) = 86.2%

Test of ES=0 : z= 2.39 p = 0.017

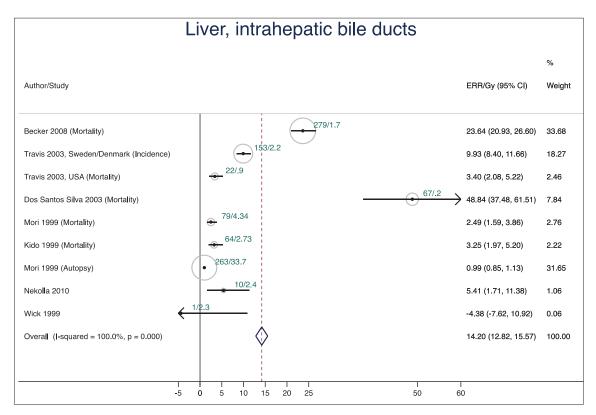
Sup. Figure 1B, Stomach


Study	•	2	Interval]	% Weight				
Becker 2008 (Mortali Travis 2003, Sweden/ Mori 1999 (Mortality Mori 1999 (Autopsy)	1.921 5.223 -7.061 -14.661 3.074 21.610	-6.667 -9.231 -15.385 -18.718 -2.323 -5.909	27.179 7.692 -8.718	29.20 10.87 10.69 18.59 15.34 15.31				
* pooled ES	1.427	-5.008		100.00				
<pre>* note: trials pooled by user defined weight weight Heterogeneity calculated by formula Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 }</pre>								

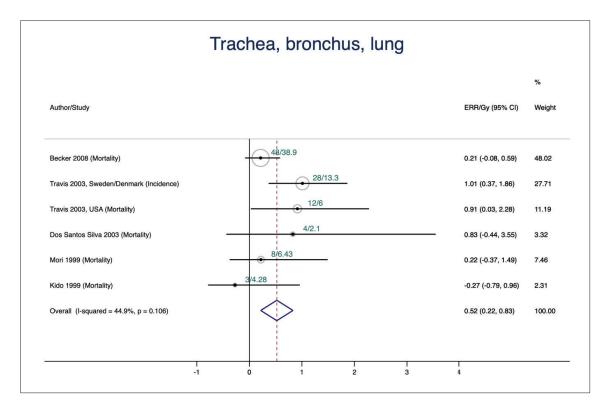
where variance_i = $((upper_limit - lower_limit)/(2*z))^2$

Heterogeneity chi-squared = 43.69 (d.f. = 5) p = 0.000 I-squared (variation in ES attributable to heterogeneity) = 88.6%

