- 1 Long-term outcomes of submaximal activities of peptide receptor radionuclide therapy with 177Lu-
- 2 **DOTATATE in neuroendocrine tumour patients.**
- 3 Noémie S. Minczeles (MD)^{1,2}, Wouter W. de Herder (MD PhD)¹, Richard A. Feelders (MD PhD)¹, Frederik
- 4 A. Verburg (MD PhD)², Johannes Hofland (MD PhD)¹, Tessa Brabander (MD PhD)²
- 5 ¹Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam,
- 6 Erasmus MC and Erasmus MC Cancer Centre, Rotterdam, The Netherlands
- 7 ²Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC and
- 8 Erasmus MC Cancer Centre, Rotterdam, The Netherlands
- 9 Running title: efficacy of submaximal dosage of PRRT
- 10 Address correspondence and reprint requests to:
- 11 N.S. Minczeles, PhD-candidate
- 12 ORCID: 0000-0003-1758-0163
- 13 n.minczeles@erasmusmc.nl
- 14 +31107034394
- 15 Erasmus MC
- 16 Dr. Molewaterplein 40
- 17 3015 GD Rotterdam
- 18 The Netherlands
- 19 Word count: 4999
- 20 Financial support: no
- 21 Conflict of Interest:

WWH has received speaker fees from Novartis and Ipsen, and compensation from Novartis and Ipsen for service on advisory boards. RAF has received speaker and consultancy fees from Recordati, Corcept and Ipsen. JH has received speaker fees from Ipsen, and compensation from Novartis and Ipsen for service on advisory boards. TB has received speaker fees from Novartis and Ipsen, and compensation from Novartis for service on advisory board. NSM and FAV have no disclosures to declare.

27 ABSTRACT

28 Rationale

In literature, up to 45% of the neuroendocrine tumour (NET) patients who are treated with peptide receptor
radionuclide therapy (PRRT) with ¹⁷⁷Lu-DOTATATE do not receive the intended cumulative activity of 29.6
GBq (800 mCi). The aim of this study was to analyse the efficacy of submaximal activities of PRRT in
patients who discontinued for disease-unrelated reasons.

33 Methods

Retrospective inclusion of well-differentiated and advanced NET patients who underwent PRRT from 2000 until 2019 and did not receive 29.6 GBq ¹⁷⁷Lu-DOTATATE. For comparison, we selected control NET patients who received the intended cumulative activity of 29.6 GBq ¹⁷⁷Lu-DOTATATE between 2000-2012. Primary outcomes were progression-free survival (PFS) and tumour response, and the secondary outcome was overall survival (OS).

39 Results

40 In total 243 patients received 3.7-27.8 GBq. In 130 patients the submaximal activity was disease-unrelated 41 (e.g. bone marrow and renal toxicity in 48% and maximal renal absorbed dose in 23%) and they were 42 included. Patients receiving a reduced activity had more bone metastases, a lower BMI and albumin level, 43 a higher alkaline phosphatase, and less grade 1 tumours than the 350 patients included in the control group. 44 The disease control rate in the reduced activity group was 85% compared to 93% for the control group 45 (P=0.011). The median PFS (95%CI) was 23 (21-26) months for the reduced activity group and 31 (27-35) 46 months for the control group (P=0.001), and the median OS was 34 (28-40) months and 60 (53-67) months, 47 respectively (P<0.0001). With adjustment for relevant confounders in the multivariable Cox regression 48 analyses, cumulative activity was an independent predictor of both PFS and OS.

49 Conclusion

- 50 In NET patients treated with a cumulative activity less than 29.6 GBq ¹⁷⁷Lu-DOTATATE, PRRT was less
- 51 efficacious in terms of tumour response and survival compared to patients who received 29.6 GBq.
- 52 Key words: cumulative activity, peptide receptor radionuclide therapy, neuroendocrine tumour

53 **INTRODUCTION**

54

Neuroendocrine tumours (NET) predominantly originate from neuroendocrine cells located in the bronchopulmonary system, the gastrointestinal tract, and the pancreas *(1)*. For patients with metastatic disease, peptide receptor radionuclide therapy (PRRT) is an established treatment option *(2)*. PRRT with radiolabelled somatostatin analogues targets somatostatin receptors (SSTRs) that are frequently present on the NET cell membrane. Currently, PRRT with [¹⁷⁷Lu-DOTA0,Tyr3]octreotate (¹⁷⁷Lu-DOTATATE) is approved for well-differentiated, progressive or advanced gastroenteropancreatic (by European Medicines Agency (EMA) and U.S. Food and Drug Administration (FDA)) and other foregut NET (by FDA only).