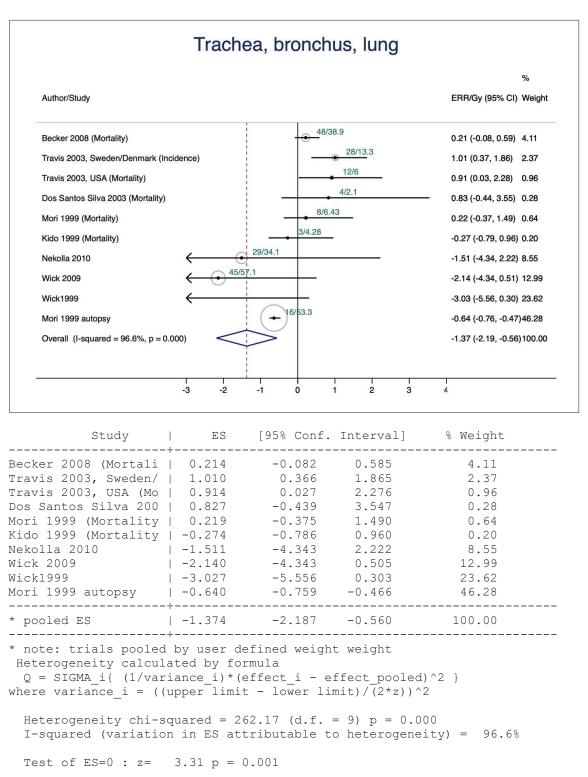
Test of ES=0 : z= 0.43 p = 0.664


Sup. Figure 1C, Colon

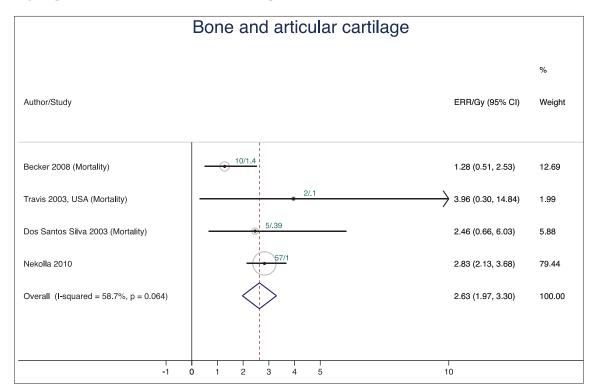
Study ES	-	-					
Becker 2008 (Mortali Travis 2003, Sweden/ Travis 2003, USA (Mo Nekolla 2010	-11.387 11.794 12.266 0.347	-19.286 -3.571 -12.143 -1.279	3.333 34.048 60.476 2.761	13.34 38.80 10.95 36.92			
* pooled ES	4.528	-3.951	13.007	100.00			
<pre>* note: trials pooled by user defined weight weight Heterogeneity calculated by formula Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 } where variance_i = ((upper limit - lower limit)/(2*z))^2</pre>							
Heterogeneity chi-squared = 24.81 (d.f. = 3) p = 0.000 I-squared (variation in ES attributable to heterogeneity) = 87.9%							


Test of ES=0 : z= 1.05 p = 0.295

Sup. Figure 1D, Liver and intrahepatic bile ducts

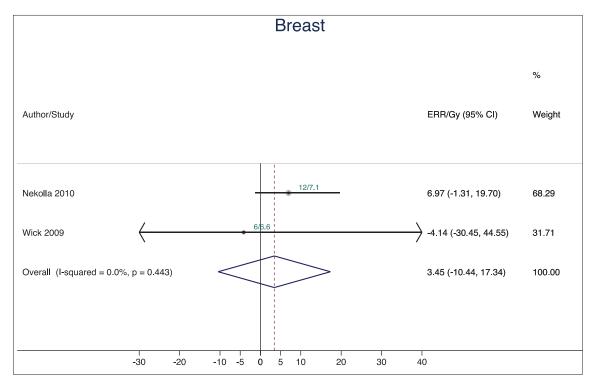

ES [95% Conf. Interval] % Weight Study ------Becker 2008 (Mortali | 23.640 20.930 26.601 33.68 8.400 11.664 2.075 5.219 Travis 2003, Sweden/ | 9.934 18.27 Travis 2003, USA (Mo | 3.398 2.46 Dos Santos Silva 200 | 48.841 37.478 61.507 7.84 Mori 1999 (Mortality | 2.493 1.594 2.76 3.855 Kido 1999 (Mortality | 3.254 1.971 5.203 2.22 Mori 1999 (Autopsy) | 0.986 0.854 1.132 31.65 | 5.414 | -4.385 1.709 11.385 Nekolla 2010 1.06 -7.615 Wick 1999 10.923 0.06 ------* pooled ES | 14.197 12.820 15.574 100.00 ------* note: trials pooled by user defined weight weight Heterogeneity calculated by formula Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 } where variance_i = ((upper limit - lower limit)/(2*z))^2 Heterogeneity chi-squared = 35532.41 (d.f. = 8) p = 0.000 I-squared (variation in ES attributable to heterogeneity) = 100.0% Test of ES=0 : z= 20.21 p = 0.000

Sup. Figure 1E, Trachea, bronchus and Lung (with ²²⁴Ra-studies and Mori- autopsy <u>excluded</u>)



Study		[95% Conf.	Interval]	% Weight			
Becker 2008 (Mortali Travis 2003, Sweden/ Travis 2003, USA (Mo Dos Santos Silva 200 Mori 1999 (Mortality Kido 1999 (Mortality	0.214 1.010 0.914 0.827 0.219 -0.274	-0.082 0.366 0.027 -0.439 -0.375 -0.786	1.865 2.276 3.547 1.490 0.960	27.71 11.19 3.32 7.46 2.31			
* pooled ES	0.522	0.215					
<pre>* note: trials pooled by user defined weight weight Heterogeneity calculated by formula Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 } where variance_i = ((upper limit - lower limit)/(2*z))^2</pre>							
Heterogeneity chi-squared = 9.07 (d.f. = 5) p = 0.106 I-squared (variation in ES attributable to heterogeneity) = 44.9 %							
Test of ES=0 : z= 3.34 p = 0.001							