62 ¹⁷⁷Lu-DOTATATE induced objective response (complete response or partial response) in 39% and 63 disease control (objective response or stable disease) in 83% of the patients with gastroenteropancreatic, 64 bronchial, other foregut, and unknown primary NET who were treated with 22.2-29.6 GBg (3). The NETTER-65 1 trial in well-differentiated advanced midgut NET patients showed that ¹⁷⁷Lu-DOTATATE plus long-acting 66 octreotide results in a longer progression-free survival (PFS) than treatment with high-dose octreotide. Here, 67 the dosing schedule of ¹⁷⁷Lu-DOTATATE consisted of 4 cycles of each 7.4 GBq for a total cumulative activity 68 of 29.6 GBg. However, 23% of the patients did not complete these 4 cycles. Activity reductions were required 69 in 7% of the patients due to dose-limiting toxicities, but other causes for not completing the treatment and 70 the outcomes in this subgroup have not been reported (4). Other studies have reported that 5-45% of 71 patients do not reach their intended full cumulative activity of PRRT (5-9).

Most often, PRRT is discontinued due to progressive disease or death *(5,7-9)*, which evidently influences the response and survival outcomes. The aim of this study was to provide an analysis of the treatment response, PFS, and overall survival (OS) in patients who did not receive the full cumulative PRRT activity for reasons unrelated to the behaviour of the tumour.

77 PATIENTS AND METHODS

78

79 Patients

80 For this retrospective analysis, we selected all Dutch gastroenteropancreatic and other foregut NET patients who were treated between 2000 and March 2019 with ¹⁷⁷Lu-DOTATATE at Erasmus MC and did 81 not receive 29.6 GBq (800 mCi). Patients were excluded for this study if they had a grade 3 NET or 82 83 neuroendocrine carcinoma or if PRRT was administered in neoadjuvant setting for local disease or in an 84 adjuvant setting. The patient files were searched for the reason of activity adjustment and the clinical and 85 tumour characteristics. The follow-up scans after PRRT were assessed for the treatment response 86 according to the Response Evaluation Criteria in Solid Tumours 1.1 (RECIST 1.1). A subselection was made 87 for patients in whom the activity reduction was not related to death, disease progression, or other reasons 88 directly related to their tumour burden. A group of patients who received the maximum PRRT dosage was 89 collected for comparison. Here, we selected prospectively characterized Dutch NET patients who were 90 enrolled in our phase 2 trial (3) from 2000 until May 2012, for a follow-up of at least three years for the PFS, 91 and received 29.6 GBg of ¹⁷⁷Lu-DOTATATE. For this group, the same inclusion and exclusion criteria were 92 applied as for the patients who received <29.6 GBq. The tumour grade before PRRT was retrospectively 93 assessed for all patients by retrieving the mitotic index or Ki67% from pathology reports applying the WHO 94 2019 classification (10). Our local institutional review board (IRB) approved the phase 2 study and all 95 subjects signed an informed consent form or, for patients treated after 2015, the need for written informed 96 consent was waived by the IRB.

97

98 PRRT

All inclusion and exclusion criteria and details of the preparation and administration of ¹⁷⁷Lu-DOTATATE were previously described *(3)*. The intended cumulative activity of ¹⁷⁷Lu-DOTATATE was 29.6 GBq, administered in 4 cycles with an interval of 6-10 weeks between the cycles. In case of dose-limiting toxicity, other adverse events or precautions, the administered radioactivity per cycle could be halved and the number of cycles could be adjusted. PRRT was discontinued, and the intended cumulative activity of 29.6 GBq was not reached, when dose-limiting toxicities recurred or persisted longer than 16 weeks. In patients treated before 2008, the maximum cumulative activity was also reduced if the calculated renal dose
exceeded 23 Gy.

Follow-up visits were scheduled at 4-6 weeks after each cycle, and at 6 weeks, 3 months, 6 months,
and thereafter at 6-month intervals after the last treatment cycle. These visits included laboratory
measurements (hematologic, hepatic, and renal function tests) and imaging (CT or MRI).

110

111 Outcomes

Primary endpoints were PFS and tumour response compared for patients who received the reduced activity for disease-unrelated reasons with patients who received the full PRRT activity. PFS was calculated from the start of PRRT until disease progression or death from any cause. The PFS was censored when patients were lost to follow-up. Tumour response was assessed according to RECIST 1.1 *(11)*. The secondary endpoint was OS, calculated from the start of PRRT until death from any cause. The survival status was updated until June 2021.

118

119 Statistics

120 The full activity and reduced activity groups were compared using χ^2 or Fisher exact test for 121 categorical variables and Mann-Whitney U or t test for continuous variables. The PFS and OS were analysed 122 with the Kaplan-Meier method and the Log-rank test. Cox proportional-hazards analysis was used to 123 calculate the adjusted hazard ratio (HR) of cumulative activity for PFS and OS. We included the following 124 known prognostic variables in the multivariable analyses with a full model approach (12): age, sex, BMI, 125 tumour origin (bronchial, pancreatic, gastrointestinal, unknown primary), tumour grade (grade 1, grade 2, 126 unknown), Karnofsky index, months since diagnosis, prior treatments (somatostatin analogues, surgery, 127 chemotherapy), progression before PRRT, liver metastases, bone metastases, tumour uptake on ¹¹¹In-128 DTPA-octreotide scintigraphy higher than the kidneys/spleen, extent of the disease (moderate, limited, 129 extensive), albumin, alkaline phosphatase, and year of treatment with PRRT. A two-sided P-value < 0.05 130 was considered statistically significant. All analyses were performed with use of IBM SPSS Statistics for 131 Windows software (version 25, IBM Corp., Armonk, NY).

132

133 RESULTS

134

135 Between 2000 and 2019, 243 NET patients received a cumulative PRRT activity of less than 29.6 136 GBq. The median (range) administered activity was 18.5 (3.7-27.8) GBg administered in a median (range) 137 of 3 (1-7) cycles. The main causes for discontinuing PRRT included bone marrow toxicity, death in the 138 course of PRRT cycles, and maximum calculated renal absorbed dose (Table 1). Patients who received a 139 reduced activity because of progression, death, and other reasons related to their tumour burden were 140 excluded for further analysis, resulting in a cohort of 130 patients with reduced administered activity due to 141 disease-unrelated causes (Figure 1). The control group of patients receiving the full PRRT activity of 29.6 142 GBq consisted of 350 patients.

143

144 Patient Characteristics

145 In Table 2, the baseline characteristics of the reduced and full activity groups are shown. The 146 subjects in the reduced activity group received an average of 3 cycles with a median (IQR) cumulative 147 activity of 22.2 (18.5-25.9) GBq. The patients in the reduced activity group had a significantly lower median 148 BMI and albumin level, lower proportion of unknown primary tumour origins, more frequently bone 149 metastases, and a higher alkaline phosphatase level than the patients in the full activity group. In the 150 reduced activity group also a significantly lower proportion of grade 1 tumours was observed, although grade 151 was not available in half of the subjects. In the reduced activity group, PFS and OS were not significantly 152 different between patients treated before and after 2013.

153

154 Progression-free Survival

The median (95%CI) PFS of 23 (21-26) months for the reduced activity group was significantly shorter than the PFS of 31 (27-35) months for the full activity group (P=0.001). The PFS was further stratified according to the number of cycles. The PFS increased with each higher cumulative activity subgroup from 19 (10-29) months for <14.8 GBq, 23 (20-26) months for 16.7-22.2 GBq, and 28 (18-38) months for 25.9-27.8 GBq (P=0.038, Figure 2a). Cumulative activity was an independent predictor of PFS in the multivariable Cox regression analysis with an HR (95%CI) per 3.7 GBq of 0.84 (0.76-0.93, P=0.001).

161 Treatment Response

162 An objective response was reached in 39 (34%) patients of the reduced activity group and 141 163 (43%) patients in the full activity group (P=0.100). Disease control was observed in 97 (85%) patients of 164 the reduced activity group compared to 305 (93%) in the full activity group (P=0.011), Table 3.

165

166 Overall Survival

During the follow-up, 115 (88%) patients in the reduced activity group and 287 (82%) patients in the full activity group died (P=0.088). The patients in the reduced activity group had a median (95%CI) OS of 34 (28-40) months, which ranged from 25 (20-30) months for the 3.7-14.8 GBq group, 34 (29-40) months for 16.7-22.2 GBq, and 51 (35-68) months for the 25.9-27.8 GBq group (P=0.018). The survival of the reduced cumulative activity subgroups was shorter than the median OS of 60 (53-67) months of the full activity group (P<0.0001, Figure 2b). The adjusted HR (95%CI) for all-cause death of cumulative activity per 3.7 GBq was 0.80 (0.73-0.87, P<0.0001) in the multivariable Cox regression.