Sup. Figure 1F, Trachea, bronchus and Lung (224Ra-studies and Mori autopsy included)


Sup. Figure 1G, Bone and articular cartilage

Study		-	-	% Weight				
Becker 2008 (Mortali Travis 2003, USA (Mo Dos Santos Silva 200 Nekolla 2010	1.280 3.958 2.463 2.828	0.506 0.296 0.658 2.130	2.529 14.844 6.025 3.679	12.69 1.99 5.88 79.44				
* pooled ES	2.633	1.969	3.297	100.00				
<pre>* note: trials pooled by user defined weight weight Heterogeneity calculated by formula Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 } where variance_i = ((upper limit - lower limit)/(2*z))^2 Heterogeneity chi-squared = 7.26 (d.f. = 3) p = 0.064 I-squared (variation in ES attributable to heterogeneity) = 58.7%</pre>								

Test of ES=0 : z= 7.77 p = 0.000

Sup. Figure 1H, Breast

Study	ES	[95% Conf.	Interval]	% Weight			
Nekolla 2010 Wick 2009	6.970 -4.136	-1.313 -30.455	19.697 44.545	68.29 31.71			
* pooled ES	3.448	-10.441	17.336	100.00	_		
* note: trials pooled by user defined weight weight Heterogeneity calculated by formula							

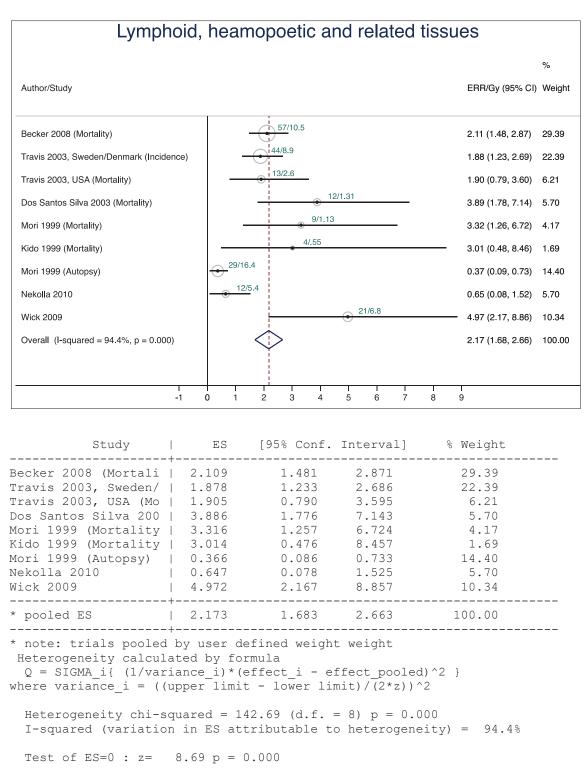
Q = SIGMA_i{ (1/variance_i) * (effect_i - effect_pooled)^2 } where variance_i = ((upper limit - lower limit)/(2*z))^2

Heterogeneity chi-squared = 0.59 (d.f. = 1) p = 0.443I-squared (variation in ES attributable to heterogeneity) = 0.0%

Test of ES=0 : z= 0.49 p = 0.627

Sup. Figure 1I, Kidney

Study		-	Interval]		
Becker 2008 (Mortali Travis 2003, Sweden/ Travis 2003, USA (Mo Mori 1999 (Mortality Mori 1999 (Autopsy) Nekolla 2010 Wick 2009	4.989 38.384 14.815 -2.444 -1.192 2.003 13.216	-12.222 9.111 -21.333 -19.778 -14.444 -0.991 2.297	37.111 83.556 184.222 137.556 23.778 7.297 28.784	11.24 24.07 1.20 2.04 11.28 13.36 36.80	
* pooled ES	14.926	3.936	25.917	100.00	


* note: trials pooled by user defined weight weight Heterogeneity calculated by formula

Q = SIGMA_i{ (1/variance_i)*(effect_i - effect_pooled)^2 } where variance i = ((upper limit - lower limit)/(2*z))^2

Heterogeneity chi-squared = 42.49 (d.f. = 6) p = 0.000 I-squared (variation in ES attributable to heterogeneity) = 85.9%

Test of ES=0 : z= 2.66 p = 0.008

Sup. Figure 1J, Lymphoid, hematopoietic and related tissues

SUPPLEMENTAL TABLE 1

Study specific Calculated Excess Relative Risk per Gray (**ERR/Gy***) Excess mortality per 100 for a treatment with 200 MBq/L ²¹¹At-mAb

Organ/ Organsystem	Study	Excess Relative Risk per Gy	Lower Cl	Upper Cl	Dose ²¹¹ At- mAb (Gy)	Mortality per 100	Excess mortality per 100
Lip, oral cavity,	Becker	17.24	4.19	39.54			
pharynx	Travis (Swe/Dan)	1.44	-3.39	11.03			
	Travis (USA)	28.56	3.62	82.13			
	Pooled	15.18	2.73	27.64	0.28	0.037	0.16
Stomach	Becker	1.92	-6.67	13.08			
	Travis (Swe/Dan)	5.22	-9.23	27.18			
	Mori (Serie 1)	-7.06	-15.39	7.69			
	Mori (autopsy)	-14.66	-18.72	-8.72			
	Nekolla	3.07	-2.32	10.71			
	Wick 1999	21.61	-5.91	60.46			
	Pooled	1.43	-5.01	7.86	0.16	0.080	0.02
Colon	Becker	-11.39	-19.29	3.33			
	Travis (Swe/Dan)	11.79	-3.57	34.05			
	Travis (USA)	12.23	-12.14	60.48			
	Nekolla	0.347	-1.21	2.60			
	Pooled	4.528	-3.95	13.01	0.036	0.40	0.06
Liver	Becker	23.64	20.93	26.60			
	Travis (Swe/Dan)	9.93	8.40	11.66			
	Travis (USA)	3.40	2.08	5.22			
	Dos Santos	48.84	37.48	61.51			
	Mori (Serie 1)	2.49	1.59	3.86			
	Kido	3.25	1.97	5.20			
	Mori (autopsy)	0.99	0.85	1.13			
	Nekolla	5.41	1.71	11.38			
	Wick 1999	-4.39	-7.62	10.92			
	Pooled	14.20	12.82	15.57	0.104	0.070	0.10
Trachea,	Becker	0.21	-0.09	0.64			
bronchus, lung	Travis (Swe/Dan)	1.01	0.40	2.04			
	Travis (USA)	0.91	0.03	2.49			
	Dos Santos	0.83	-0.48	3.88			
	Mori (Serie 1)	0.22	-0.41	1.63			
	Kido	-0.27	-0.78	1.23			
	Nekolla	-1.51	-4.34	2.22			
	Wick 2009	-2.14	-4.343	0.505			
	Wick 2009	-3.03	-5.56	0.303			
	Pooled Ra (+Mori autop) included	-1.37	-2.19	-0.56	0.32	0.570	-0.25
	Pooled Ra (+Mori autop) excluded	0.52	0.22	0.83			0.094