174

175 **DISCUSSION**

176

¹⁷⁷Lu-DOTATATE is a systemic treatment option for advanced NET patients *(2)*. It has been demonstrated that this treatment induces disease control in the majority of patients *(3)* and prolongs the PFS compared to treatment with high-dose somatostatin analogue *(4)*. However, 23% of the patients in the NETTER-1 trial *(4)* and up to 45% of the patients in other studies *(6)* did not receive the optimum activity of ¹⁷⁷Lu-DOTATATE. To our knowledge, this is the only large analysis of the efficacy of submaximal dosages of PRRT with ¹⁷⁷Lu-DOTATATE as a result of PRRT toxicity and other NET-unrelated causes.

As described previously (5,7-9), death or progressive disease (27%) and toxicity (26%) were the most prevalent reasons for submaximal PRRT dosage in our cohort of 243 NET patients. Since progression, death, and other NET-related adverse events influence the treatment outcome, we selected patients who received a lower activity for NET-unrelated reasons for the efficacy analysis. Most prevalent causes in the patients included in the reduced activity group were bone marrow toxicity, a maximum calculated renal dose and renal impairment, indicating that the bone marrow and kidneys are the dose-limiting organs (13). 189 Although the treatment response and PFS of patients treated with a submaximal activity of PRRT 190 were lower compared to the full activity group, still a disease control rate (DCR) of 85% and a median PFS of 23 months were observed. The median OS of 34 months, however, was significantly shorter than the OS 191 192 of the full activity group (60 months). This substantial difference could potentially be explained by the 193 observation that patients with presumably more severe disease (i.e. more grade 2 tumours and bone 194 metastases, increased alkaline phosphatase, and lower BMI and albumin) seemed to be at risk for 195 discontinuing PRRT. In literature, a higher tumour grade (14) and, possibly, presence of bone metastases 196 (5,15-17) and lower BMI or worse nutritional status (18) negatively influence prognosis. There is no clear 197 evidence for the association between bone metastases and the risk of PRRT-induced bone marrow toxicity 198 (19,20). Furthermore, no scoring system for the extent of bone metastases was implemented, so there might 199 be a large variability in the extent of bone metastases. Nonetheless, the cumulative activity had a dosage-200 dependent effect on the PFS and OS, which in the multivariable Cox regression analyses was confirmed to 201 be independent from other important confounders that potentially influence the cumulative activity as well 202 as the outcomes. Therefore, our study indicates an independent, incremental, and causal relationship 203 between prognosis and cumulative activity.

204 It has been demonstrated that tumour response after PRRT is correlated to the administered 205 radioactivity (5,21). Hamiditabar et al. reported a DCR of 59% in the total group of 132 patients who had at 206 least 1 cycle (7-44 GBq) and a follow-up scan, and a DCR of 86% in the subgroup of 28 patients who 207 completed at least 4 cycles (29-44 GBq). Patients who died or voluntarily withdrew during PRRT were 208 excluded from their analysis (6), but it is unclear what the reasons were for not completing PRRT. In the 209 phase II studies of Sansovini (22) and Paganelli (23) et al., the administration of a cumulative activity of 18.5 210 or 25.9 GBg was based on the presence of potential risk factors for renal or haematological toxicity. In the 211 32 pancreatic NET patients treated with a reduced activity, a DCR of 78%, a median PFS of 22 months, and 212 a median OS of 64 months were observed, compared to a DCR of 86%, a PFS of 53 months (P=0.353), 213 and a median OS not reached (P=0.007) in the 28 patients in the full activity group (22). The treatment 214 response after 18.5 GBq was comparable to our observations in the reduced activity group, although the 215 OS of 64 months was much longer than the 34 months in our cohort. However, in the 43 gastrointestinal 216 NET patients aimed for treatment with 18.5 GBq, both the median PFS and OS were not reached after a 217 median follow-up of 38 months and the treatment response and OS were equal between the 18.5 GBq and 218 25.9 GBq groups *(23)*. In our study, power was insufficient to calculate differences stratified for primary 219 tumour site. These studies are not fully comparable to our study, because the different administered 220 cumulative activities were intentional prior to start of PRRT and patients who stopped PRRT for other 221 reasons than progressive disease were excluded for their efficacy analyses.