Organ/ Organsystem	Study	Excess Relative Risk per Gy	Lower Cl	Upper Cl	Dose ²¹¹ At- mAb (Gy)	Mortality per 100	Excess mortality per 100
Bone and	Becker	1.28	0.51	2.53			
articular	Travis (USA)	3.96	0.30	14.84			
cartilage	Dos Santos	2.46	0.66	6.03			
	Nekolla	2.83	2.13	3.68			
	Pooled	2.63	1.97	3.30	0.182	0.004	0.0018
Breast	Nekolla	6.97	-1.31	19.70			
	Wick	4.14	-30.46	44.55			
	Pooled	3.45	-10.44	17.34	0.028	0.373	0.04
Urinary bladder	Nekolla	10.1	1.40	22.70	0.38	0.076	0.29
Kidney	Becker	4.99	-12.22	37.11			
	Travis (Swe/Dan)	38.38	9.11	83.56			
	Travis (USA)	14.82	-21.33	184.22			
	Mori (Serie 1)	-2.44	-19.78	137.56			
	Mori (Autopsy)	-1.19	-14.44	23.78			
	Nekolla	2.00	-0.99	7.30			
	Wick 2009	13.22	2.30	28.92			
	Pooled	14.93	3.94	25.92	0.34	0.067	0.34
Lymphoid	Becker	2.11	1.48	2.87			
hematopoietic	Travis (Swe/Dan)	1.88	1.23	2.69			
system	Travis (USA)	1.91	0.71	3.60			
	Dos Santos	3.89	1.78	7.14			
	Mori (Serie 1)	3.32	1.26	6.72			
	Kido	3.01	0.48	8.46			
	Mori (Autopsy)	0.37	0.09	1.51			
	Nekolla	0.65	0.08	1.53			
	Wick 2009	4.97	2.17	8.86			
	Pooled	2.17	1.68	2.66	0.03	0.28	0.02

SUPPLEMENTAL TABLE 1 cont.

$$ERR/Gy = \frac{RR - 1}{Gy}$$

*

	Observed and expected cancer per organ and study								
Organ(s)	Study	Observed	Expected	Risk Ratio	Excess				
	Becker 2008	8	2,0	4,00	6,0				
Lip, oral cavity, pharynx	Travis 2003 Swe/Dan	5	4,0	1,25	1,0				
pharynx	Travis 2003 US	4	0,7	5,97	3,3				
	Becker 2008	33	30,7	1,07	2,3				
	Travis 2003 Swe/Dan	13	10,8	1,20	2,2				
Stomach	Mori series 1 1999	12	16,6	0,72	-4,6				
Stomach	Nekolla 2010	18	13,8	1,30	4,2				
	Wick 1999	18	12,2	1,48	5,8				
	Mori 1999 autopsy	21	49,0	0,43	-28,0				
	Becker 2008	6	11,5	0,52	-5,5				
• •	Travis 2003 Swe/Dan	16	10,7	1,50	5,3				
Colon	Travis 2003 US	5	3,3	1,52	1,7				
	Nekolla 2010	15	13,6	1,10	1,4				
	Becker 2008	279	1,7	164,12	277,3				
Liver, intrahepatic bile ducts	Travis 2003 Swe/Dan	153	2,2	69,55	150,8				
	Travis 2003 US	22	0,9	24,44	21,1				
	dos Santos Silva 2003	67	0,2	338,00	66,8				
	Mori serie 1 1999	79	4,3	18,24	74,7				
	Kido serie 2 1999	64	2,7	23,45	61,3				
	Nekolla 2010	10	2,4	4,17	7,6				
	Wick1999	1	2,3	0,43	-1,3				
	Mori 1999 autopsy	263	33,7	7,80	229,3				
	Becker 2008	48	38,9	1,23	9,1				
	Travis 2003 Swe/Dan	28	13,3	2,11	14,7				
	Travis 2003 US	12	6,0	2,00	6,0				
	dos Santos Silva 2003	4	2,1	1,90	1,9				
Trachea, broncus,	Mori series 1 1999	8	6,4	1,24	1,6				
lung	Kido series 2 1999	3	4,3	0,70	-1,3				
	Nekolla 2010	29	34,1	0,85	-5,1				
	Wick 2009	45	57,1	0,79	-12,1				
	Wick1999	25	35.7	0,70	-10,7				
	Mori 1999 autopsy	16	53,3	0,31	-37,3				
	Becker 2008	10	1,4	7,14	8,6				
Bone and articular	Travis 2003 US	2	0,1	20,00	1,9				
cartilage	dos Santos Silva 2003	5	0,4	12,82	4,6				
-	Nekolla 2010	57	1,0	57,00	56,0				
	Becker 2008	9	6,4	1,41	2,6				
	Travis 2003 Swe/Dan	27	15,9	1,70	11,1				
	Travis 2003 US	6	2,9	2,07	3,1				
Breast	dos Santos Silva 2003	3	1,4	2,07	1,7				
	Nekolla 2010	12	7,1	1,69	4,9				
	Wick 2009	6	6,6	0,91	-0,6				
	WICK 2009	0	0,0	0,91	-0,0				