222 Given the clear dose response observed until the current maximal activity, PRRT employing higher 223 activities should be investigated in future trials. In two prospective trials, the efficacy of increasing the 224 individual cumulative activities were studied. In the study of Del Prete et al., in which the activity per cycle 225 was based on renal function and body surface area for the first cycle and subsequently on renal dosimetry. 226 the activity was increased in 85% of the patients completing \geq 3 cycles. A median 1.26-fold increase in the 227 absorbed tumour dose was observed, without increased toxicity rates (24). Garske et al. based the number 228 of cycles on the bone marrow and renal dose. Half of the study population received 5-10 cycles and the 229 treatment response was better when the renal dose of 23 Gy was reached. However, in 22% of the patients, 230 PRRT was stopped because of bone marrow toxicity (25). These personalized dosing strategies may help 231 optimizing the efficacy of PRRT, but future research should also focus on preventing PRRT-related toxicities 232 that are dose-limiting. A further interesting possibility emerging from the present analysis could be that after 233 some recovery from toxicity, an increased activity might prognostically be of benefit in selected patients. 234 However, this should be subject of future research.

235 Although the present findings are compelling, as with any retrospective study, there may be other, 236 not immediately evident or unknown confounding issues that could not be adequately controlled for. One 237 particular limitation of our study is the lack of tumour grade in half of the subjects, because until 2007 it was 238 not common practice to consistently report the Ki67% or mitotic count. Moreover, although the majority of 239 the patients were participants in the prospective phase II trial that included the main outcomes of this study, 240 we retrospectively selected the patients and included patients for the reduced activity group who had PRRT 241 after the phase II trial to increase the sample size. As a consequence, there may have been a selection of 242 patients with different characteristics, because alternative treatment options for PRRT became available 243 (26-30) and the availability of ⁶⁸Ga-DOTATATE PET-CT could have influenced the detection of metastases 244 (31). We tried to correct for this by adding the year of treatment with PRRT in the regression analyses.

Furthermore, another limitation caused by the retrospective nature of the present work, it would have been interesting to perform an explanatory dosimetric analysis in this patient group to clarify the influence of cumulative activity in more detail. Unfortunately, in the large majority of patients, only a single post-therapy scan was acquired, thus precluding accurate dosimetric evaluations.

In spite of the limitations of this study, the data compellingly show that patients are likely to benefit from striving towards completing a full 29.6 GBq PRRT regimen. In the light of these findings, it appears that only serious medical complications of PRRT or unwillingness of the patient to undergo further cycles would constitute appropriate grounds for discontinuation of PRRT. Whether such medical reasons can be expressed in a discrete or continuous classifier may be an interesting direction for future research.

254

255 CONCLUSION

256

The cumulative administered activity of ¹⁷⁷Lu-DOTATATE may have an important, incremental, and independent effect on the response to and survival after PRRT. Therefore, it appears eminently sensible to strive for achieving a cumulative therapeutic activity of 29.6 GBq ¹⁷⁷Lu-DOTATATE if medically possible.

- 260 KEY POINTS
- 261
- 262 Question:
- 263 What is the efficacy of submaximal doses of ¹⁷⁷Lu-DOTATATE as a result of NET-unrelated reasons?
- 264

265 **Pertinent Findings:**

- 266 In this retrospective analysis of 350 NET patients who received 29.6 GBq compared to 130 NET patients
- who received 3.7-27.8 GBq due to NET-unrelated adverse events (mainly bone marrow and renal toxicity),
- 268 we observed statistically significant lower PFS, DCR, and OS for the patients receiving submaximal
- 269 activities.
- 270

271 Implications For Patient Care:

272 Clinical practice and future research should focus on preventing PRRT-related dose-limiting toxicities in

273 order to administer the optimal dose.

274 **REFERENCES**

275

- Hofland J, Kaltsas G, de Herder WW. Advances in the diagnosis and management of well differentiated neuroendocrine neoplasms. *Endocr Rev.* 2020;41.
- Pavel M, Oberg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO
 clinical practice guidelines for diagnosis, treatment and follow-up. *Ann Oncol.* 2020;31:844-860.
- Brabander T, van der Zwan WA, Teunissen JJM, et al. Long-term efficacy, survival, and safety of
 [(177)Lu-DOTA(0),Tyr(3)]octreotate in patients with gastroenteropancreatic and bronchial
 neuroendocrine tumors. *Clin Cancer Res.* 2017;23:4617-4624.
- 283 4. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of (177)Lu-DOTATATE for midgut
 284 neuroendocrine tumors. *N Engl J Med.* 2017;376:125-135.
- Bodei L, Cremonesi M, Grana CM, et al. Peptide receptor radionuclide therapy with (1)(7)(7)Lu DOTATATE: the IEO phase I-II study. *Eur J Nucl Med Mol Imaging*. 2011;38:2125-2135.
- Hamiditabar M, Ali M, Roys J, et al. Peptide receptor radionuclide therapy with 177Lu-octreotate in
 patients with somatostatin receptor expressing neuroendocrine tumors: six years' assessment. *Clin Nucl Med.* 2017;42:436-443.
- Kipnis ST, Hung M, Kumar S, et al. Laboratory, clinical, and survival outcomes associated with
 peptide receptor radionuclide therapy in patients with gastroenteropancreatic neuroendocrine
 tumors. *JAMA Netw Open.* 2021;4:e212274.
- Lin E, Chen T, Little A, et al. Safety and outcomes of (177)Lu-DOTATATE for neuroendocrine
 tumours: experience in New South Wales, Australia. *Intern Med J.* 2019;49:1268-1277.
- Sabet A, Dautzenberg K, Haslerud T, et al. Specific efficacy of peptide receptor radionuclide therapy
 with (177)Lu-octreotate in advanced neuroendocrine tumours of the small intestine. *Eur J Nucl Med Mol Imaging.* 2015;42:1238-1246.
- Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive
 system. *Histopathology*. 2020;76:182-188.
- Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours:
 revised RECIST guideline (version 1.1). *Eur J Cancer.* 2009;45:228-247.

- Chowdhury MZI, Turin TC. Variable selection strategies and its importance in clinical prediction
 modelling. *Fam Med Community Health.* 2020;8:e000262.
- 304 13. Sandstrom M, Garske-Roman U, Granberg D, et al. Individualized dosimetry of kidney and bone
 305 marrow in patients undergoing 177Lu-DOTA-octreotate treatment. *J Nucl Med.* 2013;54:33-41.
- Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in
 patients with neuroendocrine tumors in the United States. *JAMA Oncol.* 2017;3:1335-1342.
- Abou Jokh Casas E, Pubul Nunez V, Anido-Herranz U, et al. Evaluation of (177)Lu-DOTATATE
 treatment in patients with metastatic neuroendocrine tumors and prognostic factors. *World J Gastroenterol.* 2020;26:1513-1524.
- 311 16. Strosberg J, Gardner N, Kvols L. Survival and prognostic factor analysis of 146 metastatic
 312 neuroendocrine tumors of the mid-gut. *Neuroendocrinology*. 2009;89:471-476.
- 313 17. Swiha MM, Sutherland DEK, Sistani G, et al. Survival predictors of (177)Lu-DOTATATE peptide
 314 receptor radionuclide therapy (PRRT) in patients with progressive well-differentiated
 315 neuroendocrine tumors (NETS). *J Cancer Res Clin Oncol.* 2022;148:225-236.
- Maasberg S, Knappe-Drzikova B, Vonderbeck D, et al. Malnutrition predicts clinical outcome in
 patients with neuroendocrine neoplasia. *Neuroendocrinology*. 2017;104:11-25.
- Bergsma H, Konijnenberg MW, Kam BL, et al. Subacute haematotoxicity after PRRT with (177)Lu DOTA-octreotate: prognostic factors, incidence and course. *Eur J Nucl Med Mol Imaging*.
 2016;43:453-463.
- 321 20. Sabet A, Ezziddin K, Pape UF, et al. Long-term hematotoxicity after peptide receptor radionuclide
 322 therapy with 177Lu-octreotate. *J Nucl Med.* 2013;54:1857-1861.
- Jahn U, Ilan E, Sandstrom M, Garske-Roman U, Lubberink M, Sundin A. 177Lu-DOTATATE
 peptide receptor radionuclide therapy: dose response in small intestinal neuroendocrine tumors.
 Neuroendocrinology. 2020;110:662-670.
- Sansovini M, Severi S, Ianniello A, et al. Long-term follow-up and role of FDG PET in advanced
 pancreatic neuroendocrine patients treated with (177)Lu-DOTATATE. *Eur J Nucl Med Mol Imaging.* 2017;44:490-499.