SUPPLEMENTAL TABLE 2

- - - - - tudu Estimating the risk for secondary cancer following targeted alpha therapy with astatine-211 intraperitoneal radioimmunotherapy

Leidermark et al 2022-04-24

Organ(s)	Study	Observed	Expected	Risk Ratio	Excess
	Becker 2008	7	5,7	1,23	1,3
Urinom, bladdar	Travis 2003 Swe/Dan	8	6,7	1,19	1,3
Urinary bladder	Travis 2003 US	3	0,8	3,75	2,2
	Nekolla 2010	16	8,0	2,00	8,0
	Becker 2008	6	4,9	1,22	1,1
	Travis 2003 Swe/Dan	12	4,4	2,73	7,6
	Travis 2003 US	1	0,6	1,67	0,4
Kidney	Mori serie 1 1999	1	1,1	0,88	-0,1
	Nekolla 2010	7	4,2	1,67	2,8
	Wick 2009	18	9,1	1,98	8,9
	Mori 1999 autopsy	6	6,3	0,95	-0,3
	Becker 2008	57	10,5	5,43	46,5
	Travis 2003 Swe/Dan	44	8,9	4,94	35,1
	Travis 2003 US	13	2,6	5,00	10,4
Lymphoid,	dos Santos Silva 2003	12	1,3	9,16	10,7
hematopoietic and	Mori serie 1 1999	9	1,1	7,96	7,9
related tissues	Kido serie 2 1999	4	0,5	7,33	3,5
	Nekolla 2010	12	5,4	2,22	6,6
	Wick 2009	21	6,8	3,09	14,2
	Mori 1999 autopsy	29	16,4	1,77	12,6
	Total number (all studies)	1753			

Studies marked in Italic contain risk ratio data but are not used due to lacking organ dose data or exposure group is questionable as discussed in main article.

SUPPLEMENTAL TABLE 3

Weighting factors per age group

Age (years)	Deceased, N	Total individuals at risk, N	w _i fraction of total population
65-69	24944	409628	0,970
70-74	31922	381195	0,903
75-79	45675	342397	0,811
80-84	74076	282521	0,669
85+	245483	122742	0,291

Based on the assumption of a constant death rate.

N, numbers

Mortality data (females aged 65-85+), from Statistics Sweden:

Official Statistics of Sweden: Deaths by region, age (during the year) and sex. 2007-2016. https://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__BE__BE0101__BE0101I/DodaHandels eK/ accessed on 03.12.2020.

	²¹¹ At dose mGy	Male and female derived ERR/Gy		Female sex only derived ERR/Gy		2 nd CA risk following Ovarian CA primary		Low LET = high LET Age Adjustment	
		ERR/Gy (95% CI)	*Excess	ERR/Gy (95% CI)	*Excess	HR (95% CI)	*Excess	*Excess	
Lip, oral cavity, pharynx	280	15.2 (2.7 - 28)	0.157	51.7 (1.2 - 202)	0.535	0.96 (0.59-1.56)	0.151	0.157	
Stomach	160	1.4 (-5.0 - 7.9)	0.018	10.3 (-10 - 45)	0.132	1.64 (0.99-2.74)	0.030	0.018	
Colo-rectum, anal	36	4.5 (-3.5 - 13)	0.065	-9.0 (-22 - 30)	-0.128	1.03 (0.87-1.22)	0.067	0.065	
Liver, intrahepatic bile ducts	104	14.2 (13 - 16)	0.103	19.2 (13 - 25)	0.139	3.56 (1.83-6.93)	0.367	0.103	
Trachea, bronchus, lung	320	0.52 (0.21 - 0.82)	0.094	2.0 (0.1 - 5.4)	0.360	1.06 (0.73-1.53)	0.100	0.094	
Bone and artic. cartilage	182	2.6 (2.0 - 3.3)	0.002	1.9 (0.7 - 3.8)	0.001	1.40 (0.70-2.82)	0.0028	0.001	
Breast (female)	28	3.45 (-10 - 17)	0.036	3.45 (-10 – 17)	0.036	1.12 (1.01-1.23)	0.040	0.018	
Kidney	340	14.9 (3.9 - 26)	0.342	9.6 (-7.5 - 27)	0.220	0.82 (0.44-1.5)	0.280	0.342	
Urinary bladder	380	10.1 (1.4 - 23)	0.292		0.292 †	1.63 (1.05-2.51)	0.476	0.292	
Lymphoid, haem- opoetic	30	2.17 (1.7 - 2.7)	0.018	1.9 (0.7 - 3.8)	0.016	1.11 (0.67-1.82)	0.020	0.018	
Total Excess mortality per 100 treated			1.13		1.60		1.53	1.11	