- Paganelli G, Sansovini M, Ambrosetti A, et al. 177Lu-DOTA-octreotate radionuclide therapy of
 advanced gastrointestinal neuroendocrine tumors: results from a phase II study. *Eur J Nucl Med Mol Imaging.* 2014;41:1845-1851.
- Del Prete M, Buteau FA, Arsenault F, et al. Personalized (177)Lu-octreotate peptide receptor
 radionuclide therapy of neuroendocrine tumours: initial results from the P-PRRT trial. *Eur J Nucl Med Mol Imaging*. 2019;46:728-742.
- Garske-Roman U, Sandstrom M, Fross Baron K, et al. Prospective observational study of (177)Lu DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours
 (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. *Eur J Nucl Med Mol Imaging.* 2018;45:970-988.
- Rinke A, Muller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective,
 randomized study on the effect of octreotide LAR in the control of tumor growth in patients with
 metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. *J Clin Oncol.* 2009;27:4656-4663.
- Caplin ME, Pavel M, Cwikla JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine
 tumors. *N Engl J Med.* 2014;371:224-233.
- Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional
 neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebocontrolled, phase 3 study. *Lancet.* 2016;387:968-977.
- Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. *N Engl J Med.* 2011;364:514-523.
- 350 30. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic
 351 neuroendocrine tumors. *N Engl J Med.* 2011;364:501-513.
- 352 31. Deppen SA, Blume J, Bobbey AJ, et al. 68Ga-DOTATATE compared with 111In-DTPA-Octreotide
 and conventional imaging for pulmonary and gastroenteropancreatic neuroendocrine tumors: a
 systematic review and meta-analysis. *J Nucl Med.* 2016;57:872-878.

356 FIGURE 1. Flowchart

357

358 Legend. Flowchart of the inclusion and exclusion criteria for the selection of the patients for the reduced

359 activity group. NET, neuroendocrine tumour; SSTR, somatostatin receptor

- 362 Legend. Progression-free survival (A) and overall survival (B) of the full activity group (29.6 GBq) compared
- to the reduced activity group (3.7-27.8 GBq), stratified for different cumulative activity categories. *P*-values
- 364 were calculated with the log-rank test.

365 **TABLES**

	No. (%)	Number of cycles, median (range)	Cumulative activity, GBq, median (range)
Death in between cycles	52 (21%)	1 (1-4)	7.4 (3.7-25.9)
Bone marrow toxicity	49 (20%)	3 (1-6)	22.2 (3.7-25.9)
Maximum kidney dose	30 (12%)	3 (3-4)	22.2 (18.5-27.8)
Intervening medical problems*	28 (12%)	2.5 (1-4)	16.7 (3.7-25.9)
Renal toxicity	14 (6%)	3 (1-5)	22.2 (7.4-22.2)
Progressive disease during PRRT	14 (6%)	2.5 (2-3)	16.7 (14.8-22.2)
Previous radionuclide therapy	9 (4%)	3 (2-3)	22.2 (14.8-22.2)
Protocol 5 cycles of 5.55 GBq	7 (3%)	5 (5-5)	27.8 (25.9-27.8)
Reduced dose for safety [†]	6 (2%)	4 (4-7)	25.9 (22.2-25.9)
Clinical deterioration	5 (2%)	2 (2-5)	14.8 (11.1-25.9)
Patient request	5 (2%)	3 (1-3)	22.2 (7.4-22.2)
Low uptake on ¹¹¹ In-DTPA-octreotide scan	4 (2%)	1 (1-2)	7.4 (7.4-14.8)
Cognitive deterioration	3 (1%)	2 (1-2)	14.8 (7.4-14.8)
Other adverse events [‡]	3 (1%)	3 (2-4)	22.2 (11.1-25.9)
External beam radiotherapy	1 (0.4%)	3	22.2
Lost to follow-up	1 (0.4%)	2	14.8
Other§	4 (2%)	1 (1-2)	7.4 (7.4-14.8)
Unknown	8 (3%)	4 (4-6)	25.9 (22.2-25.9)

367 *Ileus (n=6), infections (n=5), cardiac valve surgery (n=4), myocardial infarction (n=2), hypercalcemia due

368 to PTHrp production (n=1), carcinoid crisis (n=1), carcinoid heart disease (n=1), analysis of a pulmonary

369 nodule (n=1), breast carcinoma (n=1), gastrointestinal bleeding (n=1), cerebrovascular event (n=1), oedema

370 due to hypoalbuminemia (n=1), admission elsewhere (n=1), multiple problems (n=2).