SUPPLEMENTAL TABLE 4 *

SUPPLEMENTAL Table 4. Various assumptions or used background with its impact on Excess relative risk per Gray (ERR/Gy) and on Excess mortality per 100 treated. * Excess data is here calculated for a standard patient of 55 years of age at time of treatment.

The larger 95% CI for 'Female only' is due to fewer events (145 observed / 56.7 expected), out of which 63 / 40.3 (Obs/Exp) concerned breast cancer, while 'Male and female derived ERR/Gy' are based on totally 1757 / 572 (Obs/Exp), as seen in Table 1 and 2 and specified in Supplemental Table 2.

The low LET = high LET assumption 'Excess' figures in *Italic* are identical with the data in column 'Male and female derived ERR/Gy', as this age adjustment only concerns the figures for 'Breast' and 'Bone and articulate cartilage'.

Hazard Ratio (column 7) for a new primary cancer following a first ovarian cancer diagnosis. Data per organ from (*Nielsen et al. CMAJ 2012. DOI:10.1503/cmaj.110167*), were multiplied with the Excess cancer presented in column 4, to give a new number of 'Excess cancer / 100 treated' presented in column 8. No adjustment for any accompanying decreased survival due to the second primary cancer is performed.

† No dose data was available for urinary bladder where excessive risk data exist, therefore the total Excess data from 'Male and female' is used also in 'Female sex only'.

CI, confidence interval. LET, linear energy transfer. CA, cancer. HR, Hazard ratio.

SUPPLEMENTAL TABLE 5

	25 year		35 year		45	45 year		55 year		year
	M&F	F	M&F	F	M&F	F	M&F	F	M&F	F
Lip, oral cavity, pharynx	0.192	0.654	0.191	0.650	0.178	0.607	0.157	0.535	0.115	0.391
Stomach	0.021	0.152	0.021	0.150	0.019	0.141	0.018	0.132	0.014	0.105
Colo-rectum, anal	0.071		0.070		0.067		0.065		0.053	
Liver, intrahepatic bile	0.113	-0.139	0.113	-0.139	0.108	-0.133	0.103	-0.128	0.082	-0.105
ducts Trachea, bronchus,	0.111	0.153	0.111	0.153	0.106	0.147	0.094	0.139	0.061	0.110
lung Bone and artic. cartilage	0.002	0.422	0.002	0.424	0.002	0.404	0.002	0.001	0.001	0.234
Breast (female)	0.047	0.002	0.046	0.001	0.042	0.001	0.036	0.036	0.026	0.026
Kidney	0.364	0.234	0.365		0.353		0.342		0.279	
Urinary bladder	0.298	0.234	0.299	0.235	0.292	0.227	0.292	0.220	0.253	0.180
Lymphoid, haemopoetic	0.019	0.230	0.019	0.233	0.019	0.232	0.018	0.232	0.015	0.233
		0.017		0.017		0.010		0.010		0.014
Male and female	1.24		1.24		1.19		1.13		0.90	
Female only		1.84		1.84		1.74		1.60		1.21

Excess cancer cases per 100 treated according to Age, at time of treatment

Excess cancer cases per 100 treated depending on various age at time of treatment. Data presented as Male and female' or 'Female only' using the ERR/Gy as presented in Supplemental Table 4.

M&F, 'Male and Female' derived background data of observed/expected to calculate the ERR/Gy.

F, 'Female only' derived background data of observed/expected to calculate the ERR/Gy.