[†]Reasons include: prevention of carcinoid crisis (n=2), prevention of tumour lysis (n=1), large tumour load

in the liver (n=1), baseline thrombocytopenia (n=1), unknown (n=1).

^{*}Increased abdominal pain (n=2), nausea and hair loss (n=1).

[§]Unsafe administration due to radioactive contamination (n=2), incompliance regarding planned visits (n=1),

375 aim of treatment was biochemical stabilisation (n=1).

376 **TABLE 2. Baseline characteristics of all included patients.**

Variables	Reduced activity <i>n</i> =130	Full activity n=350	P-value
Cumulative activity, GBq			
3.7-7.4	8 (6%)	0	<0.0001
11.1-14.8	20 (15%)	0	
16.7-22.2	69 (53%)	0	
25.9-27.8	33 (25%)	0	
29.6	0	350 (100%)	
Number of cycles	3 (3-4)	4 (4-4)	<0.0001
Age, years	60.6 ± 11.6	60.0 ± 10.3	0.562
Female sex	72 (55%)	163 (47%)	0.086
BMI, kg/m ²	23.4 (20.9-25.9)	24.7 (22.3-27.3)	0.001
Tumour origin			
Bronchial and thymus	11 (8%)	19 (5%)	0.131
Pancreatic	43 (33%)	98 (28%)	
Gastrointestinal	63 (48%)	172 (49%)	
Unknown primary	13 (10%)	61 (17%)	
Tumour grade			
Grade 1 NET	20 (16%)	91 (26%)	0.048
Grade 2 NET	39 (30%)	86 (25%)	
Unknown	70 (54%)	173 (49%)	
Karnofsky Performance Score	90 (80-95)	90 (80-100)	0.078
Months since diagnosis	22.8 (6.3-48.1)	14.9 (5.7-43.6)	0.253
Previous treatments			
Somatostatin analogues	75 (58%)	205 (59%)	0.862
Surgery	59 (45%)	151 (43%)	0.660
External beam radiotherapy	14 (11%)	24 (7%)	0.158
Chemotherapy	6 (5%)	27 (8%)	0.233
Progression before PRRT			
Yes	68 (52%)	202 (58%)	0.113
No	28 (22%)	48 (14%)	
Unknown	34 (26%)	100 (29%)	
Liver metastases	114 (88%)	318 (91%)	0.304
Bone metastases	38 (29%)	61 (17%)	0.005
Uptake on ¹¹¹ In-DTPA-octreotide scan*			
Lower than liver	1 (1%)	3 (1%)	0.803
Equal to liver	7 (6%)	23 (7%)	
Higher than liver	79 (67%)	216 (62%)	
Higher than kidneys/spleen	31 (26%)	108 (31%)	
Extent of the disease [†]			
Limited	13 (11%)	37 (11%)	0.861
Moderate	83 (71%)	257 (73%)	
Extensive	21 (18%)	56 (16%)	
Creatinine, µmol/L	/3 (61-90)	/4 (63-85)	0.861
Albumin, g/L	42 (40-45)	43 (40-46)	0.001
Alkaline phosphatase, U/L	136 (87-214)	105 (77-160)	0.001
Chromogranin A, µg/L	445 (166-1859)	491 (143-2349)	0.972

377 Data are presented as number (%), median (interquartile range), or mean ± standard deviation.

^{*}In 12 patients of the reduced activity group, a ⁶⁸Ga-DOTATATE PET-CT scan was performed.

- 379 [†]Scored on ¹¹¹In-DTPA-octreotide scintigraphy: Limited, up to five sites in one part of the body (head/neck,
- 380 chest, upper abdomen, lower abdomen); moderate, multiple sites in up to two parts of the body; extensive,
- 381 *multiple tumour sites in more than two parts of the body.*

382 **TABLE 3.** Radiological tumour response according to RECIST 1.1.

Variables*	Reduced activity <i>n</i> =130	Full activity <i>n</i> =350	P-value
Complete response	3 (3%)	9 (3%)	0.061
Partial response	36 (32%)	132 (40%)	
Stable disease	58 (51%)	164 (50%)	
Progressive disease	17 (15%)	23 (7%)	

383 Data are presented as number (%).

^{*}The best response was not evaluable in 16 patients from the reduced activity group and 22 patients from

385 the full activity group.

GRAPHICAL ABSTRACT

